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Recap

Topological derivative of a functional quantifies the sensitivity with respect to an
infinitesimal domain perturbations such as a hole, an inclusion, a crack, a source term, etc.

Topological derivative is obtained from the first-order term in the topological asymptotic
expansion of the performance functional. Topological derivative is also the limiting value of
the shape derivative.

We use Eshelby’s theorem to obtain the stress state inside the inclusion. The uniform Eshelby
mapping provides fourth-order Polarization tensor that plays an important role in the
topological derivative expression.

The topological derivative for structural mean compliance is given by

TD(X) = P o(u(x)) - e(u(x))
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Outline of the lecture

Algorithm 1: Topological derivative-based optimization in an open loop.

Algorithm 2: Pareto-optimal solutions with topological derivative
(closed loop).

Algorithm 3: Topological derivative-based optimization algorithm
combined with level-set domain representation.

What we will learn:
How topological derivative identify optimal location of holes.

How to obtain Pareto-optimality condition for material distribution and
its physical significance.

How topological derivatives are combined with the level-set model.



TD in open-loop implementation

Closed-form topological derivative

TD(X) =

1 + ap)o(u(®@) - e(u(x))+2(1+yy (e ~ ay)tr (o(u®@)) tr(e(u@)))l

2(1+vyaz) [
In the open loop approach, material is removed bit by bit; once material is removed, it is
removed forever. In other words, we do not allow the material to come back, once it is
removed..

Here, we only use the topological derivative expression for creating voids, i.e., TD;,, . On
substituting y — 0, we get the topological derivative for creating holes/singularities in the
domain.

. 2 . . 1—3v . .
TD,Ly(X) = 1—+va(x) -e(x) — 20— %) tr(a(x))tr(e(x))

The limiting value of the contrast parameter provides the topological
derivative for creating voids.

We do not use topological derivative for adding back material in the
void region while implementing open-loop optimization algorithm.

G. K. Ananthasuresh, IISc  Structural Optimization: Size, Shape, and Topology 4



Algorithm 1: TD-based open loop

TD(®) = Pyo(Z) - €(R)

Initialize the
domain ;
v =1; Av=0.05

FEA on Q;
Compute TD

:] :] Extract topology ]

22
C | v=v-m |
pal
_
Remove material based on . 2
Notation g
:] [ min(TD) such that |Q]| = v } ) c "
Q: material volume g
. . 7 18
v:  volume fraction of material g
o]
Av: volume decrement 1
— FEA on 9 V*: target volume fract]
Compute TD field - targe V? ume .rac .101‘1 16
TD: topological derivative
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Voids are created in the region where topological derivative is
minimum.




TD in closed-loop implementation

The topological derivative for structural mean compliance is given by

TD(®) = P,o(u(®)) - €u(®))

Polarization tensor: —
Py =5l [(1 +ay)l +

2(1+y 5 (@ —a)I® I]

In the topological derivative-based close-loop optimization approach, material is removed
bit by bit and we keep on checking iteratively, by adding material back again until
convergence. In other words, we allow the material to come back in the void region.

Here, we use topological derivative expressions for creating voids in the material region
(TD,-y) as well as adding back material in the void locations (TDy ;).

On substituting y — 0, we obtain topological derivative for Creating voids

[sotropic —» Void = TD,(®) = 12?0(32) . e(x) — 2(11 tr(a(x))tr(e(x))

On substituting y — oo, topological derivative for adding back material

1-3
2(1+ v)(;/ ) tr(o(®))tr(e(®))

Void — Isotropic = TD,,,®) = —3%0(52) - €(X) —
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TD-based close-loop optimization

Step O

Step1

Step 2

Step 3

The design is initialized by setting isotropic material
volume (Q) equal to the design space (D) which means
that the volume fraction of the material (v) in the design
space is one. The fraction of material to be replaced with
voids is set as Av = 0.05.

Finite element analysis is carried over the material }

) e FEA on ();
volume and topological sensitivity field is computed. The
Gaussian filter is used to smoothen the sensitivity field. Compute TD

We check that whether the volume fraction of the
material v has attained the desired volume fraction V* or
not.

If the condition in Step 2 is not satisfied, then material is [
further removed by modifying the material volume
fraction v.

v=v—Av ]
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TD-based optimization (Cont.)

Step 4

Step 5

Step 6

Step 7
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Next, the level-set value 7 is computed by adjusting the level-
set plane in the topological sensitivity field. In this step,
bisection method is adopted to obtain the level-set value
between the maximum and minimum values of the field and
a fixed-point iteration scheme is used to arrive at a design
such that the material volume is equal to v.

Follow Step 1 to perform finite element analysis and obtain
tiltered topological sensitivity field for the material volume.

The Pareto-optimality condition for interchanging material
and voids is given by

min(TD;_y) + min(TDy_,;) = 0

If the condition follows, move to Step 2. If not, then go to
Step 4 and search for the Pareto-optimal design at the same
volume fraction.

If the condition in Step 2 is satisfied, then topology is
extracted in the form of iso-surface. In this process we also
trace the Pareto curve of performance functional and volume
fraction of the material.

