ME 260: Structural Optimization: Size, Shape, and Topology
Assigned: Oct. 17, 2023
Homework 3
Due: Oct. 26, 2023
Problem 1 ($3+5+7=15$ points)
Write Gateaux (first) variation of the following functionals.

1. $\int_{0}^{l}\left(y^{2}+y^{\prime 2}-2 y \sin x\right) d x$
2. $\frac{\int_{0}^{l}\left(w^{\prime \prime}(x)\right)^{2} d x}{\int_{0}^{l}\left(w^{\prime \prime}(x)\right)^{2} d x}$
3. $\frac{1}{2} \int_{0}^{T}\left[v_{0} \sin \alpha(t)\left\{x_{0}+w_{0} t+v_{0} \int_{0}^{t} \cos \alpha(\tau) d \tau\right\}-\left\{v_{0} \cos \alpha(t)+w_{0}\right\}\left\{y_{0}+v_{0} \int_{0}^{t} \sin \alpha(\tau) d \tau\right\}\right] d t$

Problem $2(5+8+5+7=25$ points)
Write the Euler-Lagrange equations with boundary conditions for the following unconstrained minimizations of functionals.

$$
J 2=\int_{0}^{T}\left(m \dot{x} \dot{y}-\frac{b}{2} x \dot{y}+\frac{b}{2} \dot{x} y-k x y\right) d t
$$

$$
\begin{aligned}
& \operatorname{Min}_{f(x)} J=\left\{\int_{x_{1}}^{x_{2}}\left\{f^{2}(x) \operatorname{inv}(f(x))\right\} d x\right\} \\
& \operatorname{Min}_{u(x, y, t)} J=\frac{1}{2} \int_{\Omega}\left\{\left(\frac{\partial u}{\partial t}\right)^{2}-\left(c \frac{\partial u}{\partial x}\right)^{2}-\left(c \frac{\partial u}{\partial y}\right)^{2}\right\} d \Omega
\end{aligned}
$$

Data:c

$$
\operatorname{Min}_{\rho(x, y, t), \psi(\mathrm{x}, \mathrm{y}, \mathrm{t})} J=\int_{\Omega}\left(\frac{\partial \phi}{\partial x} \frac{\partial \psi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial \psi}{\partial y}+\frac{c}{2} \frac{\partial \phi}{\partial t} \psi-\frac{c}{2} \frac{\partial \psi}{\partial t} \phi\right) d \Omega
$$

Data :c

Problem 3 (10 points)

A beam is attached to a spring-restrained slider-crank linkage as shown in the figure here. Use the principle of minimum potential energy to write the governing differential equation and boundary conditions for the beam. Use I and E to denote the second moment of area of cross section of the beam and Young's modulus, respectively.

