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Stiff and light statically determinate three-bar truss 
An appetizer for ME 260@IISc 

Structural optimization follows a hierarchy of topology, shape, and size. Topology is 
about how many holes there are in a structure. Shape is about what that word implies: 
the shape. The size refers to dimensions and other parameters that determine the size 
without changing shape and topology. We often say and think that if we do not have the 
best topology, we never get the best design no matter how much effort is put into shape 
and size optimization. Likewise, after the most appropriate topology is chosen, if the 
shape is not right, size optimization does not lead to the best design. Let us see for 
ourselves what this means in the simplest setting that we can deal with—a planar truss. 

 Consider a statically determinate truss consisting of three bars as shown in Fig. 1 
wherein the vertices and members are labelled. Vertex 1 is fixed while vertex 2 is 
constrained in the 𝑦𝑦-direction. At vertex 3, we have two forces in the 𝑥𝑥 and 𝑦𝑦 directions 
as shown. Let the lengths of the members be denoted by 𝑙𝑙𝑖𝑖 , 𝑖𝑖 = 1,2,3, cross-section areas 
by 𝐴𝐴𝑖𝑖, and the internal forces by 𝑓𝑓𝑖𝑖. Since it is a statically determinate truss, the internal 
forces in the members do not depend on the Young’s modulus, (𝐸𝐸 = 70 𝐺𝐺𝐺𝐺𝐺𝐺), of the 
material and the areas of cross-section of the truss members. 

 
Figure 1. A statically determinate three-bar truss and its free-body diagram 

 The lengths and forces in the three members are as follows: 𝑙𝑙1 = 1 𝑚𝑚, 𝑙𝑙2 =
1.5811 𝑚𝑚, 𝑙𝑙3 = 1.5811 𝑚𝑚; 𝑓𝑓1 = 0.3333 𝑘𝑘𝑘𝑘,𝑓𝑓2 =  −1.0541 𝑘𝑘𝑘𝑘, 𝑓𝑓3 = 2.1082 𝑘𝑘𝑘𝑘. Now, the 
strain energy (𝑆𝑆𝑆𝑆) of the truss can be written as 
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 𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓𝑖𝑖
2𝑙𝑙𝑖𝑖

2𝐴𝐴𝑖𝑖𝐸𝐸
3
𝑖𝑖=1  (1) 

The volume is given by 

 𝑉𝑉 = ∑ 𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖3
𝑖𝑖=1  (2) 

We can pose an optimization problem to minimize 𝑆𝑆𝑆𝑆 subject to the volume constraint 
and by using the areas of cross-section as the optimization variables. 

 
Min

{𝐴𝐴1,𝐴𝐴2,𝐴𝐴3}
𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓𝑖𝑖

2𝑙𝑙𝑖𝑖
2𝐴𝐴𝑖𝑖𝐸𝐸

3
𝑖𝑖=1

Subject to  ∑ 𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖3
𝑖𝑖=1 −  𝑉𝑉∗ = 0

 (3) 

This is a constrained minimization problem. But in this simple three-variable problem 
with a linear constraint, we can eliminate one variable, say 𝐴𝐴3, and make it an 
unconstrained minimization problem. 

 𝐴𝐴3 = (𝑉𝑉∗ − 𝐴𝐴1𝑙𝑙1 − 𝐴𝐴2𝑙𝑙2)/𝑙𝑙3 (4) 

 Min
{𝐴𝐴1,𝐴𝐴2}

𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓𝑖𝑖
2𝑙𝑙𝑖𝑖

2𝐴𝐴𝑖𝑖𝐸𝐸
3
𝑖𝑖=1 = 𝑓𝑓12𝑙𝑙1

2𝐴𝐴1𝐸𝐸
+ 𝑓𝑓22𝑙𝑙2

2𝐴𝐴2𝐸𝐸
+ 𝑓𝑓32𝑙𝑙32

2(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)𝐸𝐸
 (5) 

The necessary conditions for this minimization problem are 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐴𝐴1

