Lecture 28a

Topological derivatives
Theory, Method and Application

ME 260 at the Indian Institute of Science, Bengaluru

Structural Optimization: Size, Shape, and Topology
Akshay Desai prepared the slides for G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru

suresh@iisc.ac.in




Outline of the lecture

Introduction to shape and topological derivatives, and the limiting
relationship between them.

Topological derivative method in isotropic linear elasticity.

Topological derivative-based topology optimization (a brief overview).
What we will learn:

What is topological derivative and how it is related to shape sensitivity.

How to derive topological derivative for a given performance functional
using asymptotic analysis.

Visualization of topological derivative-based optimization approach.



Shape derivative

S

Shrinks along the
normal direction

| I Unperturbed domain Perturbed domain
Let ¥ () be the performance functional associated with the domains, then
dlp(ﬂs) — lim lp(Q€+58) _ l/)(-Qe)

de 50 o€
Sokolowski, ]. and Zolesio, |.P., Springer, 1992.

8¢ is the perturbation of the shape parameter, «.

Shape derivative determines the sensitivity of the performance
functional with respect to perturbation of the boundary of the domain.



Topological derivative
Topological asymptotic expansion: Y (Q.) = Y(Q) + f(e)TD(X) + o(f (¢))

Here, f (¢)TD(X) is the first order term with two parts; (i) TD (%) is the topological derivative; and
(ii) £ (¢) is the positive correction factor such that when ¢ — 0, f(¢) = 0.

Topological derivative: TD(X) = lim
e—0

() —P(Q)

f(e)

Novotny, A.A. and Sokolowski, |., Springer, 2013.

Differentiating ¥ (£).) with respect to &:

TD(x) = lim

-0

[ 1 le(ﬂe)]
f'l

(¢) de

Sokolowski, . and Zochowski, A.,

SIAM Journal on Control and Optimization, 1999.

- o(f(e) _
as im=r5-=0

Topological derivative is obtained from the topological asymptotic
expansion of the performance functional.
Topological derivative is the limiting value of the shape derivative.
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A simple example

Let us choose an unperturbed performance functional: ¥ (Q) = J ¢(x) dQ
Q

Performance functional associated with the perturbed domain:  P(Q,) = | ¢(x) dQ,
Q¢

Topological asymptotic expansion:

p(@) = [ @) do.+ [ ) B, — [ $(x) dB,
Q. B, B,
~ [ 6@ do- | o an.
Q B,
=@ - | 4o a,
P2 = (@) — |Bel$®) + 0(B.)
—

! ;
|B:| is the area —¢p(X) is the
measure of B, topological derivative

Topological derivative is obtained from the first-order term in the
topological asymptotic expansion of the performance functional.



Steps in the TD evaluation

Step 1: Write the strong and weak forms of the governing equation and
define the performance functional.

Step 2: Write the set of equations for the perturbed domain.

Step 3: Evaluate the shape derivative using adjoint analysis. The shape
derivative turns out to be a surface integral on the inclusion.

Step 4: Perform asymptotic analysis of the perturbed solution to evaluate
the shape derivative in closed form.

Step 5: By using the limiting relationship between shape and topological
derivatives, obtain closed-form topological derivative expression.

Step 6: Using the limiting values of the contrast parameter, evaluate
topological derivatives for creating voids, and adding back material.



TD in linear elasticity

Strong form of the governing equation and boundary conditions:
(V.o(w)=0 inQ
u=0 onl,
cluyn=F only
\ cluyn=0 onI,

Constitutive relation: o(u) = Ce(u)

Notation

unperturbed displacement
1 variation of u
Strain as symmetric gradient: €(u) = VSu == (Vu + Vu') normal vector

2 prescribed traction vector
Cauchy stress tensor
linear strain tensor
fourth-order constitutive tensor
solution space

space of admissible variations

Weak form of the governing equation and boundary conditions:

SEeEeM"ms3I .

ueu:fﬂa(u)-e(n)=er-n, nev

N

Mean compliance as the performance functional: YQ) =yYq(u) := f F-u
I'n



Perturbed domain

(V-o.(u,)=0 inQ
u. =0 onlp
o.(u )n=F only
o.(u.)n=0 onl,
[u =0 on 0B,
[o:(u)ln=0 onoB;

Strong form: <

Weak form  u, € U,: J o:(u;) - €M) = J F-n., n:€V; Notatlon
Q r

u.: perturbed displacement
N N variation of u,
o.: perturbed Cauchy stress tensor

