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ME 260: Structural Optimization: Size, Shape, and Topology 

Start: Nov. 2, ‘20, 10 AM                          Quiz 1: Solution End: Nov. 2, ‘20, 1 PM 

Problem 1 (5 points) 

(a) Given a point P with coordinates (8,6) and a circle of radius 5 units with its center 

at the origin, find a point on the circle that is closest to P. 

(b) With the same point and the circle, find a straight line that separates P and the 

circle so that they lie on either side of the line and the distance from P to the line is 

the largest. 

Solution: 

(a) 

 

Let 𝑃(𝑥0, 𝑦0) be a given point and there is a circle of radius 𝑟 on which we need to find a 

point 𝐴(𝑥, 𝑦) such that the distance between the point 𝑃 and 𝐴 is minimum. As 𝐴(𝑥, 𝑦) is 

a point on the circle, its co-ordinates is given by  Cos , SinA r r  . 

The distance between 𝐴 and 𝑃 is    
2 2

0 0Cos Sins x r y r     . 

We need to minimize this distance and the variable here is the point 𝐴, which is a function 

of the angle 𝜃. So, the optimization problem is posed as, 

   
2 22

0 0Min Cos Sins x r y r


      

The necessary condition is, 

     
2

0 0Cos Sin Sin Cos 0
ds

x r r y r r
d

   

          (1) 

Solving Eq. (1), we get, 

   0 0Sin Cos 0x r y r     
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0

0

tan
y

x
            (2) 

For the given problem 𝑃(𝑥0, 𝑦0) ≡ (8,6). Substituting in Eq. (2), we get, 
3

tan
4

  . So, for 

𝑟 = 5, the co-ordinates of the point 𝐴 is given by, 𝐴(𝑥, 𝑦) ≡ (4,3). 

So, from the point 𝐴(4,3) the distance of the point 𝑃(8,6) is the smallest among any other 

point on or inside the circle. 

(b) 

 

We need to find a straight line that separates P and the circle so that they lie on either side 

of the line and the distance from P to the line is the largest. If we just need to find a straight 

line such that the distance from 𝑃 to the line is largest then it would go to infinity, but we 

have a constraint that the circle and the point 𝑃 should be either side of the line. So, clearly 

the line cannot cut or cross the circle. So, to get the maximum distance from the point 𝑃 

from the line, the line at most can be a tangent to the circle at point 𝐴(𝑥, 𝑦) which co-

ordinates is given by  Cos , SinA r r  , where 𝑟 is the radius of the circle. 

So, the equation of the tangent passing through point  Cos , Sinr r   is given by, 

tan Sin

x r
y

 
   . 

The distance of point 𝑃(𝑥0, 𝑦0) from the line is given by  

 

0
0

0
0 0 0

2
1

tan

tan Sin tan Cos Sin Cos
tan Sin1

x r
y

x r
s y y x r



     
 

 
 

       
 

 (1) 

We need to minimize this distance and the variable here are the coordinates of Point 𝐴, 

which are function of the angle 𝜃. So, the optimization problem is posed as 
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0 0Min Sin Coss y x r


     

The necessary condition is, 

0 0Cos Sin 0
ds

y x
d

 

           (2) 

Solving Eq. (2) we get,  0

0

tan
y

x
  . 

For the given problem, 𝑃(𝑥0, 𝑦0) ≡ (8,6). Substituting in Eq. (2), we get, 
3

tan
4

  . So, for 

𝑟 = 5, the co-ordinates of Point 𝐴 are given by, 𝐴(𝑥, 𝑦) ≡ (4,3). 

The equation of the line that separate the point 𝑃 and the circle is given by, 3 25 4y x  . 

Notice that the two problems in Parts (a) and (b) are dual to each other. With same data 

(circle and point), we have a minimization problem and a maximization problem. This 

particular pair of examples go under the name of Hahn-Banach theorem. 