= 0 and 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐴𝐴2

= 0. Thus, 

we have 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐴𝐴1

= − 𝑓𝑓12𝑙𝑙1
2𝐴𝐴12𝐸𝐸

+ 𝑓𝑓32𝑙𝑙32𝑙𝑙1
2(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)2𝐸𝐸

= 0 ⇒ 𝑓𝑓12

𝐴𝐴12
= 𝑓𝑓32𝑙𝑙32

(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)2 ⇒
�𝑓𝑓1 �

𝐴𝐴1
=

�𝑓𝑓3 �𝑙𝑙3
(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)  (6a) 

and 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐴𝐴2

= − 𝑓𝑓22𝑙𝑙2
2𝐴𝐴22𝐸𝐸

+ 𝑓𝑓32𝑙𝑙32𝑙𝑙2
2(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)2𝐸𝐸

= 0 ⇒ 𝑓𝑓22

𝐴𝐴22
= 𝑓𝑓32𝑙𝑙32

(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)2 ⇒
�𝑓𝑓2 �

𝐴𝐴2
=

�𝑓𝑓3 �𝑙𝑙3
(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)  (6a) 

From Eqs. (6a-6b), we have 

 
�𝑓𝑓1 �

𝐴𝐴1
=

�𝑓𝑓2 �

𝐴𝐴2
=

�𝑓𝑓3 �𝑙𝑙3
(𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−𝐴𝐴2𝑙𝑙2)  (7) 

From the preceding equation, we observe that the stresses in members 1 and 2 are equal. 
We will come to this important point later after we find the stress in member 3 also. For 
now, let us proceed to find 𝐴𝐴1 using Eq. (6a) by substituting 𝐴𝐴2 = |𝑓𝑓2|

|𝑓𝑓1|
𝐴𝐴1 from Eq. (7). 

  
�𝑓𝑓1 �

𝐴𝐴1
=

�𝑓𝑓3 �𝑙𝑙3

�𝑉𝑉∗−𝐴𝐴1𝑙𝑙1−
𝑓𝑓2
𝑓𝑓1
𝐴𝐴1𝑙𝑙2�

⇒ |𝑓𝑓1| �𝑉𝑉∗ − 𝐴𝐴1𝑙𝑙1 − �𝑓𝑓2
𝑓𝑓1
� 𝐴𝐴1𝑙𝑙2� = 𝐴𝐴1|𝑓𝑓3|𝑙𝑙3 

 ⇒𝐴𝐴1 = |𝑓𝑓1|𝑉𝑉∗

(|𝑓𝑓1|𝑙𝑙1+|𝑓𝑓2|𝑙𝑙2+|𝑓𝑓3|𝑙𝑙3) = 2.6014E-5 m2 (8a) 

where we have taken 𝑉𝑉∗ = 4.1623E-4 m3. Similarly, by using Eq. (6b) and 𝐴𝐴1 = |𝑓𝑓1|
|𝑓𝑓2|

𝐴𝐴2 from 

Eq. (7), we get 
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 𝐴𝐴2 = 𝑓𝑓2𝑉𝑉∗

(|𝑓𝑓1|𝑙𝑙1+|𝑓𝑓2|𝑙𝑙2+|𝑓𝑓3|𝑙𝑙3) = 8.2264E-5  m2 (8b) 

Now, from Eq. (4), we get  

 𝐴𝐴3 = (𝑉𝑉∗ − 𝐴𝐴1𝑙𝑙1 − 𝐴𝐴2𝑙𝑙2)/𝑙𝑙3 ⇒ 𝐴𝐴3 = |𝑓𝑓3|𝑉𝑉∗

(|𝑓𝑓1|𝑙𝑙1+|𝑓𝑓2|𝑙𝑙2+|𝑓𝑓3|𝑙𝑙3) = 1.6453E-4 m2 (8c) 

From the now known values of areas of cross-section, we can find that minimum 𝑆𝑆𝑆𝑆 is  
0.4881 J. Furthermore, from Eqs. (8a) to (8c), we note that 

 |𝑓𝑓1|
𝐴𝐴1

 = |𝑓𝑓2|
𝐴𝐴2

=  |𝑓𝑓3|
𝐴𝐴3

= (|𝑓𝑓1|𝑙𝑙1+|𝑓𝑓2|𝑙𝑙2+|𝑓𝑓3|𝑙𝑙3)
𝑉𝑉∗

 = 1.2813E7 Pa (9) 

We notice that the stresses in all three members are the same. Thus, the stiffest truss for a 
given volume has the feature that each member is stressed to the same extent. And, this 
uniform stress depends only on the given data: the volume, member forces, and member 
lengths.  