Constitutive relation: o.(u;) = C.(x)e(uy) y:  contrast parameter
U,: space of perturbed solution
C ifxeO\B. Ve:  space of perturbed variation
C.(x) = f _ \B:
yC if x € B,

Transmission condition: [-] = ()a\p; — (B,

Perturbed performance functional: ¥.(Q) = f F-u,

I'n




Adjoint analysis

We use adjoint method, where we add the adjoint weak form to the functional

lpe(ﬂ) = j F- U, + J o'e(ue) ) 6(/‘13) - F- )‘-e
Ty Q Ty
W, W,

Here, 4. is the adjoint displacement. Next, we evaluate the sensitivity of W; and W,
individually, and further add to determine the sensitivity of the functional (). Here, we
use Reynolds transport theorem that states:

- fﬂc/) = jﬂcp' + | ow-m

:j(¢}—v¢-v)+j  pw-n)+ [p](v - n)
Q 0 (Q\Bg)

Spatial derivative: ¢’ = dqb/ dx
Material derivative: q.') = d¢/ de

Relation: ¢ =¢p—Vop-v



Shape sensitivities of W; and W,

In this slide, we evaluate the shape sensitivities of W; and W,

W1 — j F - u, WZ JQ Gs(ue) e(}'e) LNF Ae
o AW,
2 ! ! !
dW. o = j o.(A,) - Viug +j o.(u;) - V3 2; —f F - 2 +j (ag(ug) : e(lg))v-n
1| F.q € Q Q T'n 20
uE
de Iy

Converting spatial derivatives to the material derivatives will get

%=jag(/18)-vsitg + / /—J 0:(4e) - V(Vu,v)
de Q Q

The boundary - j o.(u.) - V(VAY) + | (o:.(u) €(d))v-n

term does not & on

contribute as the By using Gauss divergence theorem to the terms in red, we obtain
velocity at the d

1%
external boundary d—: = j 0:(4e) - ViU, + J (V- 0:(4)) - (Vuew) — j 0:(4e)n - (Vuev)
Ty is 0. @ “ o0
_j o.(un - (Vi,v) + (as(ue) : e(/‘le)) v-n
) )



Shape derivative evaluation

dy, _ dW; N dW,
de  de de

di, | |
v jr i+ jﬂ 0.(A) - Vit + jﬂ (V- 0.2)) (V) = | ou(Aon- (Vuw)

_j o.(u)n - (VA.v) + (Gs(ue) ) G(As)) v-n
90 o0
Next, we isolate the terms involving %, and equate it to 0, to get the weak form for solving

adjoint variable, i.e.,
Q r

N

Thus, it is observed that 4, = —u.. Therefore, the shape derivative evaluates to

d

o2 cuon: u) - [ (s @) vn

de a0 10

Also, we have 90 = 0(Q\B,) U9B,, v = {_g on aég\a%)' and [o.(u;)[n =0 on 0B;.
L di,
Hence, the shape derivative is given by: o [o-(u,) - €(u)]
€ 0B,

Shape derivative is an integral on the inclusion boundary.



Asymptotic analysis
In order to solve the boundary integral in the shape derivative expression, asymptotic

expansion of the perturbed solution in the vicinity of the inclusion is analyzed. The anséatz is

roposed as: _
Prop u () =u®) + we(x) + He(x)
~— — —
Unperturbed First-order Remainder

solution boundary term term
Applying the stress operator: o, (u.(x)) = o, (u(x)) + o, (W.(x)) + 7, (6. (x))
Using Taylor series expansion: o.(u:(x)) = o.(u@®)) + Vo (u®))(x — %) + 0. (W.(x)) + 0. (- (%))

Here, y is the intermediate point between x and X. Next, the asymptotic expansion is
substituted in the governing equation and boundary conditions of the perturbed domain to
obtain boundary value problem for solving w.. On the boundary of the inclusion, we have
[o:(u-(x))In=0 = (as(us(x))ﬂ\B_g — ae(ue(x))Bg)n =0 ondB,

= (1-p)o: (u@)n— (1 —y)(Vo(u@)m)n + [o.(w:(x))[n + [o.(iE:(x))[n = 0

Thus, the boundary value problem for solving w is:

V-o.(w.(x))=0 inR?
we(x) >0 at x—>

[o.We(x)In = (1~ )a(u@®)n on B,
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Asymptotic analysis (Cont.)

T / 1_(—‘ £ 1—’} €2 1—“ “4
o (UE(T;Q)):@-‘H(l— 2)+(52(1 4 —+3 )COC‘»QG—FO( )

1‘|’“Q’?° 1+'}3T2 1+"x»3?°
Forr > ¢ =y &2 | — ot
(outside the inclusion) 02 (ue(r,0)) = 1 (1 i T—Q) — ¢ (1 +377 3—4) cos 20 + O(<?)
v €2 1 —
(UETQ ——02(1+2 —2— [ )51n29+0(5)

-, I.."

