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NOTE: In these notes, I’ve used x(t) in place of y(t) to denote the dependent variable.

Please make suitable changes to your own notes while working things out. t is always used

to denote the independent variable.

We now turn to second order ODEs, both linear and nonlinear. Second order systems are

ubiquitous in nature and engineering—spring-mass-damper oscillators, newton’s second law

etc. come immediately to mind. Just as we did in the 1D or first order case, consider the

following prototypical form for a second order ODE:

d2x

dt2
= f

(
dx

dt
, x, t

)
x(t0) = x0,

dx

dt
(t0) = v0 (1)

The first thing we notice is that complete specification of the system now requires two addi-

tional conditions instead of just one. This results in a natural dilemma—at what points t0

do we specify these conditions? Can we specify them independently at two different t values?

Do we need derivative information in addition to just the values of x at these t? All of these

possibilities are allowed. Consequently, we can classify the nature of the problem depending

on the type of conditions we specify:

• Initial value problem: Second order ODE + x(t), dx
dt

specified at single point t = t0

• Dirichlet problem: ODE + x(t) specified at two different points t = ti, t = tf

• Neumann problem: ODE + dx
dt

specified at two different points t = ti, t = tf

• Mixed problem: ODE + a combination of x(t) and dx
dt

specified at two different points

t = ti, t = tf

The final three options are usually referred to as boundary value problems in the theory of

ODEs sice our domain is bounded between t = ti and t = tf . For the remainder of these

notes we will restrict ourselves to studying initial value problems.
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1 Linear second order ODEs

Just we did with first order systems, we can obtain exact solutions to the ODE problem if

the RHS f(dx
dt
, x, t) takes on certain special forms. In the present case, we can only make

statements about general solutions for linear second order ODEs, of which there are several

sub-classes.

1 Homogeneous: f(dx
dt
, x, t) = −p(t)dx

dt
− q(t)x

Linear homogeneous ODEs are of the form:

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = 0 (2)

Any linear second order homogeneous ODE of this form has two linearly independent solu-

tions, irrespective of the initial conditions. We will denote these by x1(t), x2(t). The general

solution x(t) is consequently given by

x(t) = c1x1(t) + c2x2(t) (3)

where the constants c1, c2 are determined by the initial conditions. It is easy to see that if

x1(t) is a solution to the ODE, and if another linearly independent x2(t) 6= x1(t) is also a

solution, then any linear combination of x1 and x2 is also a solution to the homogeneous

linear ODE. So in principle, if we can find two linearly independent solutions to the ODE,

we can solve it in closed form for any initial conditions. But first, how do we know if two

functions x1 and x2 are linearly independent?

Theorem 1. (Linear independence of functions) Two functions x1(t) and x2(t) are linearly

independent if and only if the Wronskian W (x1, x2) = x1
dx2
dt
− x2 dx1dt is non-zero.

As an example, the functions exp(t) and exp(−t) are linearly independent by this measure.

This theorem can be proved by considering the linear combination c1x1 + c2x2 = 0 and its

derivative c1
dx1
dt

+ c2
dx2
dt

= 0. The constants are stricly zero only if the determinant of the

multiplying matrix—the Wronskian—is non-zero.

For linear homogeneous second order ODEs, determining both linearly independent x1, x2 is

often not possible. However, we can use a clever technique to generate a linearly independent

x2 if an x1 is known—this is known as the method of reduction of order. The idea is as

follows. First, we write x2(t) = ν(t)x1(t) and substitute this for x2 in the original ODE.
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Second, simplifying this using the fact that x1(t) obeys the ODE as well, we obtain

x1
d2ν

dt2
+

(
2
dx1
dt

+ p(t)x1

)
dν

dt
= 0 (4)

Since x1 and its derivatives are known, we can write w = dν
dt

to obtain a first order linear

equation for w(t)

dw

dx
x1 +

(
2
dx1
dt

+ p(t)x1(t)

