Problem 1 (10 points)
Obtain the Gateaux variation of the following functionals.
$J 1=\int_{a}^{b} \frac{\sqrt{1+y^{\prime 2}}}{y} d x$
$J 2=\int_{0}^{T}\left(m \dot{x} \dot{y}-\frac{b}{2} x \dot{y}+\frac{b}{2} \dot{x} y-k x y\right) d t$
$J 3=\frac{\int_{0}^{L} p y^{\prime \prime 2} d x}{\int_{0}^{L} q y^{\prime 2} d x}$
where $m, b, k, p, q$ are known constants
$J 4=\int_{x_{1}}^{x_{2}}\left\{y^{2}(x) \operatorname{inv}(y(x))\right\} d x$

## Problem 2 (10 points)

Write the Euler-Lagrange equations along with the boundary (or end) conditions for the following problems.
(a) $\operatorname{Min}_{w(x, y)} J=\iint_{\Omega}\left[D\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)^{2}-2 D(1-v)\left\{\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right\}-q(x, y) w\right] d x d y$ where

D, $v$, and $q$ are known. The domain $\Omega$ is a closed area in two dimensions.
(b) $\underset{u(t)}{\operatorname{Min}} J=\frac{1}{2} \int_{0}^{1}\left\{x(t)^{2}+u(t)^{2}\right\} d t$ where $\frac{d x}{d t}=u(t)-x(t)$ for $0 \leq t \leq 1$ with $x(0)=c$.

