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Sensitivity of a performance measure to a single scalar parameter 
when a state variable is governed by a differential equation 

Let us consider a situation in which a performance measure is a domain integral 
involving a state variable that is governed by a differential equation. We want to compute 
the sensitivity of such a performance measure to a scalar parameter. We illustrate this 
with an example. 

Example 1 

Compute
0

( )
Ld pu x dx

dA
 
 
 
∫ where ( ) 0EAu x p′′ + = . Note that only ( )u x  is a function of x  

while p , E , and A  are scalar parameters that do not depend on x . Let ( )u x  satisfy the 
boundary conditions: (0) 0u =  and ( ) 0u L′ = . 

In this simple problem, the governing differential equation can be solved in closed form. 
That is,  

 
2

( )
2
px pLxu x
EA EA

= − +  (1) 

satisfies  ( ) 0EAu x p′′ + =  for the given boundary conditions. We also note that 

 ( )du x px pLu
dx EA EA

′= = − +  (2) 

 
2

2

( )d u x pu
dx EA

′′= = −  (3) 

We use the known solution of ( )u x  to compute the sensitivity of 
0

( )
Ld pu x dx

dA
 
 
 
∫  in two 

ways: (i) integrate w.r.t. x  first and then differentiate w.r.t. A . And (ii) differentiate w.r.t. 
A  first and then integrate w.r.t. x . 

Method A: Closed-form solution 

We integrate w.r.t. x  and then differentiate w.r.t. A  to get: 

 

2 2 3 2 3 2 3

0 0

2 3 2 3

2
0

( )
2 6 2 3

( )
3 3

L L

L

px pLx p L p L p Lpu x dx p dx
EA EA EA EA EA

d d p L p Lpu x dx
dA dA EA EA

 
= − + = − + = 

 
   

⇒ = = −   
  

∫ ∫

∫
 (4) 

Method B: Closed-form solution 

We first differentiate w.r.t. A  and then integrate w.r.t. x .  
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2 2 2 2

0 0 0

2 2 2 2 3 2 3 2 3

2 2 2 2 2
0

( )
2 2

2 6 2 3

L L L

L

d d px pLx d p x p Lxpu x dx p dx dx
dA dA EA EA dA EA EA

p x p Lx p L p L p Ldx
EA EA EA EA EA

       = − + = − +      
       

 
= − = − = − 

 

∫ ∫ ∫

∫
 (5) 

The results of Methods A and B agree with each other. This tells us that parameter 
sensitivity and integration commute. That is, the order in which we differentiate and 
integrate does not matter. This can be stated as a general result to reckon later.  

 

For ( )
0

,
L

f x p dxφ = ∫ , ( ) ( )
0 0

,
,

L L df x pd d f x p dx dx
dp dp dp
φ  
= = 

 
∫ ∫ . 

More generally, for any domain Ω , 

( ) ( ),
,

df x pd d f x p d d
dp dp dp
φ

Ω Ω

 
= Ω = Ω 

 
∫ ∫  

 

But there is a caveat here: the parameter must not change the domain of interest. When 
the domain changes because of a parameter, that parameter becomes a shape-changing 
parameter. That would complicate matters and we return to this point later. 

 The commutative rule applies to differentiation too. If there is a function that 
depends on a spatial variable x  and a parameter p , then too, the order of differentiating 
w.r.t. x  and p  does not matter. That is, parameter sensitivity and spatial gradient 
commute. This leads to another general result to remember. 

 

f f
p x p
′  ∂ ∂ ∂
=  ∂ ∂ ∂ 

 where ff
x
∂′ =
∂

 

If there are multiple spatial variables, e.g., , ,x y z , we can write 

( )p p
f f ′′∇ = ∇  

 

 Let us now return to solving the example without using the explicit analytical 
solution of the governing equation. Here too, there are two ways to do it: (i) adjoint 
method and (ii) direct method. In the adjoint method, we do not compute the sensitivity 
of the state variable (here, ( )u x ) whereas we do that in the direct method. 
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Direct method 

Recall that in this example, we need to compute
0

( )
Ld pu x dx

dA
 
 
 
∫ where ( ) 0EAu x p′′ + =  

with boundary conditions: (0) 0u = and ( ) 0u L′ = . Note that 
0 0

( )
L Ld dupu x dx p dx

dA dA
 

= 
 
∫ ∫ . In 

the direct method, we try to compute du
dA

. 

