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Recap

2

𝑇𝑇𝑇𝑇 �𝒙𝒙 = ℙ𝛾𝛾𝝈𝝈(𝒖𝒖 �𝒙𝒙 ) ⋅ 𝝐𝝐(𝒖𝒖 �𝒙𝒙 )

The topological derivative for structural mean compliance is given by

ℙ𝛾𝛾 = 1−𝛾𝛾
2(1+𝛾𝛾𝛼𝛼2)

1 + 𝛼𝛼2 𝕀𝕀 + 1−𝛾𝛾
2 1+𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑰𝑰 ⊗ 𝑰𝑰Polarization tensor:

𝑇𝑇𝑇𝑇(�𝒙𝒙) =
1 − 𝛾𝛾

2(1 + 𝛾𝛾𝛼𝛼2)
1 + 𝛼𝛼2 𝝈𝝈 𝒖𝒖 �𝒙𝒙 ⋅ 𝝐𝝐 𝒖𝒖 �𝒙𝒙 +

1 − 𝛾𝛾
2 1 + 𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑡𝑡𝑡𝑡 𝝈𝝈 𝒖𝒖 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 𝒖𝒖 �𝒙𝒙

Closed-form topological derivative

We use Eshelby’s theorem to obtain the stress state inside the inclusion. The uniform Eshelby
mapping provides fourth-order Polarization tensor that plays an important role in the
topological derivative expression.

Topological derivative of a functional quantifies the sensitivity with respect to an
infinitesimal domain perturbations such as a hole, an inclusion, a crack, a source term, etc.

Topological derivative is obtained from the first-order term in the topological asymptotic
expansion of the performance functional. Topological derivative is also the limiting value of
the shape derivative.
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Outline of the lecture
Algorithm 1: Topological derivative-based optimization in an open loop.
Algorithm 2: Pareto-optimal solutions with topological derivative 
(closed loop).
Algorithm 3: Topological derivative-based optimization algorithm 
combined with level-set domain representation.
What we will learn:
How topological derivative identify optimal location of holes.
How to obtain Pareto-optimality condition for material distribution and 
its physical significance.
How topological derivatives are combined with the level-set model. 
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TD in open-loop implementation

4

𝑇𝑇𝑇𝑇(�𝒙𝒙) =
1 − 𝛾𝛾

2(1 + 𝛾𝛾𝛼𝛼2)
1 + 𝛼𝛼2 𝝈𝝈 𝒖𝒖 �𝒙𝒙 ⋅ 𝝐𝝐 𝒖𝒖 �𝒙𝒙 +

1 − 𝛾𝛾
2 1 + 𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑡𝑡𝑡𝑡 𝝈𝝈 𝒖𝒖 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 𝒖𝒖 �𝒙𝒙

Closed-form topological derivative

Here, we only use the topological derivative expression for creating voids, i.e., 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 . On
substituting 𝛾𝛾 → 0, we get the topological derivative for creating holes/singularities in the
domain.

𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 �𝒙𝒙 =
2

1 + 𝜈𝜈
𝝈𝝈 �𝒙𝒙 ⋅ 𝝐𝝐 �𝒙𝒙 −

1 − 3𝜈𝜈
2 1 − 𝜈𝜈2

𝑡𝑡𝑡𝑡 𝝈𝝈 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 �𝒙𝒙

In the open loop approach, material is removed bit by bit; once material is removed, it is
removed forever. In other words, we do not allow the material to come back, once it is
removed..

The limiting value of the contrast parameter provides the topological 
derivative for creating voids. 
We do not use topological derivative for adding back material in the 
void region while implementing open-loop optimization algorithm.
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Algorithm 1: TD-based open loop

5

Initialize the 
domain Ω;

𝑣𝑣 = 1; Δ𝑣𝑣=0.05 

FEA on Ω; 
Compute 𝑇𝑇𝑇𝑇

𝑣𝑣 = 𝑉𝑉∗?

FEA on Ω;
Compute 𝑇𝑇𝑇𝑇 field

𝑣𝑣 = 𝑣𝑣 − Δ𝑣𝑣

Remove material based on 
min 𝑇𝑇𝑇𝑇 such that Ω = 𝑣𝑣

Yes

No

0

1

2

3

5

Extract topology

4

7

Voids are created in the region where topological derivative is 
minimum.

