Sensitivity of a performance measure to a single scalar parameter
when a state variable is governed by a differential equation

Let us consider a situation in which a performance measure is a domain integral
involving a state variable that is governed by a differential equation. We want to compute
the sensitivity of such a performance measure to a scalar parameter. We illustrate this
with an example.

Example 1
L

Computea%[ '[ pu(x) dxj where EAu"(x)+ p=0. Note that only u(x) is a function of x
0

while p, £, and 4 are scalar parameters that do not depend on x. Let u(x) satisfy the
boundary conditions: #(0)=0 and u'(L)=0.

In this simple problem, the governing differential equation can be solved in closed form.
That is,

pLx
- 1
U= 1)
satisfies EAu"(x)+ p =0 for the given boundary conditions. We also note that

du(x) _p__px pL @

dx EA EA

2
d u(zx) P 3)

dx EA

L
We use the known solution of u(x) to compute the sensitivity of a%U pu(x) dxj in two

0
ways: (i) integrate w.r.t. x first and then differentiate w.r.t. 4. And (ii) differentiate w.r.t.
A first and then integrate w.r.t. x.

Method A: Closed-form solution

We integrate w.r.t. x and then differentiate w.r.t. 4 to get:

273 273 273
J-pu(x)dx Ip{ +pLdex=_pL +pL =pL

264 EA 6EA  2EA  3EA
d d p2L3 p2L3

S d -
dA U ) j dA ( 3EA J 3EA

Method B: Closed-form solution

(4)

We first differentiate w.r.t. 4 and then integrate w.r.t. x.
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The results of Methods A and B agree with each other. This tells us that parameter
sensitivity and integration commute. That is, the order in which we differentiate and
integrate does not matter. This can be stated as a general result to reckon later.

j-—df(x,p) dx .

For ¢ = If X p dx, flj d [If(x,p)dx]: i

More generally, for any domain Q,

g _ de J IMCZQ

dp dp n dp

But there is a caveat here: the parameter must not change the domain of interest. When
the domain changes because of a parameter, that parameter becomes a shape-changing
parameter. That would complicate matters and we return to this point later.

The commutative rule applies to differentiation too. If there is a function that
depends on a spatial variable x and a parameter p, then too, the order of differentiating

w.rt. x and p does not matter. That is, parameter sensitivity and spatial gradient
commute. This leads to another general result to remember.

af’ (8fj where [’ —g
op ox op ox

If there are multiple spatial variables, e.g., x,y,z, we can write

Vf; =(Vf),

Let us now return to solving the example without using the explicit analytical
solution of the governing equation. Here too, there are two ways to do it: (i) adjoint
method and (ii) direct method. In the adjoint method, we do not compute the sensitivity
of the state variable (here, u(x)) whereas we do that in the direct method.
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Direct method

L
Recall that in this example, we need to ComputeiU pu(x) dx} where EAu"(x)+p=0
da\ s
: iy : d |} t du
with boundary conditions: #(0)=0and u'(L) =0. Note that 7 J. pu(x)dx |= J padx. In
0 0

. d
the direct method, we try to compute d—Z .

First, we differentiate the governing differential equation w.r.t. 4 to get

"” 2
Eu'+ B4 (x)=0:>Eu"+EAd—2(@j=o (6)
dA dx* \ dA

Now, we have a differential equation involving —Z . The loading term in the equation is

Eu"). If this is known, we can solve for ﬂ We already solved for u(x) usin
A y &

2
EAu"(x)+ p=0, here in closed form, to get u(x):—ﬂ+p—Lx (see Eg. (1)), yielding
2EA EA
14 p
u"=——— (Eqg. (3)). Thus, we have
oy (Eq. (3))
2
Eu" +EAd—2(ﬂj =0
dx” \ dA
2
= E| -2 +EAd—2 au
EA dx~\ dA
d’ (du p
=—| —|= 7
dx’ (a’AJ EA’ @)
= i(ﬂj — p_x2 + Cl
dx\dA) FEA
2
%: P >+ Cx+C,
dA 2EA
We know the boundary conditions on d—Z as
Ao and P 2o (8)
dA|._, dA|,_,

since u and u’ are zero at x=0 and x =L, respectively. As they are specified, their
derivatives are zero w.r.t. 4. With the boundary conditions in Eq. (8), we can obtain C,

and C,:
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Ml 0= =0 and | o= -2
dA| _, dd|,_, EA

leading to

du _ px>  plLx

= - 9
dA 2EA*> EA® ®)

Now, we have

d L L p2L3 p2L3 p2L3
— u(x)dx |= dx = - —_
dA [! ) J ! 7 I (215/12 EA2] 6EA®> 2EA*  3EA’

which is the correct sensitivity we got earlier using the closed-form solution.