 First, we differentiate the governing differential equation w.r.t. A  to get 

 
2

2( ) 0 0du d duEu EA x Eu EA
dA dx dA
′′  ′′ ′′+ = ⇒ + = 

 
 (6) 

Now, we have a differential equation involving du
dA

. The loading term in the equation is 

( )Eu′′ . If this is known, we can solve for du
dA

. We already solved for ( )u x  using 

( ) 0EAu x p′′ + = , here in closed form, to get 
2

( )
2
px pLxu x
EA EA

= − +  (see Eq. (1)), yielding 

pu
EA

′′ = −  (Eq. (3)). Thus, we have 

 

2

2

2

2

2

2 2

12

2

1 22

0

2

d duEu EA
dx dA
p d duE EA

EA dx dA
d du p
dx dA EA
d du px C
dx dA EA
du px C x C
dA EA

 ′′ + = 
 

   ⇒ − +   
   

 ⇒ = 
 
 ⇒ = + 
 

⇒ = + +

 (7) 

We know the boundary conditions on du
dA

 as  

 
0

0
x

du
dA =

=  and 0
x L

du
dA =

′
=  (8) 

since u  and u′  are zero at 0x =  and x L= , respectively. As they are specified, their 
derivatives are zero w.r.t. A . With the boundary conditions in Eq. (8), we can obtain 1C  
and 2C :  
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 2
0

0 0
x

du C
dA =

= ⇒ =  and 1 20
x L

du pLC
dA EA=

′
= ⇒ = −  

leading to  

 
2

2 22
du px pLx
dA EA EA

= −  (9) 

Now, we have 

 
2 2 3 2 3 2 3

2 2 2 2 2
0 0 0

( )
2 6 2 3

L L Ld du px pLx p L p L p Lpu x dx p dx p dx
dA dA EA EA EA EA EA

   
= = − = − = −   

  
∫ ∫ ∫  

which is the correct sensitivity we got earlier using the closed-form solution. 

Adjoint method 

Here, we add the left-side expression of the governing equation (here, ( )EAu p′′ + ) to the 
functional whose sensitivity is to be found. There is no problem in doing so because that 
expression is zero and hence does not change the value of functional. In fact, we multiply 
the expression by ( )xλ , an arbitrary function and then add to the functional. The reason 
for multiplying with ( )xλ  becomes clear in the later steps. For now, we define 

( ){ }
0

L
L

pu EAu p dxλ ′′= + +∫ and note that the sensitivity of L  will be the same as that of the 

functional. 

 Next, we differentiate L  with respect to A  and do integration by parts twice to 
get 

 

( ){ } ( ){ }
0 0

0

0 0

0 0

L L L

L

LL

LL

d d dpu EAu p dx pu EAu p dx
dA dA dA

du dup Eu EA dx
dA dA

du du dup Eu EA dx EA
dA dA dA

du du du dup Eu EA dx EA EA
dA dA dA dA

λ λ

λ λ

λ λ λ

λ λ λ λ

   ′′ ′′= + + = + +     
′′ ′′= + + 

 

′ ′   ′′ ′= + − +   
   

′    ′′ ′′ ′= + + − +   
    

∫ ∫

∫

∫

∫
0

L


 


 (10) 

where the first line entails switching the order of integration and differentiation and the 
last two lines involve integration by parts. The integral in Eq. (10) can be reduced to avoid 

the computation of du
dA

 by requiring that its coefficient term be made equal to zero: 
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 0EA pλ′′ + =  (11) 

This means that we need to find (x)λ  such that Eq. (11) is satisfied along with the 
boundary conditions that appear in the last line of Eq. (10). This is the reason why we 
multiplied by ( )xλ  while defining L . Note that L  is called the Lagrangian and ( )xλ  is 
called the adjoint variable. 