TD Field with level set cutting plane 0.032463

Find 7 such that
Q] =v

FEA on (;
Compute TD

19.92 ¥
1991

Optimal Design at VF =5% 19.88 [

X

©
2
&
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Volume
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Pareto-optimality condition
Topological asymptotic expansion: l/)(ﬂg) — l/)(.Q) =f (E)TD (/.72) + o(f (8))

If the performance functional is mean compliance (measure of strain energy and stiffness),
then it will increase when voids are created, that is, Y (Q,) — ¥ (Q) > 0. Therefore, TD,_, > O.

On the contrary, the performance functional will decrease on adding material in the void
locations, that is, ¥(Q,) — Y (Q) < 0. Therefore, TDy_,; < 0.

A
Since min(TDy_,;) is less than
min(TD;_y), there is further
scope of redistribution.
o These points are A
. . O obtained by
min (TDI_>V) + min (TDV_)I) 2 O % redistributing the
\ ) \ ) = material, iteratively.
Y Y g“ +
Always positive Always negative S
(e
T
[«F)
=
Pareto curve traces all the points that satisfy the
Pareto-optimality condition. That is, once the
. . . . . Once, the material distribution
algorithm attains the condition, there is no further satisfies the condition, there is o
redistribution possible. All the sub-optimal points lie scope for further redistribution. R
above the Pareto curve. 0 0.6 1

Volume fraction
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Algorithm 2: TD-based close loop

B - Material [ ]-Void

Optimal Design at VF =5%

FEA on Q;
Compute TD

Yes
No

19.92 ¥
19.88
[ Find 7 such that |Q] = v ]47 g
£ 19.86
8
=
g 19.84
FEA on §; g
Compute TD g 19.82
19.8
19.78
min(TD
Yes ( I—»V)
+ 19.76 ; ; ; : :
min(TDy_;) 0.94 0.95 0.96 0.97 0.98 0.99

Volume

Suresh, K., Structural and Multidisciplinary Optimization, 2010.
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TD-based level-set approach

Topological derivative can be combined with conventional level-set approach to update the
level-set function that represents the optimal domain.

In the level-set approach, a fictitious time t is considered along with the family of domains
Q(t). This family is represented by a level-set function ¥ (x,t) € D X R = R, defined as:

Yx,t) <0 ifxeq
Y(x,t) >0 if x € D\Q
Y(x,t) =0 if x € 0Q

In the topological derivative-based level-set optimization method, the level-set function
Y(x,t) is chosen as the design variable. Also, the topological derivatives for interchanging
material are denoted in the form of a generalized function g(x, t) such that

g(x; t) — . ra)
_TDV—>I lf X € D\Q

gx,t) <0 ifYlxt)<O0
gx,t) =20 ifyYxt)>0

Amstutz, S. and Andra, H., Journal of Computational Physics, 2006
Amstutz, S., Optimization Methods and Software, 2011
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Sensitivity of the level-set function

Instead of solving the governing equation of the level-set function y(x,t) in time, the
following sensitivity equation is proposed:

0y
Ezplpl(g)
[ taw
Pyi(9) =g [||1/J||||g||]l/)

Here, P ,1(g) is the orthogonal projector of g onto the orthogonal complement of .

IfPy(g)=0=>g=sporg
and v are parallel.

The time is discretized such that the variation of the topological gradient can be neglected in
the interval [t;, t;,4].



Level-set update equation

The sensitivity equation of the level-set function can be solved analytically in the interval
[ti, t;+1]; there exists an angle &; € [0, 0;], where 0; is the angle between v; and g;, i.e.

6, = cos~! (gi, i)
gl
And the sensitivity equation of the level-set function is written as
P,.(9:)

Yiy1 = (cosé)YP; + (sing;)

|P1/)l.i(gi)

Here, Y; = Y(x, t;) and g; = g(x, t;). For numerical purpose, the parameter ¢&; is expressed as
¢; = k;0; and the update equation is rearranged as:

. . 9i
11bi+1 = Sln((l - Ki)ei)lpi + sin Kiei ”gl”]
l

sinf;

Topological derivative is used to update the level-set function.
The angle 6 between ¥ and g changes in the updating step until it
reaches 0 or close to 0.
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Algorithm 3: TD-based level-set

Notation
i=0;Q,=D i: iteration number
Initialize ; Q;: material volume
Y;: level-set function
[ FEA on O, ] gi: generalized TD function
J: performance functional
0;: angle between g; and y;
[ Compute TD, g; and 6; ] k: line-search parameter
v: volume fraction
[ Set Yorq = Vi3 Jora = J () ] €x: converge parameter for
Jnew =1+ Jo1a €g: converge parameter for 6

] In this algorithm, the performance functional is

[ Update Yy, : : .
expressed in the form of a Lagrangian associated to mean

= K/2 . o
o e compliance and volume fraction, i.e.,
J =M.C.+ penalty X v
Yes
[ Mesh refinement ]
<> <
\
No \
X
No 0; < €g Yes C Topology ) X
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The end note

In the topological derivative-based open-loop implementation, remove
material based on minimum values of TD.

The closed-loop implementation of topological derivatives in the optimization
framework requires both TD;_; and TDy _,;.

Interpret the Pareto-optimality condition for redistribution of the material.

optimization

In the topological derivative-based level-set optimization algorithm, make the
angle between the level-set function and topological derivative function as
small as possible.

Update the level-set function using the topological derivative combined with

trigonometric functions.
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