Adjoint method

Here, we add the left-side expression of the governing equation (here, (EAu"+ p)) to the

functional whose sensitivity is to be found. There is no problem in doing so because that
expression is zero and hence does not change the value of functional. In fact, we multiply
the expression by A(x), an arbitrary function and then add to the functional. The reason
for multiplying with A(x) becomes clear in the later steps. For now, we define

L
L= J.{ pu+A(EAu" + p)} dx and note that the sensitivity of L will be the same as that of the

functional.

Next, we differentiate L with respect to 4 and do integration by parts twice to
get

| &

d.

Ny

- C;iAﬁ{pu +ﬂ(EAu"+p)}dx} = ﬂ%{pu +l(EAu”+p)}}dx

0

pﬂ+ AEu"+ AEA du dx
dA dA
L (10)

p 2 b - v EAY ) ax s | aEA
dA dA dA

0

1]
Ol N O~ O

pd—”mEu"m"EAﬂjd (iEAdu] (/IEAd—uj
dA dA da ), dA

where the first line entails switching the order of integration and differentiation and the

0

last two lines involve integration by parts. The integral in Eq. (10) can be reduced to avoid

. d iy : .
the computation of d—Z by requiring that its coefficient term be made equal to zero:
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EAA" +p=0 (11)

This means that we need to find A(x) such that Eq. (11) is satisfied along with the
boundary conditions that appear in the last line of Eq. (10). This is the reason why we
multiplied by A(x) while defining L. Note that L is called the Lagrangian and A(x) is
called the adjoint variable.

By examining Eq. (11) and the governing equation, we observe that 4 =u . In order
L N
to satisfy the boundary conditions in Eq. (10), i.e., (l’EAﬂj =0 and (/IEA du J =0,
d4 ), da4 )|,
we take A'(L)=0 and A(0)=0. This follows the boundary conditions of u(x). We also
note that since u(0) and u'(L) are specified, their sensitivities w.r.t. 4 are zero. Hence,

both boundary conditions are satisfied at x =0, L. Thus, Eq. (10) reduces to

dL
A

N

S C—y 1~

L
(AEu")dx = I(uEu")dx (12)
0
With the help of Egs. (1) and (3), Eq. (12) can be evaluated as follows.
L L 2
a_ I(uEu”)dx = IE —ﬂ+p—Lx (—ijdx
7R )7\ 2E4 E4 )\ E4
L px2 pLx ( pj p2 L3 L3 p2L3
a2 A S ol i
0 2EA EA A EA" L 6 2 3FEA
L

Thus, we see that we got the same result for c;iA( f pu(x) de without having to compute

0

(13)

du
Th

This example showed us that the derivative of a performance measure that
includes a variable governed by a differential equation can be easily calculated by
introducing an adjoint variable (here, 1) and the corresponding adjoint equation that
governs A . To see this, let us consider another example.

Example 2
d T

Compute d—{j(pz +g2)dt} where g+ pg=0and g(0)=1.
P (o

Using the closed-form solution

The solution of g+ pg =0 for the given boundary condition can be obtained as

g=e” (14)
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By substituting the preceding solution into the given domain integral
differentiation w.r.t. p, we get

LT+ )it b= [ (2 + ) = [ (7 e e
dpopg Odppg Odpp
I 2p-20e")d = 2pT+Te_2ppT+ 2_:;— :

2

2p

We can also do this by differentiating w.r.t. p first and then integrating.
dfzz}fd22T£ dj
—s|lp +g)dty=|—I(p +g°)dt=||2p+2g dt
NN P (e

Using Eq. (10), we get

g=e"”

Egs. (16) and (17) give

%{.Tf([f +g2)dt} ~[(2p- 21" )a

0 0

-2pT —2pT 1
—2pT+TE—+ S
p 2p 2p
. d,
Let us now use the adjoint method where we do not compute d_g .
P