Problem 2 (5 points) 

Consider a stepped bar of four segments. One of its ends is 

fixed and the other is free. There is an axial force f  at each of 

the points, 
2P  to 

5P . Find the areas of cross-sections (denoted 

by 1,2,3,4iA ) of the four segments to minimize the mean 

compliance subject to the volume constraint of *V ,   upper and lower bounds on areas of 

cross-section 
UA  and 

LA , given that all four segments are of length of l  and the Young’s 

modulus is denoted by E .   

Solution: 

 

Let there be four bars with area, length and internal force given by 𝐴𝑖, 𝑙𝑖 and 𝑃𝑖. Note that  

1 2 3 44 ; 3 ; 2 ;P f P f P f P f      
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Then, the mean compliance can be written as: 
24 4 4

1 1 1

SE i i i i
i i i

i i ii i

Pl P l
Pu P

A E A E  

 
   

 
   . 

The volume of the structure is given by 
4

1

i i

i

V Al


  . 

So, according to the given problem, we have to minimize the mean compliance with 

volume constraint and lower and upper bounds on areas of cross-section, i.e., 

2

1

*

1

Min  MC

subject to:

: 0

: 0 1,2,...,

: 0 1,2,...,

, , 0

i

i

i

i i

N
i i

A
i i

N

i i

i

L L i

U i U

L U

P l

A E

Al V

A A i N

A A i N







  







 

  

  





  

The Lagrangian is written as 

   
2

*

1 1 1 1
i i

N N N N
i i

i i L L i U i U

i i i ii

P l
L Al V A A A A

A E
  

   

 
       

 
     

The necessary conditions are: 

2

2
0

i i

i i
i L U

i i

P lL
l

A A E
  


    


       (1) 

*

1

0
N

i i

i

Al V


 
  

 
          (2) 

  0 1,2,...,
iL L iA A i N           (3) 

  0 1,2,...,
iU i UA A i N           (4) 

Case-1 ( 0
i iL U   ) 

2

2
0i i i

i i

i

P l P
l A

A E E





            (5) 

Here 𝐴𝑖 ∝  𝑃𝑖. So, larger the force the should be the area of cross section of the member. 

Also, 𝜇 ≠ 0. So, from Eq. (2), we get  
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2

2

1* *

*
1 1

N

i iN N
ii i

i i

i i

Pl
Pl

Al V V
E V E






 

 
 
     


       (6) 

By substituting Eq. (6) in Eq. (5) we get 

*

1

i
i N

i i

i

PV
A

Pl





          (7) 

From Eq. (7) we get the areas of all the members. If the area exceeds the upper limit we 

take the area as the upper bound𝐴𝑈  and if area is lower than the lower limit we set the 

area to the lower bound (𝐴𝐿), i.e., 

     if       for     

     if       for     

i U i U

i L i L

A A A A i

A A A A i

  

  

U

L
      (8) 

where U  and L  are the sets of members that have the areas either upper or lower bound, 

respectively. Then from Eq. (2) the updated area is calculated as, 

   

 

 

* *

2

*

2

*

i i i i i i i i i i i i

i i i i i i

i i

i
i i

i i i i

i i i

i i i i

i i

Al Al Al V Al V Al Al

Pl
Pl

V Al Al
E

V Al Al E




     



  

 

      

 
  
      

 
  

 

     


  

 

U,L U L U,L U L

U,L

U,L U L

U L

  (9) 

We substitute the value of 𝜇 from Eq. (9) in Eq. (5) to get the revised area. 

From Eq. (7) we get, 

* *
*

1

* * *
* * *

2 3 4

4 0.4
4

10

0.3 0.2 0.1
3 ; 2 ;

fV V
A A

fl l

V V V
A A A A A A

l l l

  

     

    (10) 

From Eq. (5) we observed that the area is proportional to the force in the member. So, 

according to the problem we get the area of member-1 as the largest and it gradually 

decreases and gives the smallest area for member-4 (see Fig. below). It is clear from the 

Eq. (10) also. If we take more and more members, the jump in the areas of the members 

will be smoother and we will get a smooth tapering bar, which is the optimum design for 
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a bar having uniformly distributed load and one end fixed. We will see that in the context 

of a bar optimization later in the course.  

