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Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

Outline of the lecture
Posing and solving the shape optimization of 2D elastic problem in 
which design variables are concerned with the shape of the boundary.
Considering the objective of maximizing stiffness with area constraint.
What we will learn:
How to implement the algorithm consisting of six steps to identify the 
optimality criterion and use it in the numerical method to solve 2D 
shape optimization problems.
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Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

Steps in the solution procedure
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Step 1: Write the Lagrangian
Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation.
Step 3: Re-arrange the terms in the design equation to avoid computing 
the sensitivity of the state variables and thereby get the adjoint 
equation(s).
Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc.
Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible.
Step 6: Use the optimality criteria method to solve the equations 
numerically.
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∫

∫ ∫ ∫
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Find the optimum shape to 
Minimize the Strain Energy of a 
2D elastic problem.

= Elasticity Matrix
= Body force
= Traction
= Displacement
= Weak variable
= Area Constraint

Shape optimization
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= Neumann  Boundary
= Dirichlet  Boundary
= Variable Boundaryd∂Ω
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Weak and strong forms after the domain 
changes upon perturbing the boundary

Find  such that
 0            in 

                              on 
                        on 

                      on 

ud d

ud

Dd

ud d

ud Nd

∈
∇ ⋅ + = Ω
 =
 = ∂Ω
 = ∂Ω


= ∂Ω

d

ε

u

d

d

u U
Dε b

Dε σ
u 0
Dε n 0
Dε n t  

dΩ

d∂Ω

Nd∂Ω

Dd∂Ω

dt

=du 0

1  
2

d

T
ud ud dSE d

Ω

= Ω∫ ε Dε

0
d d Nd

T T T
ud vd d d d d d d Ndd d d

Ω Ω ∂Ω

Ω − Ω − ∂Ω =∫ ∫ ∫ε Dε b v t v

Weak form becomes,

The above eq is the weak form to the following
strong form

Now, strain energy can be written as
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Step 1: Lagrangian

*1
2

d d d Nd d

T T T T
ud ud d ud vd d d d d d d Nd dL d  + d d d d A

Ω Ω Ω ∂Ω Ω

 
 = Ω Ω − Ω − ∂Ω + Λ Ω −
 
 

∫ ∫ ∫ ∫ ∫ε Dε ε Dε b v t v

= Γv vTaking the adjoint variable as    wherev

Excluding the area term (term c); sensitivity of this will be done later in Slide 28.

*

(
0

2( ))) ) (
1

(
d dd d Nd

T T T
ud vd d d d d d d

T
ud ud d N

d
d d

d dd

d dL d + d A
d

d
d

d
d

d d d
d

Ω Ω ∂Ω ΩΩ

  
  = + Λ Ω − =

 ∂Ω ∂Ω   ∂

 
 Ω



 ∂Ω 


 Ω − Ω − ∂


Ω


 Ω  



∫ ∫ ∫∫ ∫ε Dε b vε tε vD

(a) (b) (c)

Step 2: Derivative of Lagrangian

( ) ( ) ( )
0

d d d

dL dSE dA
d d d

 
= + Λ =  ∂Ω ∂Ω ∂Ω 

Design equation
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Reynolds Transport Theorem for (a)

( )( )

( )( )

1 1 1 1
( ) 2 2 2 2

1
2

d d d d

d d

T T T T
ud ud d u d ud d ud u d d ud ud d

d

T T
u d ud d ud ud d

d d d d d
d

d d

′ ′

Ω Ω Ω ∂Ω

′

Ω ∂Ω

 
 Ω = Ω + Ω + ⋅ ∂Ω
 ∂Ω  

= Ω + ⋅ ∂Ω

∫ ∫ ∫ ∫

∫ ∫

ε Dε ε Dε ε Dε ε Dε V n

ε Dε ε Dε V n

( )
d d d

d d d
d f d f d f d
dp

Ω Ω ∂Ω

 
  ′Ω = Ω + ⋅ ∂Ω
 
 
∫ ∫ ∫ V n

Reynolds Transport Theorem (RTT): 

Applying RTT to term (a)

