Stiff and light statically determinate three-bar truss
An appetizer for ME 260@I1Sc

Structural optimization follows a hierarchy of topology, shape, and size. Topology is
about how many holes there are in a structure. Shape is about what that word implies:
the shape. The size refers to dimensions and other parameters that determine the size
without changing shape and topology. We often say and think that if we do not have the
best topology, we never get the best design no matter how much effort is put into shape
and size optimization. Likewise, after the most appropriate topology is chosen, if the
shape is not right, size optimization does not lead to the best design. Let us see for
ourselves what this means in the simplest setting that we can deal with—a planar truss.

Consider a statically determinate truss consisting of three bars as shown in Fig. 1
wherein the vertices and members are labelled. Vertex 1 is fixed while vertex 2 is
constrained in the y-direction. At vertex 3, we have two forces in the x and y directions
as shown. Let the lengths of the members be denoted by [;,i = 1,2,3, cross-section areas
by 4;, and the internal forces by f;. Since it is a statically determinate truss, the internal
forces in the members do not depend on the Young’s modulus, (E = 70 GPa), of the
material and the areas of cross-section of the truss members.
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Figure 1. A statically determinate three-bar truss and its free-body diagram

The lengths and forces in the three members are as follows: [, =1m,l, =
1.5811m,l; = 1.5811m; f, = 0.3333 kN, f, = —1.0541 kN, f, = 2.1082 kN. Now, the
strain energy (SE) of the truss can be written as
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SE=Yy} Jit (1)

=124;E
The volume is given by
V=3, 4 )

We can pose an optimization problem to minimize SE subject to the volume constraint
and by using the areas of cross-section as the optimization variables.
.2 .
Min SE =Yy3_, Zik
{A1,42,43} 2AE 3)
Subjectto Y3, A;;— V*=0

This is a constrained minimization problem. But in this simple three-variable problem
with a linear constraint, we can eliminate one variable, say Az, and make it an
unconstrained minimization problem.

Az = V- Al — Azlz)/l3 4)
2 2 2 272
. 21 l l l
Min SE — Z?:l fl L il + e + JEXE (5)
{AllAZ} ZAlE 2A1E 2A2E Z(V*—Alll—Azlz)E
. ) T dSE dSE
The necessary conditions for this minimization problem are Fy R 0 and YN 0. Thus,
1 2
we have
dSE 21 2121 2 212 fi fz |3
_:_f121 - f331 5 :0:_12: - f33 2:>| |: - | | (6a)
94, 242E © 2(V*—A1l1—Az15)2E A2 T (V=Agl—Azly) Ay (V*—Aql;—Ayly)
and
SE _ fFl, JEE _ Z 1212 N |fz | _ |f3 |13 (6a)
04,  24%E ' 2(V'-Ail—Az1,)%E A2 (VA —Azl)? Ay, (Vi—Aqli—Ayly)
From Egs. (6a-6b), we have
|f1 | _ |f2 | _ |f3 |13 (7)
Aq Ay (V*=A41l1-431,)

From the preceding equation, we observe that the stresses in members 1 and 2 are equal.

We will come to this important point later after we find the stress in member 3 also. For
now, let us proceed to find A, using Eq. (6a) by substituting 4, = :;—Z:Al from Eq. (7).
1

5 | s I

o = AV - Al - [ k) = Al
v (vean-2agn,) '
4, AV _ 5 6014E-5 m? (8a)

- (f1lla+If2 12 +I13113)

where we have taken V* = 4.1623E-4 m®. Similarly, by using Eq. (6b) and 4; = %Az from
2

Eq. (7), we get
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— fav* _ : 9
Az AT AAD 8.2264E-5 m (8b)

Now, from Eq. (4), we get

_ * _ _ Ifzlv" _ _
Ay = V" = Arly = Aply)[ly = As = =B = 1.6453E-4 (8¢)

From the now known values of areas of cross-section, we can find that minimum SE is
0.4881 J. Furthermore, from Egs. (8a) to (8c), we note that

@=@ — If51 — (|f1|l1+|f2L12+|f3|13) =1.2813E7 Pa (9)
A, A, As v

We notice that the stresses in all three members are the same. Thus, the stiffest truss for a
given volume has the feature that each member is stressed to the same extent. And, this
uniform stress depends only on the given data: the volume, member forces, and member
lengths.