 

Problem 3 (5 points) 

A two-bar truss is shown in the adjacent figure. Both 

bars are made of steel ( E  = 210 GPa,   = 7800 kg/m3, 

and  yS  = 300 MPa). Design this truss to minimize 

weight for three different cases:  

(i) stress limited, i.e., max yS   

(ii) stiffness limited, i.e., vertical displacement 

= 5mmv    

(iii) stability limited, i.e., both bars do not buckle.  

Use circular cross sections. Use unit factor of safety. 

Solution: 

 

The force in the members due to the actual load of 1 kN at the node are 0.7143 kN and 

0.8081 kN in Member 1 and Member 2, respectively. 

So,    
1 2

0.7143kN; 0.8081kNr rP P  . 

The force in the members due to the unit virtual load at the node are 0.7143 and 0.8081 

in member-1 and member-2 respectively. 

1 2 
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So,    
1 2

0.7143 ; 0.8081v vP kN P kN  . 

Length of the truss members are, 1 20.5mand 0.3 2 ml l  . 

 

(i) Strength-limited design 

Let the Young’s modulus, density, area, and length of the members of the truss structures 

be 𝐸, 𝜌, 𝐴𝑖, and 𝑙𝑖 respectively. 

According to the question we have to minimize the weight of the structure, i.e., 

1

N

i i

i

W Al


 . 

The problem then posed as, 

1

Min

subject to:

: 0 for 1,2,...,

0

i

N

i i
A

i

i
i y

i

i

W Al

P
S i N

A











  





 

The Lagrangian of the above minimization problem is, 

1 1

N N
i

i i i y

i i i

P
L Al S

A
 

 

 
   

 
   

The necessary conditions are, 

2
0i i i

i i i

i i i

P PL
l A

A A l


 



 
      

  
      (1) 

0 for 1,2,...,i
i y

i

P
S i N

A

 

   
 

       (2) 

In Eq. (2), for this problem 𝜇𝑖 ≠ 0. So, 

0i
y

i

P
S

A

 
  

 
          (3) 

Substituting Eq. (1) in Eq. (3), we get, 

2

i i i i
y y i

i yi i

i

P P P l
S S

A SP

l








            (4) 
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Substituting Eq. (4) in Eq. (1), we get the optimized area as, 

2

i i
i

yopt opt i
i i

i y

P l
P

S P
A A

l S




           (5) 

Substituting the values of force (𝑃𝑖) and the maximum admissible stress (𝑆𝑦) in Eq. (5), we 

get the optimized area as, 

2

1

2

2

2.3810mm

2.6937mm

opt

opt

A

A




         (6)  

The optimized weight of the structure is given by, 

1

0.0182kg
N

opt opt

i i

i

W A l


  . 

(ii) Stiffness-limited design 

Let the Young’s modulus, density, area, and length of the members of the truss be 𝐸, 𝜌, 

𝐴𝑖, and 𝑙𝑖 respectively. 

According to the question we have to minimize the weight of the structure, i.e., 

1

N

i i

i

W Al


 . 

Also, we have a constraint at the point of application of the load in the vertical direction 

that the displacement should be less than or equal to 𝑣. We will pose this constraint using 

the virtual work method by applying a unit dummy load at that point in the y-direction. 