 'f f f= −∇ ⋅VConverting spatial derivative to material derivative using

( )( ) ( )( )1 1
( ) 2 2

d d d d

T T T T
ud ud d ud ud d ud ud d ud ud d

d

d d d d d
d

Ω Ω Ω ∂Ω

 
 Ω = Ω − ∇ ⋅ Ω + ⋅ ∂Ω
 ∂Ω  
∫ ∫ ∫ ∫ε Dε ε Dε ε V Dε ε Dε V n


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Gauss Divergence Theorem
( )∇ ⋅ = ⋅∇ + ⋅∇A B A B B AWe know that dot product rule is 

  
d d

d dd d
Ω ∂Ω

∇ ⋅ Ω = ⋅ ∂Ω∫ ∫F F n

Using the Gauss divergence theorem on the second term,

( )( ) ( ) ( ) ( )( )1
2

d d d d

T T T T
ud ud d ud ud d ud ud d ud ud dd d d d

Ω Ω Ω ∂Ω

 
 = Ω − ∇ ⋅ ⋅ Ω − ⋅ ∇ ⋅ Ω + ⋅ ∂Ω
  

∫ ∫ ∫ ∫ε Dε ε V Dε ε V Dε ε Dε V n


( )( ) ( ) ( ) ( )( )1
2

d d d d

T T T T
ud ud d ud ud d ud ud d ud ud dd d d d

Ω ∂Ω Ω ∂Ω

 
 = Ω − ⋅ ⋅ ∂Ω − ⋅ ∇ ⋅ Ω + ⋅ ∂Ω
  

∫ ∫ ∫ ∫ε Dε ε V Dε n ε V Dε ε Dε V n


Separate the boundary terms, material derivative, and others

( )( ) ( ) ( ) ( )( )1
2

dd dd

T T
ud ud d uu d ud d

T
ud ud d

T
d ud d dd dd

∂Ω Ω Ω ∂Ω

= ⋅ ∇ ⋅ Ω−⋅ ⋅ ∂Ω
 
 − +


Ω ∂


Ω


⋅
∫ ∫∫∫ ε Vε V D Dε n Dε Dε ε ε Vε n



Applying this to each second term inside square bracket

Term (a) completed
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Reynolds Transport Theorem for (b)

( )( )

( )( )

( )
d d Nd d d d

d d Nd

T T T T T T
ud vd d d d d d d d u d vd d ud v d d ud vd d

d

T T T
d d d d d d d d Nd

d d d d d d d
d d

d d d

′ ′

Ω Ω ∂Ω Ω Ω ∂Ω

Ω ∂Ω ∂Ω

 
 Ω − Ω − ∂Ω = Ω + Ω + ⋅ ∂Ω −
 Ω  

   
   ′ ′Ω + ⋅ ∂Ω − ∂Ω
      

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

ε Dε b v t v ε Dε ε Dε ε Dε V n

b v b v V n t v

( )( )( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

d d d d d

d d d d Nd

T T T T T
ud vd d ud vd d ud vd d ud vd d vd ud d

T T T T T
ud vd d d d d d d d d d d d d Nd

d d d d d

d d d d d

Ω Ω Ω Ω Ω

∂Ω Ω Ω ∂Ω ∂Ω

    
    = Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω + Ω − ∇ ⋅ Ω +

        
 
 ⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅ ∂Ω − ∂Ω
  

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

ε Dε ε V Dε ε V Dε ε Dε ε V Dε

ε Dε V n b v b v V b v V n t v

 

 

 
 
  
∫

( )
d d d

d d d
d f d f d f d
dp

Ω Ω ∂Ω

 
  ′Ω = Ω + ⋅ ∂Ω
 
 
∫ ∫ ∫ V nWe know that, Reynold’s Transport Theorem (RTT) is 

Applying RTT to the term (b)

 'f f f= −∇ ⋅VConverting spatial derivative to material derivative using
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Dot Product rule

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

d d d

d d d

d d d

T T T
ud vd d ud vd d ud vd d

T T T
ud vd d vd ud d vd ud d

T T T T
ud vd d d d d d d d d d d

d d d

d d d

d d d d

Ω Ω Ω

Ω Ω Ω

∂Ω Ω Ω ∂

  
  = Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω +

    
  
  Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω +

    

⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅ ∂Ω

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

ε Dε ε V Dε ε V Dε

ε Dε ε V Dε ε V Dε

ε Dε V n b v b v V b v V n







d Nd

T
d d Ndd

Ω ∂Ω

   
   − ∂Ω
      

∫ ∫ t v

( )∇ ⋅ = ⋅∇ + ⋅∇A B A B B AWe know that dot product rule is 

Applying this to each second term inside square bracket
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( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )

d d d

d d d

d d d

T T T
ud vd d ud vd d ud vd d

T T T
ud vd d vd ud d vd ud d

T T T T
ud vd d d d d d d d d d

d d d

d d d

d d d

Ω ∂Ω Ω

Ω ∂Ω Ω

∂Ω Ω Ω

  
  = Ω − ⋅ ⋅ ∂Ω − ⋅ ∇ ⋅ Ω +

    
  
  Ω − ⋅ ⋅ ∂Ω − ⋅ ∇ ⋅ Ω +

    

⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

ε Dε ε V Dε n ε V Dε

ε Dε ε V Dε n ε V Dε

ε Dε V n b v b v V b v V





 ( )
d Nd

T
d d d Ndd d

∂Ω ∂Ω

   
   ∂Ω − ∂Ω
      

∫ ∫n t v

  
d d

d dd d
Ω ∂Ω

∇ ⋅ Ω = ⋅ ∂Ω∫ ∫F F n

Using the Gauss divergence theorem on each second term inside the square bracket,

Gauss Divergence Theorem
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Separate the terms
Separate the boundary terms, material derivative, and others

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )

d

d

d

d

dd

d

d d

T
ud vd d

T
vd ud d

T T
ud v

T
ud vd d

T
u v

T
ud v

d d d dd

d

d d

T
vd ud d

T T
d d d

d

d

d

d

dd

d

d

d d

d dd

Ω

Ω

Ω

Ω ∂Ω

∂Ω

∂ ΩΩ

Ω

 

⋅


  = ⋅− − +

    

⋅
  
  − − +

    

− +

⋅ ⋅ ∂Ω

⋅

⋅

∂ ∇

Ω

Ω

∇ Ω

⋅ ⋅ Ω

Ω − ∇ ⋅ Ω

Ω

⋅ ∂Ω

∫

∫

∫

∫

∫

∫

∫ ∫

∫

ε V Dε n

ε V Dε n

ε V Dε

ε V Dε

b v V

ε Dε

ε

ε Dε V

ε

b vn b

D

v V





 ( )
dd N

T
d d dd Ndd

∂∂Ω Ω

   
   − ∂Ω
   

∂


Ω
  

∫∫ n t v

Term (b) completed
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Combine terms (a) and (b) 

( )( ) ( ) ( ) ( )( )

( )( )( ) ( )( ) ( )

( )( )( )

1
2( )

dd

d

d

d

d

d

d

T
ud ud d

T

d

dud vd d

T

T

T T
u d

T
udd ud d u

v

ud d

ud vd

v

d
ud d

T
ud vd

T
d ud

d

ud d d

d

d

d d

d

d

S d

d

d

d

E
d

∂Ω ∂Ω

∂Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

⋅ ⋅ ∂Ω ⋅ ∂Ω



 
 +

⋅ ⋅ ∂Ω

⋅ ⋅ ∂Ω

Ω



− − +
 

  
 − ⋅− +

 

⋅

Ω

Ω

∇=



⋅ Ω

∇ ⋅

 ∂

 

−

∫

∫ ∫

∫

∫

∫

∫

∫ε V Dε n ε V Dε

ε

ε Dε V n

ε V Dε ε

D

V

ε

ε Dε

ε Dε

ε n

D

Dε

n

ε V







( )( ) ( )

( )( ) ( ) ( )( )
d

d

d N

d

d d d

T T

T
vd ud d

T T
d d d d d dud vd d d Ndd d

T
d ddd d

d

d d

∂

Ω

Ω

Ω∂Ω ∂Ω ∂

Ω

Ω

⋅ ∇ ⋅ Ω

Ω − ∇


  
  − +

    
  