𝑇𝑇𝑇𝑇 �𝒙𝒙 = ℙ0𝝈𝝈(�𝒙𝒙) ⋅ 𝝐𝝐(�𝒙𝒙)

Notation
Ω: material volume
𝑣𝑣: volume fraction of material
Δ𝑣𝑣: volume decrement
𝑉𝑉∗: target volume fraction
𝑇𝑇𝑇𝑇:  topological derivative
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TD in closed-loop implementation

6

𝑇𝑇𝑇𝑇 �𝒙𝒙 = ℙ𝛾𝛾𝝈𝝈(𝒖𝒖 �𝒙𝒙 ) ⋅ 𝝐𝝐(𝒖𝒖 �𝒙𝒙 )

The topological derivative for structural mean compliance is given by

ℙ𝛾𝛾 = 1−𝛾𝛾
2(1+𝛾𝛾𝛼𝛼2)

1 + 𝛼𝛼2 𝕀𝕀 + 1−𝛾𝛾
2 1+𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑰𝑰 ⊗ 𝑰𝑰Polarization tensor:

𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 �𝒙𝒙 =
2

1 + 𝜈𝜈
𝝈𝝈 �𝒙𝒙 ⋅ 𝝐𝝐 �𝒙𝒙 −

1 − 3𝜈𝜈
2 1 − 𝜈𝜈2

𝑡𝑡𝑡𝑡 𝝈𝝈 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 �𝒙𝒙

𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 �𝒙𝒙 = −
2

3 − 𝜈𝜈
𝝈𝝈 �𝒙𝒙 ⋅ 𝝐𝝐 �𝒙𝒙 −

1 − 3𝜈𝜈
2 1 + 𝜈𝜈 (3 − 𝜈𝜈)

𝑡𝑡𝑡𝑡 𝝈𝝈 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 �𝒙𝒙

On substituting 𝛾𝛾 → 0, we obtain topological derivative for creating voids

On substituting 𝛾𝛾 → ∞, topological derivative for adding back material

Isotropic → Void

Void → Isotropic





In the topological derivative-based close-loop optimization approach, material is removed 
bit by bit and we keep on checking iteratively, by adding material back again until 
convergence. In other words, we allow the material to come back in the void region.

Here, we use topological derivative expressions for creating voids in the material region 
(𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉) as well as adding back material in the void locations (𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼).
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TD-based close-loop optimization

7

Ω = 𝐷𝐷; 𝑣𝑣 = 1;
Δ𝑣𝑣 = 0.05

The design is initialized by setting isotropic material
volume (Ω) equal to the design space (𝐷𝐷) which means
that the volume fraction of the material (𝑣𝑣) in the design
space is one. The fraction of material to be replaced with
voids is set as Δ𝑣𝑣 = 0.05.

Finite element analysis is carried over the material
volume and topological sensitivity field is computed. The
Gaussian filter is used to smoothen the sensitivity field.

FEA on Ω; 
Compute 𝑇𝑇𝑇𝑇

We check that whether the volume fraction of the
material 𝑣𝑣 has attained the desired volume fraction 𝑉𝑉∗ or
not.

𝑣𝑣 = 𝑉𝑉∗?

If the condition in Step 2 is not satisfied, then material is
further removed by modifying the material volume
fraction 𝑣𝑣.

𝑣𝑣 = 𝑣𝑣 − Δ𝑣𝑣

Step 0

Step 1

Step 2

Step 3
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TD-based optimization (Cont.)

8

Next, the level-set value 𝜏𝜏 is computed by adjusting the level-
set plane in the topological sensitivity field. In this step,
bisection method is adopted to obtain the level-set value
between the maximum and minimum values of the field and
a fixed-point iteration scheme is used to arrive at a design
such that the material volume is equal to 𝑣𝑣.

Find 𝜏𝜏 such that 
|Ω| = 𝑣𝑣

Follow Step 1 to perform finite element analysis and obtain
filtered topological sensitivity field for the material volume.

FEA on Ω; 
Compute 𝑇𝑇𝑇𝑇

Step 4

Step 5

The Pareto-optimality condition for interchanging material
and voids is given by

min 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 + min 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 ≥ 0

If the condition follows, move to Step 2. If not, then go to
Step 4 and search for the Pareto-optimal design at the same
volume fraction.

Step 6

If the condition in Step 2 is satisfied, then topology is
extracted in the form of iso-surface. In this process we also
trace the Pareto curve of performance functional and volume
fraction of the material.

Step 7
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Pareto-optimality condition

9

min 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 + min 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 ≥ 0

𝜓𝜓 Ω𝜀𝜀 − 𝜓𝜓 Ω = 𝑓𝑓 𝜀𝜀 𝑇𝑇𝑇𝑇 �𝒙𝒙 + 𝑜𝑜(𝑓𝑓 𝜀𝜀 )Topological asymptotic expansion:

If the performance functional is mean compliance (measure of strain energy and stiffness), 
then it will increase when voids are created, that is, 𝜓𝜓 Ω𝜀𝜀 − 𝜓𝜓 Ω > 0. Therefore, 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 > 0.