Then the displacement constraint is expressed as, 

   

 
 

1

1

0

0

N

r vi i
i

N
r ii

v i
i i

u P v

P l
P v

A E





 

  





        (1) 

where  

 

 

 

th

th

th

is the actual displacement of i the member due to the actual (real) load

is the actual load in i the member due to the actual (real) load

is the vertual load in i the member due to the unit dummy load

r i

r i

v i

u

P

P

 

The problem then is posed as, 
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 
 

1

1

Min

Subjected to:

: 0

i

N

i i
A

i

N
r ii

v i
i i

W Al

P l
P v

A E











 





 

The Lagrangian is given by, 

 
 

1 1

N N
r ii

i i v i
i i i

P l
L Al P v

A E
 

 

 
   

 
   

The necessary conditions we get by differentiating the Lagrangian w.r.t. 𝐴𝑖 as 

 
 2

0
r ii

i v i
i i

P lL
l P

A A E
 

 
    

  
       (2) 

 
 

1

0
N

r ii
v i

i i

P l
P v

A E




 
  

 
         (3) 

Eq. (2) is simplified to get the optimized area 𝐴𝑖
∗ of each truss member as, 

 
 

   *

2

r i r vi i i
v i ii

i

P l P P
P l A

A E E


 



 
   

 
     (4) 

In Eq. (3) for this problem 𝜇 ≠ 0. So, 

 
 

1

0
N

r ii
v i

i i

P l
P v

A E

          (5) 

Substituting Eq. (4) in Eq. (5) we get 𝜇 as, 

 

   
 

   

1

1

N
r ii

v i
i r vi i

N
r vi i

i

i

P l
P v

P P
E

E

P P
l v

E















 





 

   
2

2
1

N

r v ii i
i

P P l
Ev






  
    

  
        (6) 

Substituting Eq. (6) in Eq. (4), we get the optimized area values as, 
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           
   

2

2
1 1

N N

r v i r v r v ii i i i i i
i iopt

i r vi i

P P l P P P P l
Ev

A P P
E Ev





 

    
    
     

 
 (7) 

Substituting the values of  r i
P ,  v i

P , 
il , E  and v  in Eq. (7), we get the optimized areas 

as, 

2

1

2

2

0.4762mm

0.5387 mm

opt

opt

A

A




 

The optimized weight of the structure is given by, 

1

0.003639kg
N

opt opt

i i

i

W A l


  . 

(iii) Stability-limited design 

Let the Young’s modulus, density, area, and length of the members of the truss structures 

be 𝐸, 𝜌, 𝐴𝑖, and 𝑙𝑖 respectively. 

According to the question we have to minimize the weight of the structure, i.e., 

1

N

i i

i

W Al


 . 

Also, we have a constraint of critical buckling load, i.e., the load on the truss member 

should not exceed the critical buckling load value. So, 

2

2
0i

i

i

EI
P

l


   

As we are considering the area profile to be circular, we rewrite the above equation as, 

 2 4 2 2

2 2

2

2

0 0
4 4

0
4

i
i

i i

i
i

i

E r EA
P P

l l

EA
P

l

  





    

  

        (1) 

The problem then is posed as, 

1

2

2

Min

Subjected to:

: 0 for 1,2,...,
4

i

N

i i
A

i

i
i i

i

W Al

EA
P i N

l










  



 

The Lagrangian of the above optimization problem is, 
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2

2
1 1 4

N N
i

i i i i

i i i

EA
L Al P

l


 

 

 
   

 
   

The necessary conditions are, 

2
0

2

i
i i

i i

EAL
l

A l


 

 
    

  
 

32 i
i

i

l
A

E



 
            (2) 

2

2
0 for 1,2,...,

4

i
i i

i

EA
P i N

l



 

   
 

      (3) 

In Eq. (3), 𝜇𝑖 ≠ 0, So, 

2

2
0 for 1,2,...,

4

i
i

i

EA
P i N

l

 
   

 
      (4) 

Substituting the Eq. (2) in Eq. (4), we get the values of 𝜇𝑖 as, 

2
3

2 2 4

2 2 2

2

4 4

i

ii i
i i i

i i i

l
E

EEA l
P P P

l l E




  

 

 
 
       

2

i
i

i

l

P E





           (5) 

Substituting Eq. (5) in Eq. (2), we get the optimized areas as, 

3

2

22 i iopt i
i

i

i

l Pl
A

El
E

P E








 
 
 
 
 

       (6) 

Substituting values of 
iP , 

il , and E  in Eq. (6), we get the optimized areas as, 

2

1

2

2

32.9045mm

29.6971mm

opt

opt

A

A




 

The optimized weight of the structure is given by, 

1

0.2266kg
N

opt opt

i i

i

W A l


  . 