_|_
T(us(r,0)) = ¢ ' 08 20 + O( =2
7 (e 6)) 01(1—1/1+"m) (1+V1+;3)COS +0()
ForO>r<e

o : . 2 ~ A4 ~
inside the inclusion 66 0)) — ( / ) — ¢ ( / ) 20 + O
( ) ol (ue(r,0)) = ¢ [ s o110 cos 20 + O(?)

o (uc(r,0)) = — (1 i - j Id) sin 20 + O(=?)
,, 1 _ 1
01 = 5 (A1 — Ay 2 = 5(A1 = Ag)
Eigenvalues: A = 3 ((tr(o (@) +2on(u(®) - opluli)
Deviatoric stress: op(u(®)) = o(u(d)) — %tr(a(u(ﬁ:)))[

Kozlov, V.A., Mazya, V.G. and Movchan, A.B. Clarendon Press Oxford, 1999.
Novotny, A.A. and Sokolowski, |., Springer, 2013.



Eshelby and Polarization tensors

Eshelby’s theorem states that the stresses and strains are uniform inside the inclusion. The stress
tensor on the boundary of the inclusion is mapped to the stress tensor at the center of the
inclusion by the following uniform fourth-order linear transformation:

as(Ws)lBg — ']I'VO'(H(Q))
Eshelby, ].D., Royal Society, 1957.

Here, T, is the fourth-order Eshelby tensor, which is given by

_1+v _3—v
y(1—-vy) (a; — a3) al_l—v and a2_1+v'

y = 20,1 + I & I|, where Iis fourth-order identi
2(1 + yaz) 1+ yay is fourth-order identity tensor.

I is second-order identity tensor.
The fourth-order tensor T, is presented in its closed form for isotropic constitutive behavior. It
maps the stress state inside the inclusion.

This fourth-order tensor T, contributes to the Polarization tensor P, that comes from the
solution to the boundary value problem that solves w,. The Polarization tensor represents the
state of the stress inside the domain due to the presence of the inclusion, and is given by:

1 —
Py == [y1+7T,]
Ammari, H. and Kang, H., Applied Mathematical Sciences, 2007 .
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Topological derivative evaluation

The topological derivative is given by

The fourth-order Polarization tensor plays a central role in the topological derivative
expression, and is expressed in the tensorial notation as:

__ 1y _
Y = 2aeyan [(1 + a,)l + 2(1+y )(al a) I Q I]

On further simplification the closed-form expressmn of topological derivative is given by:

1-
a ey |+ @eE®) - e(u@®) + 2(1 — —y (@ —ar (o(u@))tr (e(u@)))l

Giusti, S.M., Novotny, A.A. and Padra, C., Engineering Analysis with Boundary Elements Press Oxford, 2008.

TD(X) =

On substituting y — 0, voids are D (R) = — () - e(R) —

created in the material region. > Dy (®) =175 0(®) - €(%) 2(1 - tr(”(x))tr(f @)

On substituting y — oo, material 2 1—3v

is added back in the void region. > TDyoy @) = —5— 0@ @) - 201+ (3 — tr(" ®))tr(e(@)

Polarization tensor is operated over the stress tensor in the topological
derivative expression.

The two limiting values of the contrast parameter provide topological
derivative for interchanging material.
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TD-based topology optimization

@ Initial design with volume We analytically derive topological @ Topology optimization
fraction of material v = 1. derivative and plot the field. B - Moterial [ ]-Void

Optimal Design at VF =5%

_

Displacements using Finite . : :
p 5 Level-set plane moves in the Pareto front showing stiffness
Element Analysis. . e .
topological sensitivity field, such at all the volume fractions.
T that the volume constraint is —
- ¥
satisfied.

TD Field with level set cutting plane 0.032463

‘ =
0.15 -

4]
Q
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=
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=
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0 o Volume
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The end note

The concept of topological and shape derivatives. The relationship between
topological sensitivity with the classical shape optimization.

Obtain the closed-form expression of topological derivative by interpreting
topological asymptotic expansion.

or

Adjoint analysis to evaluate shape derivative. The final expression of shape
derivative turns out to be a surface integral on the boundary of the inclusion.

Analyze the asymptotes of the perturbed solution to obtain the shape
derivative in its closed-form.

Topological Derivatives
Theory, Method and Application

Exploit the limiting relationship to obtain topological derivative.
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