 Let us define an optimal constant, 𝐶𝐶∗ = (|𝑓𝑓1|𝑙𝑙1 + |𝑓𝑓2|𝑙𝑙2 + |𝑓𝑓3|𝑙𝑙3), which in this case is 
equal to 5.3333E3 J. This constant divided by the volume gives the uniform stress in the 
truss members. That is, from Eq. (9) we infer that 

 |𝑓𝑓1|
𝐴𝐴1

 = |𝑓𝑓2|
𝐴𝐴2

=  |𝑓𝑓3|
𝐴𝐴3

= (|𝑓𝑓1|𝑙𝑙1+|𝑓𝑓2|𝑙𝑙2+|𝑓𝑓3|𝑙𝑙3)
𝑉𝑉∗

= 𝐶𝐶∗

𝑉𝑉∗
= 5.3333𝐸𝐸3

4.1623𝐸𝐸−4
= 1.2813E7 Pa (10) 

An important point to note here is that optimal areas of cross-section of a statically 
determinate truss are readily determined with the help of optimal constant for a given 
volume.  

 𝐴𝐴𝑖𝑖∗ = |𝑓𝑓𝑖𝑖| 𝑉𝑉∗

𝐶𝐶∗
 (11) 

wherein we note that it is customary to use the superscript * to indicate optimal quantities. 

 It is also pertinent to note that if we solve the constrained minimization problem 
(Eq. (3)) directly, the optimal constant falls out of that calculation as the Lagrange 
multiplier. We will discuss the concept of Lagrange multiplier and Lagrangian later, but 
for now consider the solution of the problem in Eq. (3). 

Min
{𝐴𝐴1,𝐴𝐴2,𝐴𝐴3}

𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓𝑖𝑖
2𝑙𝑙𝑖𝑖

2𝐴𝐴𝑖𝑖𝐸𝐸
3
𝑖𝑖=1

Subject to  ∑ 𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖3
𝑖𝑖=1 −  𝑉𝑉∗ = 0

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: 𝑙𝑙𝑖𝑖 , 𝑓𝑓𝑖𝑖 ,𝑉𝑉∗,𝐸𝐸

⇒ 𝐿𝐿 = Lagrangian = ∑ 𝑓𝑓𝑖𝑖
2𝑙𝑙𝑖𝑖

2𝐴𝐴𝑖𝑖𝐸𝐸
3
𝑖𝑖=1 + 𝜆𝜆(∑ 𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖3

𝑖𝑖=1 −  𝑉𝑉∗) (12a) 

Now, the necessary condition for the minimum of the constrained minimization problem 
is 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐴𝐴𝑖𝑖

= − 𝑓𝑓𝑖𝑖
2𝑙𝑙𝑖𝑖

2𝐴𝐴𝑖𝑖
2𝐸𝐸

+ 𝜆𝜆𝑙𝑙𝑖𝑖 = 0 ⇒ |𝑓𝑓𝑖𝑖|
𝐴𝐴𝑖𝑖

= √2𝐸𝐸𝐸𝐸 (13) 

By substituting 𝐴𝐴𝑖𝑖 into the volume constraint, we can determine 𝜆𝜆. 
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 ∑ 𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖3
𝑖𝑖=1 −  𝑉𝑉∗ = 0 ⇒∑ |𝑓𝑓𝑖𝑖|

√2𝐸𝐸𝐸𝐸
𝑙𝑙𝑖𝑖3

𝑖𝑖=1 −  𝑉𝑉∗ = 0 ⇒ 𝜆𝜆 = 1.1726E3 J/m3 (14) 

From Eqs. (10) and (13), we also see that 

 |𝑓𝑓𝑖𝑖|
𝐴𝐴𝑖𝑖

= 𝐶𝐶∗

𝑉𝑉∗
 = √2𝐸𝐸𝐸𝐸 (15) 

Thus, the optimal constant and the Lagrange multiplier are related in stiff-light trusses 
that are statically determinate. 