 By examining Eq. (11) and the governing equation, we observe that uλ = . In order 

to satisfy the boundary conditions in Eq. (10), i.e., 
0

0
L

duEA
dA

λ ′ = 
 

 and 
0

0
L

duEA
dA

λ
′  = 

 
, 

we take ( ) 0Lλ′ =  and (0) 0λ = . This follows the boundary conditions of ( )u x . We also 
note that since (0)u  and ( )u L′  are specified, their sensitivities w.r.t. A  are zero. Hence, 
both boundary conditions are satisfied at 0,x L= . Thus, Eq. (10) reduces to 

 ( ) ( )
0 0

L L Ld Eu dx uEu dx
dA

λ ′′ ′′= =∫ ∫  (12) 

With the help of Eqs. (1) and (3), Eq. (12) can be evaluated as follows. 

 
( )

2

0 0

2 2 3 3 2 3

2 2
0

L
2

2 6 2 3

L L

L

d px pLx puEu dx E dx
dA EA EA EA

px pLx p p L L p Ldx
EA EA A EA EA

  ′′= = − + −  
  

    = − + − = − = −    
    

∫ ∫

∫
 (13) 

Thus, we see that we got the same result for 
0

( )
Ld pu x dx

dA
 
 
 
∫  without having to compute 

du
dA

. 

 This example showed us that the derivative of a performance measure that 
includes a variable governed by a differential equation can be easily calculated by 
introducing an adjoint variable (here, λ ) and the corresponding adjoint equation that 
governs λ . To see this, let us consider another example. 

Example 2 

Compute ( )2 2

0

Td p g dt
dp

 
+ 

 
∫ where 0g pg+ = and (0) 1g = . 

Using the closed-form solution 

The solution of 0g pg+ =  for the given boundary condition can be obtained as 

 ptg e−=  (14) 
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By substituting the preceding solution into the given domain integral and then 
differentiation w.r.t. p , we get 

 
( ) ( ) ( )

( )

2 2 2 2 2 2

0 0 0

2 2
2

2 2
0

12 2 2
2 2

T T T
pt

T pT pT
pt

d d dp g dt p g dt p e dt
dp dp dp

e ep te dt pT T
p p p

−

− −
−

 
+ = + = + 

 

= − = + + −

∫ ∫ ∫

∫
 (15) 

We can also do this by differentiating w.r.t. p  first and then integrating. 

 ( ) ( )2 2 2 2

0 0 0

2 2
T T Td d dgp g dt p g dt p g dt

dp dp dp
   

+ = + = +   
  

∫ ∫ ∫  (16) 

Using Eq. (10), we get 

 

pt

pt

g e
dg te
dp

−

−

=

⇒ = −
 (17) 

Eqs. (16) and (17) give 

 
( ) ( )2 2 2

0 0

2 2

2 2

2 2

12
2 2

T T
pt

pT pT

d p g dt p te dt
dp

e epT T
p p p

−

− −

 
+ = − 

 

= + + −

∫ ∫
 (18) 

Let us now use the adjoint method where we do not compute dg
dp

. 

Example 2 using the adjoint method 

Consider, as before, 

 { }2 2

0

( ) (L )
T

p g g gp dtλ= + + +∫   (19) 

Now, we have 

 ( )
0

2 2L Td dg dg dg dp g g p dt
dp dp dp dp

g
p

p
d

gλλ
    

= + + + + +    
   

+


∫ 

  (20a) 
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where the last term in the integrand is zero because 0g pg+ = . Therefore, d
dp
λ  does not 

enter the picture. By using integration by parts for dg
dp

λ
 
 
 



 term in the integrand of Eq. 

(20a), we get 

 ( ) ( )
0 0

2L 2
TTd dg dgp g g p dt

dp dp dp
λ λ λ λ

 
= + + + − + 

 
∫   (20b) 

wherein we also collected terms that involve dg
dp

 together. We now equate the terms that 

multiply dg
dp

 to zero to get a differential equation that enables us to solve for λ . That is, 

we have 

 2 0g pλ λ+ − =  and ( ) 0Lλ =  (21) 

Note that 
0

0
x

dg
dp =

=  because (0) 1g = , a value that does not depend on p .  