   − + − ∂Ω
   

Ω
  

⋅ ∂ ⋅ Ω


∂⋅ Ω

∫

∫∫∫ ∫

∫

∫ε D

ε V Dε

b v b v vε V n b v VV tn 

From slides 8 and 12 
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Strong and weak forms of adjoint/state 
variable 

0
d Nd d

T
d d

T
dv dd

T
ud d d Nd dd d

∂Ω Ω Ω

Ω Ω− −Ω =∂∫ ∫∫ε vDε t vb


 

 = 0                     
d d

T T
ud ud d ud vd dd d

Ω Ω

Ω Ω+

⇒ =

∫ ∫

d d

ε

v

Dε ε Dε

-u

 

Collect the terms with      and form weak form of structural problem to get dv

Collect the terms with      and form adjoint structural problemdu
Find v  such that

 0            in 

                              on 
                        on 

                   on 

vd d d

vd v

Dd

vd d

vd Nd

v

∈
∇ ⋅ − = Ω
 =
 = ∂Ω
 = ∂Ω


= − ∂Ω

d

d

d

U
Dε b

Dε σ
0

Dε n 0
Dε n t  

du

Step 3: re-arrange the terms in the design equation to 
avoid computing the derivative of the state variables

Adjoint equation
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Final Sensitivity Integral

( )( ) ( ) ( )
( )

d d

T
ud ud dd

d

T
ud ud

dSE
d

d d
Ω Ω∂

⋅ ⋅ ∂Ω ⋅ ∇ ⋅ Ω=
∂Ω

− + ∫∫ Dε V D Vε n ε ε ( )( )

( )( )( ) ( )( ) ( )

1
2

d d

d

u
T
u

u

d ud d

T
d ud d

T
ud d dd d

d
∂Ω

∂Ω Ω

+

+ ⋅ ∂Ω +

⋅ ⋅ ∂Ω ⋅ ∇ ⋅− Ω∫

∫

∫

ε Dε V n

ε V Dε V Dεn ε ( )( )( )

( )( ) ( )

d

d

d

T
u d

T
ud ud

d ud d

d

Ω

∂Ω

⋅

⋅ ⋅ ∂Ω+ −

⋅ ∇ Ω∫

∫ ε V Dε n

ε V Dε ( )( ) ( )
d d

T
ud u dd d

T
d dd

∂Ω Ω

− ∂Ω − ∇ ⋅ Ω⋅ ∫∫ db Vε Dε V n u ( )( )
d

T
d dd

∂Ω

⋅ ∂Ω+ ∫ db u V n

Using the adjoint variable, the strong forms mentioned before and                     , the 
sensitivity becomes

( )ud∇ =du ε

Also since there is no load on the           , hence                  becomes zerod∂Ω ( )ud ⋅Dε n

( )( ) ( )( )1
2( )

d d

T T
ud ud d d

d
d

d d
d

dSE

∂Ω ∂Ω

= − +
∂Ω

∂⋅ ∂Ω ⋅ Ω∫ ∫ dε Dε V n b u V n
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Step 4-6 will be continued from slide 29
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*

1
2

: 0

: 0

: , ,

d

d

T
u u

T T T
u v d

*
N

Min SE d

Subject to

d d d

d A

Data , , , A

∂Ω
Ω

Ω Ω ∂Ω

Ω

= Ω

Γ Ω − Ω − ∂Ω =

Λ Ω − ≤

Ω ∂Ω

∫

∫ ∫ ∫

∫

ε Dε

ε Dε b v t v

D b t

= Elasticity Matrix
= Body force
= Traction
= Displacement
= Weak variable
= Area Constraint

Shape optimization-Load dependent

d∂Ω
N∂Ω

Ω

D∂Ω
t

=u 0

D
b
 t

 Ω
N∂Ω

*A

 u
v

D∂Ω

= Domain
= Neumann  Boundary
= Dirichlet  Boundary
= Variable Boundaryd∂Ω
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Weak and strong forms after the domain 
changes upon perturbing the boundary