)
w = 0 (5)

=⇒ w(t) = C exp

(
−
∫

2

x1

dx1
dt
dt+ p(t)dt

)
= C

1

x21
exp

(
−
∫
p(t)dt

)
=⇒ ν(t) = C

∫ [
1

x21
exp

(
−
∫
p(t)dt

)]
dt

so that the second linearly independent solution is (constant of integration can be dropped)

x2(t) = x1

∫
1

x21
exp

(
−
∫
p(t)dt

)
dt (6)

So given one solution x1(t) of the ODE in Eq. 2, we can generate a second linearly independent

solution x2(t) via Eq. 6 and hence the general solution x = c1x1 + c2x2. All of this is done

without any recourse to the initial conditions being specified in the problem. For a general

homogeneous problem, this is all we can say. So either one must guess a solution x1 or obtain

it by some other means initially. However, this can be done systematically when p(t) and

q(t) are constants.

2 Homogeneous constant coefficients: f(dx
dt
, x, t) = − b

a
dx
dt
− c

a
x

When the coefficients are constant, the two linearly independent solutions x1, x2 can be

individually obtained in a straightforward manner. First, we substitute x(t) = exp(rt) for

some constant r into the ODE to obtain the characteristic equation:

ar2 + br + c = 0 =⇒ r1,2 =
−b±

√
b2 − 4ac

2a
(7)

the nature of the roots determines the nature of the solutions to the ODE:

• r1,2 are both real =⇒ x1 = exp(r1t), x2 = exp(r2t) are both exponential functions
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• r1,2 are complex conjugate =⇒ x1 = exp(− b
a
t) cos γt, x2 = exp(− b

a
t) sin γt where

γ2 = 4ac−b2
4a2

are both sinusoidal with exponentially varying amplitudes

• r1,2 are both real and equal, i.e., b2 − 4ac = 0. In this case, both solutions x1, x2 =

exp(− b
a
t) are the same; their Wronskian is zero and another linearly independent solu-

tion must be generated using Eq. 6.

So for constant coefficient homogeneous equations, we can generate exponential or sinusoidal

solutions using this technique.

3 Non-homogeneous: f(x, t) = −p(t)dx
dt
− q(t)x− g(t)

For an ODE that does not have the homogeneous property, things get a little more com-

plicated. Firstly, the presence of the g(t) term invalidates our linear combination solution

since if an x(t) obeys the ODE, cx(t) now does not. However, any such non-homogeneous

ODE can be solved by splitting it into two parts. The complementary equation is obtained

by setting g(t) = 0
d2x

dt2
+ p(t)

dx

dt
+ q(t)x = 0 (8)

and can be solved as before with two linearly independent solutions x1, x2. Now, we define a

particular solution xp(t) as solving the non-homogeneous ODE with g(t) 6= 0

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = g(t) (9)

so that the general solution x(t) is given by

x(t) = c1x1(t) + c2x2(t) + xp(t) (10)

So far, given an x1 solving Eq. 8, we know how to obtain x2. Now, given x1, x2, how do we

obtain xp? For this, we use a technique called the method of variation of parameters. We

define

xp = u1x1 + u2x2 (11)

where u1, u2 are a priori unknown functions. We substitute this form for xp into Eq. 9, and

add the auxiliary condition

x1
du1
dt

+ x2
du2
dt

= 0 (12)

on u1, u2. We can always do this because both functions are arbitrary and independent of

each other. This condition only puts a small constraint on the possible functions that we

wish to consider. Substituting xp from Eq. 11 into Eq. 9, and using the fact that x1, x2 are
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solutions of Eq 8, we obtain
dx1
dt

du1
dt

+
dx2
dt

du2
dt

= g(t) (13)