 In the adjoint method, we use the solution of the governing equation. That is, we 
use ptg e−=  from Eq. (14). By substituting this result in Eq. (21), we solve it to get 

 
2pt pT

pte e e
p p

λ
− − 

= − +  
 

 (22) 

It may be verified that  

 ( )2pt pT pte e eλ − −= +  

 ( )
2

2

2 0

2 0
pt pT

pt pt pt pT pt

g p

e ee p e e e e
p p

λ λ
− −

− − −

+ − =

   ⇒ + − + − − =  
   



 

From Eq. (22) and the last line of Eq. (20b) give 
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( )
0

2

0

2 2

0

2 2

2
0

2 2

2 2

2

2

2

2
2

12
2 2

L T

T pt pT
pt pt

T pt pT

Tpt pT

pT pT

d p g dt
dp

e ep e e dt
p p

e ep dt
p p

e ept t
p p

e epT T
p p p

λ

− −
−

− −

− −

− −

= +

   = + − +  
   
 

= − + 
 

 
= + + 
 

= + − +

∫

∫

∫  (23) 

which is the same as the result in Eq. (18). 

 It may be noted that the adjoint method works even if a closed-form solution of 
the governing differential equation is not possible. In such a case both the governing and 
adjoint differential equations can be solved numerically. The important thing to 
understand here is that in the adjoint method, we do not solve the sensitivity of the state 
variable.  

 To contrast the adjoint method with the direct method of sensitivity analysis, let 
us solve the same example using the direct method. 

Example 2 using the direct method 

Recall that in this example, we need to compute ( )2 2

0

Td p g dt
dp

 
+ 

 
∫ where 0g pg+ =  with 

boundary conditions: (0) 1g = . 

First, we differentiate the governing differential equation w.r.t. p  to get 

 0dg dgg p
dp dp

+ + =


 (24) 

In this simple example, we know ptg e−=  and ptdg te
dp

−= −  in closed form. Thus, Eq. (24) 

becomes 
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( )

0pt pt

pt pt

pt pt

pt pt

dg e pte
dp

dg pte e
dp

d dg pte e
dt dp
dg pte e dt C
dp

− −

− −

− −

− −

+ − =

⇒ = −

 
⇒ = − 

 

⇒ = − +∫





 (25) 

We can now substitute this into ( ) ( )2 2 2 2

0 0 0

2 2
T T Td d dgp g dt p g dt p g dt

dp dp dp
   

+ = + = +   
  

∫ ∫ ∫ . 

Direct and adjoint methods: which is better? 

In the direct method, we differentiate the governing differential equation w.r.t. the 
parameter, and obtain a new differential equation where the variable is the derivative of 
the state variable. We need to solve this new differential equation and substitute it 
directly into the sensitivity expression. It is important to notice that in the adjoint method, 
we avoid computing the sensitivity of the state variable. Instead, we solve an adjoint 
differential equation. Both the direct method and the adjoint method are amenable for 
numerical solution when closed-form expressions are not available. Is there an advantage 
of one method over the other? The adjoint method is advantageous if we need to take the 
sensitivity w.r.t. many parameters. This is because, in the direct method, we need to solve 
the differential equation governing the sensitivity of the state variable w.r.t. each 
parameter. On the other hand, in the adjoint method, we need to solve the differential 
equation governing the adjoint variable only once. Consider the following problem to see 
this. 

Example 3 as an exercise 

Compute
0 0

( )
Ld pu x dx

dA
 
 
 
∫  and 

1 0

( )
Ld pu x dx

dA
 
 
 
∫  where { }( ) 0d EAu x p

dx
′ + =  with 

( )1 0( )A x A L x A= − + . Note that only ( )u x  is a function of x  while p , E , 0A  and 1A  are 
scalar parameters that do not depend on x . Let ( )u x  satisfy the boundary conditions: 

(0) 0u =  and ( ) 0u L′ = . 
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