Let us compare all three designs. 
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 Strength-limited 

design 

Stiffness-limited 

design 

Stability-limited 

design 

Areas of cross section of two 

members (mm2) 
1

2

2.3810

2.6937

A

A




 1

2

0.4762

0.5387

A

A




 1

2

32.9045

29.6971

A

A




 

Axial loads in the two 

members (N)  
1

2

714.3

808.1

P

P




 1

2

714.3

808.1

P

P




 1

2

714.3

808.1

P

P




 

Axial stresses (MPa) 
1

2

300

300








 1

2

1500

1500








 1

2

21.7

27.2








 

Displacements ( , )u v   of the 

moving vertex (mm) 

300

300

u

v




 

0.7

5.0

u

v




 

0.0036

0.0813

u

v




 

Critical buckling loads (N) 
2

24

i
cri

i

EA
P

l


  

1

2

3.7401

6.6487

cr

cr

P

P




 1

2

0.1496

0.2659

cr

cr

P

P




 

1

2

714.3

808.1

cr

cr

P

P




 

Weight (kg) 0.0182 0.0036 0.2266 

Mean compliance (J) 1.0000 5.0000 0.0813 

Stress factor of safety i

S
 
 
 

  
1, 1 0.2, 0.2 13.8,11.0 

Downward vertical 

displacement (mm) 

1.00 5.00 0.08 

Buckling factor of safety 

i

cr

P
P

 
 
 

 

0.0052, 0.0082 0.2094E-3, 

0.3290E-3 

1,1 

Notice that the vertical displacement of the strength-limited design is 1 mm. Since we 

asked for 5 mm vertical displacement, the stiffness-limited design is exactly five times the 

strength-limited one. It is worth noting that we got uniformly stressed design for 

stiffness-limited design, as to be expected. 

The colored boxes indicate that those designs do not satisfy the corresponding criteria. 

Notice also that minimum weight for the three cases are: 0.0182 kg for strength-limited 

design, 0.0036 kg for stiffness-limited, and 0.2266 kg for stability-limited design. So, 
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which is the most conservative approach to design? That is, which criterion if you take, 

the other two criteria are automatically satisfied? Think about it. 

Problem 4 (5 points) 

Find the states of self-stress (SoSS) and 

degrees of freedom (DoF) of the 

following three configurations of 

trusses. Show your work in computing 

SoSS and DoF. If you conclude that they 

have instantaneous DoF, please suggest 

how many additional bars would you 

add to make them stiff and where.  

Solution: 

(a) Let us count: 

Number of bars = b  = 8 

Number of vertices = v  = 6 

So, 
2 3 12 3 8 1 1 0v b DoF SoSS            

It is easy to see that there is a rhombus at the top that has one DoF. So, the number of 

SoSS is zero and it is apparent from the two triangles that it is true.  

With one more bar, this truss would satisfy Maxwell’s rule. Then DoF and SoSS will both 

be zero. 

2 3 12 3 9 0 0 0v b DoF SoSS           

One more bar can be added in two ways to create four triangle in the truss, as shown 

next. 

 

(b) Let us count for this too. 

Number of bars = b  = 13 

Number of vertices = v  = 8 

So, 2 3 16 3 13 0 0 0v b DoF SoSS            
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If we look at the connectivity of the truss, it looks to be satisfying Maxwell’s rule and has 

zero DoF and SoFF. But, in reality, you can see that the two 

parallelograms collapse in tandem, as shown here in cyan 

lines. 

So, it has one hidden DoF because of special geometry. This 

is a well-known example in kinematics when you learnt 

about Grübler’s formula for computing DoF.  

As per Grübler’s formula, 
13( 1) 2 3(5 1) 2(6) 0DoF n j        

if notice that the top and bottom triangles are rigid and hence 

they are to be treated as ternary bodies (i.e., bodies connected 

to two other bodies). 