 There is more intrigue here. There is a famous Maxwell’s theorem for statically 
determinate trusses. Maxwell had stated the following theorem for a statically 
determinate truss by accounting for the sign of the member forces. 

For a statically determinate truss, ∑ |𝑓𝑓𝑖𝑖|𝑙𝑙𝑖𝑖 − ∑ �𝑓𝑓𝑗𝑗�𝑙𝑙𝑗𝑗 = 𝐶𝐶𝑐𝑐𝑡𝑡  where the constant 𝐶𝐶 depends 
on the loads (including reactions at the supports) and their points of application and 
not on the form of the truss. The first sum is taken for all members in tension and the 
second sum is taken over all members in compression.  

(Maxwell, J. C., Scientific Papers, Vol. II, (1864), pp 175-177)  

Here, we see that Maxwell’s constant, 𝐶𝐶 = (𝑓𝑓1𝑙𝑙1 + 𝑓𝑓2𝑙𝑙2 + 𝑓𝑓3𝑙𝑙3), keeps the signs of the forces 
unlike the optimal constant defined earlier. The Maxwell’s constant for this case is 2000 
Nm. As stated in the aforementioned theorem, this constant does not depend on the form 
of the truss provided that the forces and points of their application (including reaction 
forces) do not change. A. G. M. Michell, a great Australian engineer, had used this 
theorem as a starting point to derive optimal topologies [Michell, A.G.M., “The limits of 
economy of material in frame-structures,” The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science, 8(47), (1904), pp.589-597]. It will be an 
interesting exercise to create some other statically determinate trusses and verify 
Maxwell’s theorem. It is instructive to note that 𝐶𝐶 = 2000 Nm in this problem because this 
is sum of the dot products of the all the external (applied and reaction) forces with the 
position vectors from the fixed vertex. That is, 

 𝒑𝒑1 = 𝟎𝟎 because the position vector from vertex 1 to itself is a zero vector 

 𝒑𝒑2 = 𝚤𝚤̂ 
 𝒑𝒑3 = 0.5 𝚤𝚤̂ + 1.5𝚥𝚥 ̂

 (−1000 𝚤𝚤̂ − 2000 𝚥𝚥̂) ∙ 𝒑𝒑1+ (1000 𝚥𝚥̂) ∙ 𝒑𝒑2 + (1000 𝚤𝚤̂ + 1000 𝚥𝚥̂) ∙ 𝒑𝒑3 

 = 0 + 0 + 2000 = 2000 Nm. 

 We have illustrated a few important concepts using a simple three-bar statically 
determinate truss. These concepts hold true for trusses of any size if they are statically 
determinate. Some of these concepts extend to any truss, frame, or continuum structures 
(e.g., uniformly stressed designs for stiffest structures for a given volume). This 
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underscores an important point that optimization is not merely a numerical search or an 
algebraic manipulation; it is an exercise that provides much insight and makes finding 
an optimum straightforward once we understand the underlying optimality. Here, we 
saw how to find optimal areas of cross-section without having to do numerical 
optimization for any general statically determinate truss. 

 Now, try alternative topologies and shapes and do size optimization to see if we can 
get a better design for the same volume of material (𝑉𝑉∗= 4.1623E-4 m3) with strain energy 
lower than 0.4881 J, and without disturbing the fixed pin support, the point where the 
load is applied, the values of the loads, the material property, but you can locate the roller 
support anywhere on the 𝑥𝑥-axis. If you are adventurous, you may also consider statically 
indeterminate trusses that do not satisfy Maxwell’s static determinacy condition: 

 2𝑣𝑣 − 𝑏𝑏 − 3 = 0 (16) 

where 𝑣𝑣 = number of vertices and 𝑏𝑏 = number of bars (i.e., the truss members).  

 

 

 

 