Let us define an optimal constant, C* = (|f;|l; + |f21l; + |f3]l3), which in this case is
equal to 5.3333E3 J. This constant divided by the volume gives the uniform stress in the
truss members. That is, from Eq. (9) we infer that

@=@ — If51 — (|f1|l1+|f2le+|f3|l3) — C_: — _5.3333E3 = 1.2813E7 Pa (10)
A, A, As v V*  4.1623E—4

An important point to note here is that optimal areas of cross-section of a statically
determinate truss are readily determined with the help of optimal constant for a given
volume.

A — |fL|V*
Cc*

(11)

wherein we note that it is customary to use the superscript " to indicate optimal quantities.

It is also pertinent to note that if we solve the constrained minimization problem
(Eq. (3)) directly, the optimal constant falls out of that calculation as the Lagrange
multiplier. We will discuss the concept of Lagrange multiplier and Lagrangian later, but
for now consider the solution of the problem in Eq. (3).
Su
{Alwflxlzrig}SE Y- 24iE
Subjectto Y3 ,A;;,— V*=0
Data:l;, f;, V' E

= L = Lagrangian = Y5_, 2’1[; + A A = V) (12a)

Now, the necessary condition for the minimum of the constrained minimization problem
is
LIS Y} = 0= = \2E2 (13)
04; 2A2 Aj

By substituting A; into the volume constraint, we can determine A.
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3 AL —Vi=02Y, L yr= 0= 1=11726E3 J/m’ (14)

V2EL !
From Egs. (10) and (13), we also see that
Iﬁ_l - 5_ =\2E1 (15)

Thus, the optimal constant and the Lagrange multiplier are related in stiff-light trusses
that are statically determinate.

There is more intrigue here. There is a famous Maxwell’s theorem for statically
determinate trusses. Maxwell had stated the following theorem for a statically
determinate truss by accounting for the sign of the member forces.

For a statically determinate truss, Y.|f;|l; — ch fj|lj = C where the constant € depends
on the loads (including reactions at the supports) and their points of application and
not on the form of the truss. The first sum is taken for all members in tension and the
second sum is taken over all members in compression.

(Maxwell, . C., Scientific Papers, Vol. 11, (1864), pp 175-177)

Here, we see that Maxwell’s constant, C = (fil; + f,1, + f313), keeps the signs of the forces
unlike the optimal constant defined earlier. The Maxwell’s constant for this case is 2000
Nm. As stated in the aforementioned theorem, this constant does not depend on the form
of the truss provided that the forces and points of their application (including reaction
forces) do not change. A. G. M. Michell, a great Australian engineer, had used this
theorem as a starting point to derive optimal topologies [Michell, A.G.M., “The limits of
economy of material in frame-structures,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 8(47), (1904), pp.589-597]. It will be an
interesting exercise to create some other statically determinate trusses and verify
Maxwell’s theorem. It is instructive to note that € =2000 Nm in this problem because this
is sum of the dot products of the all the external (applied and reaction) forces with the
position vectors from the fixed vertex. That is,

P1 = 0 because the position vector from vertex 1 to itself is a zero vector

Il
~>

P2
p; =057+ 1.5]

(=1000 { — 2000 ) - p;+ (1000 §) - p, + (1000 + 1000 f) - 5
=0+ 0 + 2000 = 2000 Nm.

We have illustrated a few important concepts using a simple three-bar statically
determinate truss. These concepts hold true for trusses of any size if they are statically
determinate. Some of these concepts extend to any truss, frame, or continuum structures
(e.g., uniformly stressed designs for stiffest structures for a given volume). This

4 of 4 G. K. Anantasuresh, IISc, Aug. 2025



underscores an important point that optimization is not merely a numerical search or an
algebraic manipulation; it is an exercise that provides much insight and makes finding
an optimum straightforward once we understand the underlying optimality. Here, we
saw how to find optimal areas of cross-section without having to do numerical
optimization for any general statically determinate truss.

Now, try alternative topologies and shapes and do size optimization to see if we can
get a better design for the same volume of material (V"= 4.1623E-4 m®) with strain energy
lower than 0.4881 ], and without disturbing the fixed pin support, the point where the
load is applied, the values of the loads, the material property, but you can locate the roller
support anywhere on the x-axis. If you are adventurous, you may also consider statically
indeterminate trusses that do not satisfy Maxwell’s static determinacy condition:

20—-b—3=0 (16)

where v = number of vertices and b = number of bars (i.e., the truss members).
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