Alternatively, even we look at the bars as they are (instead of 

imagining ternary or triangular bodes), we still get the same result. But now we need to 

count the joints properly. That is if three bars share a point, we 

need to have two joints there (a double joint shown with two 

circles). Likewise, if four bars share a point, we need to have 

three joints (a triple joint shown with three circles). Therefore, 

we have 

13( 1) 2 3(13 1) 2(18) 0DoF n j       . 

So, Grübler’s formula too fails to detect the hidden degree of freedom. This means that 

we need to look at the rank deficiency of the compatibility matrix. That is always the fool-

proof approach. 

To restrict this hidden DoF (which is due to special geometry 

of the parallelograms in tandem), we can add an extra bar as 

anyone of the four dashed bars indicated in the adjacent 

figure. Of course, it does not satisfy Maxwell’s rule or even 

Maxwell’s rule as modified by Calladine. 

Compatibility matrix approach 

The size of the C  (compatibility matrix) 

here is 13×16. The rank is 12. So, it has a 

rank deficiency of 4. So, the null(C) 

gives four mode shapes. Out of which 

three are rigid-body modes. The fourth 

one shows the collapsing of the 

parallelograms. See adjacent figures. 
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This also has one SoSS mode as can be seen in the next 

figure that has numbers next to each truss member. 

How to remove DoF? 

One of the two ways to reduce rank-deficiency of the 

compatibility matrix is to shift one of the nodes to 

make one of the parallelograms a quadrilateral. Here 

one node is shifted to make the rank of C  equal to 13. 

Now, only rigid-body modes remain in null(C), and 

there are no states of self-stress as can be seen in 

figures that appear next. This truss satisfies Maxwell’s rule perfectly. 

 

The other way is to reduce the rank-deficiency of the 

compatibility matrix is to add an extra bar in one of 

the parallelograms. Now, we have the truss shown 

in the adjacent figure. For this truss, Maxwell-

Calladine rule gives: 

2 3 16 3 14 1 0 1v b DoF SoSS           .  

From the figures of this we see that there are no DoF 

but there is one SoSS. 
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(c) The truss configuration considered here 

is known as a Kagome truss. It is usually 

infinitely large but in practice it is finitely 

sized and hence is truncated as shown in 

the adjacent figure. By applying 

Maxwell’s rule, we get 

b  = 96 

v  = 56 

2 3 112 3 96 13 ? ?v b DoF SoSS           

This is too complicated to see intuitively if there are any SoSSs or to visualize DoF modes. 

All we can conclude from the Maxwell-Calladine rule is that 13DoF SoSS  . We can 

interpret that the triangles at the top-left and top-right are free to rotate. They count fro 2 

DoF. The only other intuition we have is that the six edges of the hexagons could have 

some DoF. If we add extra bars with the hexagons, we could certainly bring down the 

DoF. One easy way is to fill up the hexagons with triangles. We have 10 hexagons and 

each needs one extra vertex and six extra bars. So, we would then have: 

b  = 96 + 60 = 156 

v  = 56 + 10 = 76 
2 3 152 3 156 7 ? ?v b DoF SoSS            

This is not conclusive in terms of splitting DoF and SoSS. Two triangles at the top-right 

and top-left still have one DoF. Therefore, we need to analyze it by taking sections of this 

truss. 

 More importantly, like in part (b), this truss has special geometry. Therefore, it can 

have hidden DoF (hidden SoFF too). 

Simple case 1 

b  = 27 

v  = 19 

2 3 38 3 27 8 8 0v b DoF SoSS           

This is really clear here that each triangle can move related to its neighbors. So, we have 

8 DoF with nine triangles joined with 8 joints that are colored in red. So, SoSS = 0. 

Simple case 2 

b  = 18 

v  = 12 

2 3 24 3 18 3 3 0v b DoF SoSS           
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This is basically a six-bar linkage. So, it gives 3 DoF. So, SoSS = 0. 

