Understanding vector manipulation.
in taking variation
First understand this:

$$
\begin{aligned}
& J=\int_{\Omega} \frac{\partial}{2}\left(\frac{\partial u_{x}}{\partial x}\right)^{2} d \Omega \\
& \delta J=\frac{d}{d \varepsilon}\left(\int_{n} \frac{1}{2}\left(\frac{\partial\left(u_{x}+\delta u_{x}\right)}{\partial x}\right)^{2} d \Omega\right. \\
&=\int_{\Omega} \frac{1}{2} \frac{d}{d \varepsilon}\left(\frac{\partial\left(u_{x}+\varepsilon \delta u_{x}\right)}{\partial *}\right)^{2} d \Omega \\
&=\int_{\Omega} \frac{1}{2} \cdot 2 \cdot \frac{\partial\left(u_{*}+\varepsilon \delta u_{x}\right)}{\partial x} \cdot \frac{\partial \delta u_{*}}{\partial x} d \Omega
\end{aligned}
$$

with $\varepsilon=0$

$$
\delta_{u_{x}} J=\int \frac{\partial u_{x}}{\partial x} \frac{\partial \delta u_{x}}{\partial x} d \Omega
$$

Now, let us take the compact notation for strain energy and experndit.

$$
\begin{aligned}
& \bar{\varepsilon}=\left\{\begin{array}{l}
\partial u_{x} / \partial x \\
\partial u_{y} / \partial y \\
\frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)
\end{array}\right\} \\
& \frac{1}{2} \bar{\varepsilon}^{\top}=\bar{D}=\frac{1}{2}\left\{\frac{\partial u_{x}}{\partial x} \frac{\partial u_{y}}{\partial y} \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)\right\} \\
& {\left[\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{12} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right]\left\{\begin{array}{l}
\partial u_{x} / \partial x \\
\partial u_{y} / \partial y \\
\frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)
\end{array}\right\}} \\
& =\frac{1}{2}\left\{\frac{\partial u_{x}}{\partial x} \frac{\partial u_{y}}{\partial y} \quad \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)\right\} \text {. } \\
& \left\{D_{11} \frac{\partial u_{x}}{\partial x}+D_{12} \frac{\partial u_{y}}{\partial y}+\mathcal{D}_{13} \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)\right. \text {, } \\
& D_{12} \frac{\partial u_{x}}{\partial x}+D_{u} \frac{\partial u_{y}}{\partial y}+D_{23} \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \text {, } \\
& \left.D_{31} \frac{\partial u_{2}}{\partial x}+D_{32} \frac{\partial v_{y}}{\partial y}+D_{33} \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[D_{11}\left(\frac{\partial u_{x}}{\partial x}\right)^{2}+D_{12} \frac{\partial u_{y}}{\partial y} \frac{\partial u_{x}}{\partial x}+D_{13} \frac{1}{2} \frac{\partial u_{x}}{\partial x}\left(\begin{array}{c}
\partial u_{x} \\
\partial y
\end{array}+\frac{\partial u_{y}}{\partial x}\right)+\right. \\
& D_{12} \frac{\partial u_{y}}{\partial x} \frac{\partial u_{x}}{\partial x}+D_{2 x}\left(\frac{\partial u_{y}}{\partial y}\right)^{2}+D_{3} \frac{\partial u_{y}}{\partial x}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)+ \\
& \left.\frac{1}{2} D_{31}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \frac{\partial u_{x}}{\partial x}+\frac{D_{22}}{\partial}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \frac{\partial u_{y}}{\partial y}+\frac{D_{y 3}}{4}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)\right] \\
& =F
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now, } \\
& \mathcal{L}_{1}=\int_{\Omega} F d \Omega=\int_{\Omega} \sum_{2} \bar{\Sigma}^{\top} \overline{\bar{D} \bar{\varepsilon}} \\
& \delta_{\bar{u}} \mathcal{L}_{1}=\frac{1}{2} \int_{\Omega} 2 D_{11} \frac{\partial u_{x}}{\partial x} \frac{\partial \delta u_{x}}{\partial x}+D_{12} \frac{\partial u_{y}}{\partial y} \frac{\partial \delta u_{x}}{\partial x} \\
& +D_{12} \frac{\partial \delta \partial u_{y}}{\partial y} \cdot \frac{\partial u_{x}}{\partial x}+D_{13} \frac{1}{2} \frac{\partial \delta u_{x}}{\partial x}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \\
& +\mathcal{D}_{B} \frac{1}{2} \frac{\partial u_{x}}{\partial z}\left(\frac{\partial \delta u_{x}}{\partial y}+\frac{\partial \delta u_{x}}{\partial x}\right) \\
& +D_{12} \frac{\partial \delta u_{y}}{\partial x} \frac{\partial u_{x}}{\partial x}+\underbrace{D_{12} \frac{\partial u_{y}}{\partial x} \frac{\partial \delta u_{x}}{\partial x}}+\begin{array}{c}
\text { and } \\
s o
\end{array}
\end{aligned}
$$

The hilighted terms add up and become $2 D_{12} \frac{\partial u_{y}}{\partial y} \frac{\delta u_{x}}{\partial x}$.
Thus, all terms get a 2. This "2" gets cancelled with " $\frac{1}{2}$ " outside.

Finally, we get

$$
\delta_{\bar{u}}=\int_{\Omega} \bar{\varepsilon}^{T} \overline{\bar{D}} \delta \bar{\varepsilon} d \Omega
$$