Find  such that
 0            in 

                              on 
                        on 

                      on 

ud d

ud

Dd

ud d

ud Nd

∈
∇ ⋅ + = Ω
 =
 = ∂Ω
 = ∂Ω


= ∂Ω

d

ε

u

d

d

u U
Dε b

Dε σ
u 0
Dε n 0
Dε n t  

dΩ

d∂Ω
Nd∂Ω

Dd∂Ω
dt

=du 0

1  
2

d

T
ud ud dSE d

Ω

= Ω∫ ε Dε

0
d d d

T T T
ud vd d d d d d d dd d d

Ω Ω ∂Ω

Ω − Ω − ∂Ω =∫ ∫ ∫ε Dε b v t v

Weak form becomes,

The above eq is the weak form to the following
strong form

Now, strain energy can be written as
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Step 1: Lagrangian

*1
2

d d d d d

T T T T
ud ud d ud vd d d d d d d d dL d  + d d d d A

Ω Ω Ω ∂Ω Ω

 
 = Ω Ω − Ω − ∂Ω + Λ Ω −
 
 

∫ ∫ ∫ ∫ ∫ε Dε ε Dε b v t v

= Γv vTaking the adjoint variable as    wherev

Excluding the area term (term (c)); sensitivity of this will be done later on.

*

)
1 0

( ) 2( ) (( )
d dd d d

T T T
ud vd d d d d d

d

T
ud u d dd

d
d

d
d

d

d d d d d d
dd

L d + d Ad
d d

Ω Ω ∂Ω ΩΩ

  
  = + Λ Ω − =

 ∂Ω ∂Ω   

 
 Ω − Ω ∂

 
− Ω

 Ω

 




 ∂
Ω




∂Ω 
∫ ∫ ∫ ∫∫ ε Dε b vε vDε t

(a) (b) (c)

The term (a) expression remains same as slide 8

The boundary terms, material derivative, and others

( )( ) ( ) ( ) ( )( )1
2

dd dd

T T
ud ud d uu d ud d

T
ud ud d

T
d ud d dd dd

∂Ω Ω Ω ∂Ω

= ⋅ ∇ ⋅ Ω−⋅ ⋅ ∂Ω
 
 − +


Ω ∂


Ω


⋅
∫ ∫∫∫ ε Vε V D Dε n Dε Dε ε ε Vε n



Step 2: Derivative of Lagrangian
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Reynolds Transport Theorem for (b)

( )( )

( )( ) ( )

( )
d d Nd d d d

d d d

T T T T T T
ud vd d d d d d d d u d vd d ud v d d ud vd d

d

T T T
d d d d d d d d d

d d d d d d d
d d

d d d

′ ′

Ω Ω ∂Ω Ω Ω ∂Ω

Ω ∂Ω ∂Ω

 
 Ω − Ω − ∂Ω = Ω + Ω + ⋅ ∂Ω −
 Ω  

   ′   ′ Ω + ⋅ ∂Ω − ∂Ω
      

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

ε Dε b v t v ε Dε ε Dε ε Dε V n

b v b v V n t v

( )
d d d

d d d
d f d f d f d
dp

Ω Ω ∂Ω

 
  ′Ω = Ω + ⋅ ∂Ω
 
 
∫ ∫ ∫ V nWe know that Reynolds Transport Theorem (RTT) is 

Applying RTT to the term (b)
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Material derivative 

( )( )( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

d d d d d

d d d d

d

T T T T T
ud vd d ud vd d ud vd d ud vd d vd ud d

T T T T
ud vd d d d d d d d d d d

T
d d d

d d d d d

d d d d

d

Ω Ω Ω Ω Ω

∂Ω Ω Ω ∂Ω

∂Ω

    
    = Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω + Ω − ∇ ⋅ Ω +

        
 
 ⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅ ∂Ω −
  

∂Ω +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫

ε Dε ε V Dε ε V Dε ε Dε ε V Dε

ε Dε V n b v b v V b v V n

t v

 