Simple case 3 

b  = 39 

v  = 27 

2 3 54 3 39 12 12 0v b DoF SoSS           

It is easy to see that there is one rotation possible about each red-colored joint. So, there 

are 12 DoF. As a result, SoSS = 0. 

Nor-so-simple case 1 

b  = 42 

v  = 27 

2 3 54 3 42 9 ? ?v b DoF SoSS           

Apart from the rotations of the two triangles at the top-left and top-right, the rest of the 

DoF are not obvious. But see that three bars added here as compared to the previous case 

has reduced 3 DoF. 

Simple case 4 

b  = 30 

v  = 19 

2 3 38 3 30 5 5 0v b DoF SoSS           

It is easy to interpret the 5 DoF here. Imagine that the blue-colored triangle is fixed. Then, 

the triangle above it can be rotated relative to the blue triangle. Then, the two hexagons 

will be left with two DoF each. So, connecting two star configurations reduces 1 DoF even 

though individually, they would have 3 DoF each (as per Simple Case 2). 

Simple case 5 

If we connect three star configurations, we would have 

b  = 30 + 12 = 42 

v  = 19 + 7 = 26 

2 3 52 3 42 7 7 0v b DoF SoSS           

We had 5 DoF in Simple Case 4. Now, with the new hexagon, we will have 2 more DoF 

for the red portion, totaling to 7. As we concatenate more star configurations in any 

direction, we will have 2 extra DoF added.  
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 Let now return to the aforementioned not-so-simple case 1. We can see that by 

adding two triangle at top-left and top-right to the Simple Case 5, we get the not-so-

simple case 1. So, we can now interpret all 9 DoF. 

 We still have not interpreted how SoSSs come about here. Consider another case. 

Simple case 6 

b  = 39 

v  = 24 

2 3 48 3 39 6 6 0v b DoF SoSS           

Here, once we fix the blue triangle, the three hexagons would have 

two DoF each, totaling to 6 DoF. There are no SoFF. 

Simple case 7 

b  = 39 + 9 = 48 

v  = 24 + 5 = 29 

2 3 58 3 48 7 7 0v b DoF SoSS           

Here, once we exercise 6 Dof of the preceding case, the red part 

in the adjacent figure would have the seventh DoF. Still, there 

are no SoFF. 

Simple case 8 

b  = 48 + 9 = 57 

v  = 29 + 5 = 34 

2 3 68 3 57 8 8 0v b DoF SoSS           

We now see that with one more hexagon completed, we have only one extra DoF. 

Simple case 9 

With one more hexagon completed, we would get 

2 3 78 3 66 9 9 0v b DoF SoSS           

If we now, complete the picture by adding the seventh hexagon, 

we get 
2 3 84 3 72 9 9 0v b DoF SoSS           

with no more DoF added. 

By adding two more three-triangle pieces (red) and one two-

tringle piece, we raise DoF to 11 because red ones add one DoF 

each and blue one none. See the next figure. 
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Now, we remove two edges and one vertex from the three 

triangles at the bottom (which does not change DoF as per 

Maxwell’s formula. So, we would have 11 DoF and SoSS. 

Having confirmed, we add two triangles (i.e., six bars and 

four vertices, adding 2 DoF) to get what we needed for this 

problem. See the next two figures. Thus, we confirm that our 

truncated Kagome truss has 13 DoF. 

 

Is the special geometry playing any role here? Will there be more DoF and SoSS if we use 

the rank-deficiency method? Please find out. Also explore what happens if there is no 

special geometry. That is, what if none of the triangles are equilateral? Explore. 

Check this too: 

What if we apply Grübler’s formula? 

There are 31 triangles and three bars in the 

bottom row. And there are 43 hinges. 

1

1

34; 43

3( 1) 2 3(35 1) 2(43) 13

n j

DoF n j

 

      
 

So, Grübler’s formula too predicts the same DoF. And this it always true. You can check 

it out with other examples. Just make sure that you count the joints and bodies correctly. 

 

 

 

 