On the contrary, the performance functional will decrease on adding material in the void 
locations, that is, 𝜓𝜓 Ω𝜀𝜀 − 𝜓𝜓 Ω < 0. Therefore, 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 < 0.

Always positive Always negative

Volume fraction

M
ea

n 
co

m
pl

ia
nc

e

0 1

Pareto curve traces all the points that satisfy the
Pareto-optimality condition. That is, once the
algorithm attains the condition, there is no further
redistribution possible. All the sub-optimal points lie
above the Pareto curve. 0.6

Since min 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 is less than 
min 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 , there is further 
scope of redistribution.

Once, the material distribution 
satisfies the condition, there is no 
scope for further redistribution.

These points are 
obtained by 
redistributing the 
material, iteratively.
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Algorithm 2: TD-based close loop

10

Ω = 𝐷𝐷; 𝑣𝑣 = 1;
Δ𝑣𝑣 = 0.05

FEA on Ω; 
Compute 𝑇𝑇𝑇𝑇

𝑣𝑣 = 𝑉𝑉∗?

FEA on Ω;
Compute 𝑇𝑇𝑇𝑇

𝑣𝑣 = 𝑣𝑣 − Δ𝑣𝑣

min 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉
+

min 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼

Find 𝜏𝜏 such that |Ω| = 𝑣𝑣

Yes

No

Yes No

0

1

2

3

5

6

Topology

4

7

≥ 0

Suresh, K., Structural and Multidisciplinary Optimization, 2010.

- Material - Void
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TD-based level-set approach

11

Topological derivative can be combined with conventional level-set approach to update the
level-set function that represents the optimal domain.
In the level-set approach, a fictitious time 𝑡𝑡 is considered along with the family of domains
Ω(𝑡𝑡). This family is represented by a level-set function 𝜓𝜓 𝒙𝒙, 𝑡𝑡 ∈ 𝐷𝐷 × ℝ ↦ ℝ, defined as:

�
𝜓𝜓 𝒙𝒙, 𝑡𝑡 < 0 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ Ω

𝜓𝜓 𝒙𝒙, 𝑡𝑡 > 0 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ D\�Ω
𝜓𝜓 𝒙𝒙, 𝑡𝑡 = 0 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ 𝜕𝜕Ω

In the topological derivative-based level-set optimization method, the level-set function
𝜓𝜓 𝒙𝒙, 𝑡𝑡 is chosen as the design variable. Also, the topological derivatives for interchanging
material are denoted in the form of a generalized function 𝑔𝑔 𝒙𝒙, 𝑡𝑡 such that

𝑔𝑔 𝒙𝒙, 𝑡𝑡 = �
−𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ Ω

−𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ D\�Ω

�𝑔𝑔 𝒙𝒙, 𝑡𝑡 ≤ 0 𝑖𝑖𝑖𝑖 𝜓𝜓 𝒙𝒙, 𝑡𝑡 < 0
𝑔𝑔 𝒙𝒙, 𝑡𝑡 ≥ 0 𝑖𝑖𝑖𝑖 𝜓𝜓 𝒙𝒙, 𝑡𝑡 > 0

Amstutz, S. and Andra, H., Journal of Computational Physics, 2006
Amstutz, S., Optimization Methods and Software, 2011
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Sensitivity of the level-set function

12

Instead of solving the governing equation of the level-set function 𝜓𝜓 𝒙𝒙, 𝑡𝑡 in time, the
following sensitivity equation is proposed:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑷𝑷𝜓𝜓⊥(𝑔𝑔)

𝑷𝑷𝜓𝜓⊥ 𝑔𝑔 = 𝑔𝑔 −
𝑔𝑔,𝜓𝜓
𝜓𝜓 𝑔𝑔

𝜓𝜓

Here, 𝑷𝑷𝜓𝜓⊥ 𝑔𝑔 is the orthogonal projector of 𝑔𝑔 onto the orthogonal complement of 𝜓𝜓.

If 𝑷𝑷𝜓𝜓⊥ 𝑔𝑔 = 0 ⇒ 𝑔𝑔 = 𝑠𝑠𝑠𝑠 or 𝑔𝑔
and 𝜓𝜓 are parallel. 