Example 2 using the adjoint method

Consider, as before,

L=[{(p*+g")+Ag+gp)dt

o'—-.’\]

Now, we have

T .
ézj. [2p+2gd—gj+/l(d—g+g+pd—g]+ﬁ(g+pg) dt
ap dp dp dp) dp

and then

(15)

(16)

(17)

(18)

(19)

(20a)
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: . . : dA
where the last term in the integrand is zero because g+ pg =0. Therefore, — does not

dp
enter the picture. By using integration by parts for (/1 Z—g] term in the integrand of Eq.
P
(20a), we get
Lt d dg|
—=j{(2p+/1g)+(2g+pz—,i)—g}dtm—g (20Db)
dp dp dp|,
wherein we also collected terms that involve Z—g together. We now equate the terms that
P
multiply Z—g to zero to get a differential equation that enables us to solve for 4. That is,
P
we have
2¢+pl—A=0and A(L)=0 (21)

Note that d_g

y =0 because g(0)=1, a value that does not depend on p.
/4

x=0

In the adjoint method, we use the solution of the governing equation. That is, we
use g=¢e " from Eq. (14). By substituting this result in Eq. (21), we solve it to get

-pt -2pT
=5 +(€ }e’” (22)
P p
It may be verified that

A=e? +(e_2pT)e’”

28+ pA—-A=0

—pt -2pT
=2 +p{—e +(e—je’”}—e_p’ —(e"zpr)ep’ =0

p p

From Eq. (22) and the last line of Eq. (20b) give
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ol

j‘(2p+ig)dt

{2p+(— £ e e’”je"’}dt
-
CT|

-2pT —2T
eP P

=2pT+ - +£
P 2

2 2

p2pp

St N O ——

which is the same as the result in Eq. (18).

It may be noted that the adjoint method works even if a closed-form solution of
the governing differential equation is not possible. In such a case both the governing and
adjoint differential equations can be solved numerically. The important thing to
understand here is that in the adjoint method, we do not solve the sensitivity of the state
variable.

To contrast the adjoint method with the direct method of sensitivity analysis, let
us solve the same example using the direct method.

Example 2 using the direct method

T
Recall that in this example, we need to Computedi(j( pr+g’ )dzJ where g+ pg =0 with
D\

boundary conditions: g(0)=1.

First, we differentiate the governing differential equation w.r.t. p to get

d—g+g+pd—g:O (24)
dp dp

In this simple example, we know g=e¢ " and g _ —te” in closed form. Thus, Eq. (24)

dp
becomes
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p
:d—g—pte_’”—e_’”
dp
(25)
i d_g = pt TPt _ Pt
dt\ dp
dg _
=-—==|(pte” —e")dt+C
9 f{per o)
d T T d T d
We can now substitute this into —U p+g’ dtJ:j— P’ +g I(2p+2g_g]dt'
dp\5 o dp 0 dp

Direct and adjoint methods: which is better?

In the direct method, we differentiate the governing differential equation w.r.t. the
parameter, and obtain a new differential equation where the variable is the derivative of
the state variable. We need to solve this new differential equation and substitute it
directly into the sensitivity expression. It is important to notice that in the adjoint method,
we avoid computing the sensitivity of the state variable. Instead, we solve an adjoint
differential equation. Both the direct method and the adjoint method are amenable for
numerical solution when closed-form expressions are not available. Is there an advantage
of one method over the other? The adjoint method is advantageous if we need to take the
sensitivity w.r.t. many parameters. This is because, in the direct method, we need to solve
the differential equation governing the sensitivity of the state variable w.r.t. each
parameter. On the other hand, in the adjoint method, we need to solve the differential
equation governing the adjoint variable only once. Consider the following problem to see
this.

Example 3 as an exercise
d [} d [t d
Compute — d and — d where —{EAu’ +p=0 with
pute - {j pu(x) x} ” upu(x) x} A EAU )} p

A(x) = 4,(L—x)+ 4,. Note that only u(x) is a function of x whilep, E, 4, and 4, are

scalar parameters that do not depend on x. Let u(x) satisfy the boundary conditions:
u(0)=0 and u'(L)=0.
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