 ( )
d d

T T
d d d d d dd d

∂Ω ∂Ω

 
 ∂Ω + ∇ ⋅ −∇ ⋅ ∂Ω
  

∫ ∫t v t v V Vn n

 'f f f= −∇ ⋅VConverting spatial derivative to material derivative using

Material derivative of a boundary integral ( ){ } f f f
∂Ω ∂Ω

∂Ω = + ∇⋅ −∇ ⋅ ∂Ω∫ ∫ V Vn n
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Dot Product rule

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

d d d

d d d

d d d

T T T
ud vd d ud vd d ud vd d

T T T
ud vd d vd ud d vd ud d

T T T T
ud vd d d d d d d d d d d

d d d

d d d

d d d d

Ω Ω Ω

Ω Ω Ω

∂Ω Ω Ω ∂

  
  = Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω +

    
  
  Ω − ∇ ⋅ Ω − ⋅ ∇ ⋅ Ω +

    

⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅ ∂Ω

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

ε Dε ε V Dε ε V Dε

ε Dε ε V Dε ε V Dε

ε Dε V n b v b v V b v V n







( )

d

d d d

T T T
d d d d d d d d dd d d

Ω

∂Ω ∂Ω ∂Ω

 
  −
  

 
 ∂Ω + ∂Ω + ∇ ⋅ −∇ ⋅ ∂Ω
  

∫

∫ ∫ ∫t v t v t v V Vn n



( )∇ ⋅ = ⋅∇ + ⋅∇A B A B B AWe know that dot product rule is 

Applying this to each second term inside square bracket
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( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )

d d d

d d d

d d d

T T T
ud vd d ud vd d ud vd d

T T T
ud vd d vd ud d vd ud d

T T T T
ud vd d d d d d d d d d

d d d

d d d

d d d

Ω ∂Ω Ω

Ω ∂Ω Ω

∂Ω Ω Ω

  
  = Ω − ⋅ ⋅ ∂Ω − ⋅ ∇ ⋅ Ω +

    
  
  Ω − ⋅ ⋅ ∂Ω − ⋅ ∇ ⋅ Ω +

    

⋅ ∂Ω − Ω − ∇ ⋅ Ω + ⋅

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

ε Dε ε V Dε n ε V Dε

ε Dε ε V Dε n ε V Dε

ε Dε V n b v b v V b v V





 ( )

( )

d

d d d

d

T T T
d d d d d d d d d

d

d d d

∂Ω

∂Ω ∂Ω ∂Ω

 
 ∂Ω −
  

 
 ∂Ω + ∂Ω + ∇ ⋅ −∇ ⋅ ∂Ω
  

∫

∫ ∫ ∫

n

t v t v t v V Vn n



  
d d

d dd d
Ω ∂Ω

∇ ⋅ Ω = ⋅ ∂Ω∫ ∫F F n

Using the Gauss divergence theorem on each second term inside the square bracket,

Gauss Divergence Theorem
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Separate the terms
Separate the boundary terms, material derivative, and others

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

( )( ) ( ) ( )

d

d

d

d

dd

d

d d

T
ud vd d

T
vd ud d

T T
ud v

T
ud vd d

T
u v

T
ud v

d d d dd

d

d d

T
vd ud d

T T
d d d

d

d

d

d

dd

d

d

d d

d dd

Ω

Ω

Ω

Ω ∂Ω

∂Ω

∂ ΩΩ

Ω

 

⋅


  = ⋅− − +

    

⋅
  
  − − +

    

− +

⋅ ⋅ ∂Ω

⋅

⋅

∂ ∇

Ω

Ω

∇ Ω

⋅ ⋅ Ω

Ω − ∇ ⋅ Ω

Ω

⋅ ∂Ω

∫

∫

∫

∫

∫

∫

∫ ∫

∫

ε V Dε n

ε V Dε n

ε V Dε

ε V Dε

b v V

ε Dε

ε

ε Dε V

ε

b vn b

D

v V





 ( )

( )

d

d d d

d

T T T
d d d d d d d d d

d

d d d

∂Ω

∂Ω ∂Ω ∂Ω

 
  −
  

 
 
 