The time is discretized such that the variation of the topological gradient can be neglected in 
the interval 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1 .
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Level-set update equation

13

The sensitivity equation of the level-set function can be solved analytically in the interval 
𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1 ; there exists an angle 𝜉𝜉𝑖𝑖 ∈ 0,𝜃𝜃𝑖𝑖 , where 𝜃𝜃𝑖𝑖 is the angle between 𝜓𝜓𝑖𝑖 and 𝑔𝑔𝑖𝑖, i.e.

𝜓𝜓𝑖𝑖+1 = (cos 𝜉𝜉𝑖𝑖)𝜓𝜓𝑖𝑖 + (sin 𝜉𝜉𝑖𝑖)
𝑷𝑷𝜓𝜓𝑖𝑖⊥(𝑔𝑔𝑖𝑖)

𝑷𝑷𝜓𝜓𝑖𝑖⊥(𝑔𝑔𝑖𝑖)

𝜃𝜃𝑖𝑖 = cos−1
𝑔𝑔𝑖𝑖 ,𝜓𝜓𝑖𝑖
𝑔𝑔𝑖𝑖 𝜓𝜓𝑖𝑖

And the sensitivity equation of the level-set function is written as

Here, 𝜓𝜓𝑖𝑖 = 𝜓𝜓(𝒙𝒙, 𝑡𝑡𝑖𝑖) and 𝑔𝑔𝑖𝑖 = 𝑔𝑔 𝒙𝒙, 𝑡𝑡𝑖𝑖 . For numerical purpose, the parameter 𝜉𝜉𝑖𝑖 is expressed as 
𝜉𝜉𝑖𝑖 = 𝜅𝜅𝑖𝑖𝜃𝜃𝑖𝑖 and the update equation is rearranged as:

𝜓𝜓𝑖𝑖+1 =
1

sin𝜃𝜃𝑖𝑖
sin (1 − 𝜅𝜅𝑖𝑖)𝜃𝜃𝑖𝑖 𝜓𝜓𝑖𝑖 + sin 𝜅𝜅𝑖𝑖𝜃𝜃𝑖𝑖

𝑔𝑔𝑖𝑖
𝑔𝑔𝑖𝑖

Topological derivative is used to update the level-set function.
The angle 𝜃𝜃 between 𝜓𝜓 and 𝑔𝑔 changes in the updating step until it 
reaches 0 or close to 0.
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Algorithm 3: TD-based level-set

14

𝑖𝑖 = 0; Ω𝑖𝑖 = 𝐷𝐷
Initialize 𝜓𝜓𝑖𝑖

Compute 𝑇𝑇𝑇𝑇, 𝑔𝑔𝑖𝑖 and 𝜃𝜃𝑖𝑖

𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛 < 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜

FEA on Ω𝑖𝑖

Yes

Set 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜓𝜓𝑖𝑖; 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜= 𝐽𝐽 Ω𝑖𝑖
𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛 = 1 + 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜

Update 𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛

𝜅𝜅 = 𝜅𝜅/2
No

Yes

Topology

No

𝜃𝜃𝑖𝑖 < 𝜖𝜖𝜃𝜃
No Yes

0

1

2

3

4

5

6

8

𝜅𝜅 < 𝜖𝜖𝜅𝜅

Mesh refinement7

Notation
𝑖𝑖: iteration number
Ω𝑖𝑖: material volume
𝜓𝜓𝑖𝑖:  level-set function
𝑔𝑔𝑖𝑖:  generalized 𝑇𝑇𝑇𝑇 function
𝐽𝐽: performance functional
𝜃𝜃𝑖𝑖: angle between 𝑔𝑔𝑖𝑖 and 𝜓𝜓𝑖𝑖
𝜅𝜅: line-search parameter
𝑣𝑣:   volume fraction
𝜖𝜖𝜅𝜅: converge parameter for 𝜅𝜅
𝜖𝜖𝜃𝜃: converge parameter for 𝜃𝜃

9

In this algorithm, the performance functional is
expressed in the form of a Lagrangian associated to mean
compliance and volume fraction, i.e.,

𝐽𝐽 = 𝑀𝑀.𝐶𝐶. + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑣𝑣
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The end note

15
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Update the level-set function using the topological derivative combined with 
trigonometric functions.

The closed-loop implementation of topological derivatives in the optimization 
framework requires both 𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 and 𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼. 

In the topological derivative-based open-loop implementation, remove 
material based on minimum values of TD.

Interpret the Pareto-optimality condition for redistribution of the material.

In the topological derivative-based level-set optimization algorithm, make the 
angle between the level-set function and topological derivative function as 
small as possible.
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