∂Ω

∂Ω + ∂Ω + ∇ ⋅ −∇ ∂
 

⋅ Ω

∫

∫ ∫ ∫

n

t v t v t v V Vn n



Term (b) completed
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Combine terms (a) and (b) 

( )( ) ( ) ( ) ( )( )

( )( )( ) ( )( ) ( )

( )( )( )

1
2( )

dd

d

d

d

d

d

d

T
ud ud d

T

d

dud vd d

T

T

T T
u d

T
udd ud d u

v

ud d

ud vd

v

d
ud d

T
ud vd

T
d ud

d

ud d d

d

d

d d

d

d

S d

d

d

d

E
d

∂Ω ∂Ω

∂Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

⋅ ⋅ ∂Ω ⋅ ∂Ω



 
 +

⋅ ⋅ ∂Ω

⋅ ⋅ ∂Ω

Ω



− − +
 

  
 − ⋅− +

 

⋅

Ω

Ω

∇=



⋅ Ω

∇ ⋅

 ∂

 

−

∫

∫ ∫

∫

∫

∫

∫

∫ε V Dε n ε V Dε

ε

ε Dε V n

ε V Dε ε

D

V

ε

ε Dε

ε Dε

ε n

D

Dε

n

ε V







( )( ) ( )

( )( ) ( ) ( )( )

( )

d

d

d d

d d

d

d

d

T T
ud vd d d d d

T T T
d d d d d d d

T
vd ud d

T T
d d d d d d

d d

d d

d

d

d

d d

d

∂Ω

∂Ω ∂Ω

∂Ω ∂Ω ∂Ω

Ω

Ω Ω

  
  − +

    
 
 − + −
  

 
 
 

⋅ ∂Ω ⋅ ∂Ω

∂Ω + ∂Ω −

⋅ ∇ ⋅ Ω

+ ∇ ⋅ ∇ ⋅


Ω − Ω

∂

∇

Ω


⋅∫

∫

∫ ∫

∫ ∫

∫

∫

∫

ε V Dε

b v bnε Dε V b v V n

t v t v t v V

v V

Vn n







From slides 8 and 24 
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Strong and weak forms of adjoint/state 
variable 

0
d d d

T TT
ud dd d d dvd d dd dd

∂Ω ΩΩ

− − =∂ΩΩ Ω∫∫ ∫ε Dε tb v v




 = 0                     
d d

T T
ud ud d ud vd dd d

Ω Ω

Ω Ω+

⇒ =

∫ ∫

d d

ε

v

Dε ε Dε

-u

 

Collect the terms with      and form weak form of structural problem to get dv

Collect the terms with      and form adjoint structural problemdu
Find v  such that

 0            in 

                              on 
                        on 

                   on 

vd d d

vd v

Dd

vd d

vd Nd

v

∈
∇ ⋅ − = Ω
 =
 = ∂Ω
 = ∂Ω


= − ∂Ω

d

d

d

U
Dε b

Dε σ
0

Dε n 0
Dε n t  

du

Step 3: re-arrange the terms in the design equation to 
avoid computing the derivative of the state variables

Adjoint equation
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Final Sensitivity Integral

( )( )
( )

d

T
ud u

d
d d

d dSE
d

∂Ω

⋅ ∂
∂Ω

⋅= − Ω∫ ε V Dε n ( ) ( )
d

T
ud ud dd

Ω

⋅ ∇ ⋅ Ω+ ∫ ε V Dε ( )( )

( )( )( )

1
2

d

d

T
ud ud d

T
ud ud d

d

d

∂Ω

∂Ω

+ +⋅ ∂Ω

⋅ ⋅ ∂Ω+

∫

∫

ε Dε V n

ε V Dε n ( )( ) ( )
d

T
ud ud dd

Ω

⋅ ∇ ⋅ Ω− ∫ ε V Dε ( )( )( )

( )( ) ( )

d

d

d

T
u d

T
ud ud

d ud d

d

Ω

∂Ω

⋅

⋅ ⋅ ∂Ω+ −

⋅ ∇ Ω∫

∫ ε V Dε n

ε V Dε ( )( ) ( )
d d

T
ud u dd d

T
d dd

∂Ω Ω

− ∂Ω − ∇ ⋅ Ω⋅ ∫∫ db Vε Dε V n u ( )( )

( )

d

d d

T
d d

T T
d d d d d d

d

d d

∂Ω

∂Ω ∂Ω

+ +

 
 
 

⋅ ∂Ω

∂Ω + ∇ ⋅
 

−∇ ⋅ ∂Ω

∫

∫ ∫

db u V n

t u t u V Vn n

Using the adjoint variable, the strong forms mentioned before and                     , the 
sensitivity becomes

( )ud∇ =du ε

( )( )( ) ( )( ) ( )( )

( )

)
1
2(

d d d

d d

T T T
ud ud d ud ud d d d

T T
d d d d d d

d

d E d d d

d

d

d

S

∂Ω ∂Ω ∂Ω

∂Ω ∂Ω

⋅ ⋅ ∂Ω ⋅ ∂Ω ⋅ ∂Ω

∂Ω + ∇ ⋅ −∇ ∂

= − + +

⋅ Ω

∂Ω ∫ ∫ ∫

∫ ∫

dε V Dε n ε Dε V n b u V n

t u t u V Vn n
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Area 
d

A d
Ω

= Ω∫

)(
C

M L
x y

Ldxd Mdy
Ω

 ∂ ∂
− ∂ ∂ 

=Ω +∫ ∫

1M L
x y

∂ ∂− =
∂ ∂

,
2 2
x yM L −

= =
1
2

( )
d C

A d xdy xy d
Ω

== Ω −∫ ∫

The area can be defined as,

Green’s theorem can be used to convert the domain integral to the line integral.
The green’s theorem states that

Where C is the boundary of the domain.
For the Area, the RHS terms are 1.

Which means

So the area can be defined as

dΩ

( ) ( ) ( )
1
2

)(
d

d
d d d C

dA d d
d d d

dxyd xdy
Ω

 
 =
 ∂Ω ∂Ω ∂Ω  

= Ω −∫ ∫Area derivative
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All equations
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Design equation

* 0A A− ≤

( )* 0; 0A AΛ − = Λ ≥

Adjoint equation

Feasibility equation

Complementarity 
condition

Step 4: Collect all Equations

( ) ( ) ( )
0

d d d

dL dSE dA
d d d

 
= + Λ =  ∂Ω ∂Ω ∂Ω 

 = 0                     
d d

T T
ud ud d ud vd dd d

Ω Ω

Ω Ω+

⇒ =

∫ ∫

d d

ε

v

Dε ε Dε

-u

 
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Optimality criterion

30

Step 5: Optimality criterion by rearranging

( ) ( ) ( )
0

d d d

dL dSE dA
d d d

 
= + Λ =  ∂Ω ∂Ω ∂Ω 

( )

( )

1d

d

dSE
d

dA
d

∂Ω
=

 
−Λ  ∂Ω 

Ratio=
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Numerical solution

31

Initial guess for     ,Λ

Update ( 1) ( )Ratiok k
d i d i

β+∂Ω = ∂Ω

1Ratio =

What we need to achieve for 
all elements, 

or
min maxd i d dor∂Ω = ∂Ω ∂Ω

1,2, ,i N= 

Check if         has exceeded 
bounds and equate to the 
bounds if they did.
Update      until 
does not exceed bounds 
anymore. 

k
O

uter loop

Inner loop
1k k= +

Continue until ( 1) ( )k k
d d

+∂Ω = ∂Ω

d i∂Ω

Λ

( )( 1) ( ) Ratiok k
d i d i 1-(1- )β+∂Ω = ∂Ωor

d∂Ω

d i∂Ω

Step 6: Use Optimality criterion to find variable
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The end note

32

Thanks

sh
ap

e 
op

tim
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n 
of

 2
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tif
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s

Iterative numerical solution, when it is needed, remains 
the same.

We follow six steps to solve the discretized (or finite-variable optimization) 
problem.

Observe shape derivative used to find the sensitivity for stiffness 
problem. Think how the formulation will change when the loading is on 
the boundary which is variable.

Identify the optimality criterion.

Interpret the optimality criterion.
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