We now have two linear algebraic equations Eq. 12, 13 for du1
dt
, du2
dt

which we can invert to

obtain (dot denotes d/dt)

du1
dt

=
g(t)x2

ẋ1x2 − x1ẋ2
du2
dt

= − g(t)x1
ẋ1x2 − x1ẋ2

(14)

which can be integrated to obtain

u1 =

∫
g(t)x2

ẋ1x2 − x1ẋ2
dt u2 = −

∫
g(t)x1

ẋ1x2 − x1ẋ2
dt (15)

The sequence of operations is as follows. Given an inhomogeneous linear second order ODE

Eq. 9, we first obtain one solution x1 of the complementary ODE Eq. 8 and the second x2

using Eq. 6. Then, using the variation of parameters, we obtain u1, u2 given by Eq. 15 so

that the particular solution xp, Eq. 11, is determined. Finally, the general solution to Eq. 9

is obtained in the form of Eq. 10.

With this, our solution scheme for any linear second order ODE is complete. We must

remember that in the general case, for arbitrary p(t), q(t), one solution x1 is necessary before

we can go ahead with it. However, when p(t) and q(t) are both constants, we can determine

the general solution irrespective of the form of g(t).

4 Special techniques for certain p(t), q(t), g(t)

We now discuss three specialized techniques for linear second order ODEs, depending on the

form of the functions p(t), q(t), g(t) in Eq. 9.

Method of undetermined coefficients

This technique is applicable only to constant coefficient ODEs with a RHS g(t). Even though

the method discussed for Eq. 9 applies when p(t), q(t) are constants, it can often be very

cumbersome to implement. When the function g(t) is such that its derivatives start repeating

after a certain order (e.g., sines/cosines, exponential functions, polynomials), an alternative

technique becomes much easier to use.

As an illustration, consider the system

a
d2x

dt2
+ b

dx

dt
+ cx = sinωt (16)
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we could as well determine the particular solution xp using Eq. 11. However, in general we

note that the function xp should have terms like sinωt and cosωt with some coefficients. So

we assume a form

xp = a1 sinωt+ a2 cosωt (17)

for the particular solution and put it back into the ODE in Eq. 16. Simplifying and comparing

the coefficients of the sine and cosine terms on both sides gives us relations for the constants

a1, a2.

Now let us apply this to a forced undamped oscillator problem

d2x

dt2
+ αx =

F0

m
cosωt (18)

Assuming xp = A cosωt+B sinωt, the ODE reduces to

cosωt
(
Aα− Aω2

)
+ sinωt

(
αB −Bω2

)
= cosωt

F0

m
(19)

from which we get

A =
F0/m

α− ω2
B = 0 (20)

This type of ansatz for xp also works when g(t) is of the form exp(pt) or a polynomial of the

form At+Bt2 + Ct3.

Reduction techniques

For a general second order linear homogeneous system with arbitrary p(t), q(t), we can at-

tempt a reduction to a first order equation by using the substitution x(t) = exp(g(t)).

For instance, consider the equation

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = 0 (21)

which, with x = exp(g) reduces to

d2g

dt2
+

(
dg

dt

)2

+ p
dg

dt
+ q = 0 (22)

Now setting dg
dt

= u(t), we obtain a first order nonlinear equation for u(t)

du

dt
+ u2 + pu+ q = 0 (23)
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which we can analyze using the techniques we studied for 1D/first order nonlinear systems.

Incidentally, Eq. 23 is called the Ricatti equation. Granted, the amount of information we

can glean from it is, in general, not much. However, for certain forms of p(t) and q(t), this

technique may be useful.

Exact equations

The final special technique we will study pertains to what are called exact equations. These

linear second order ODEs have the general form

P (t)
d2x

dt2
+Q(t)

dx

dt
+R(t)x = 0 (24)

with the condition that
d2P

dt2
− dQ

dt
+R(t) = 0 (25)

If this were so, Eq. 24 can be reduced to a linear first order ODE, which can always be solved

using an integrating factor. First, we subtract the condition in Eq. 25, multiplied by x(t)

from Eq. 24 and add and subtract an dP
dt

dx
dt

to obtain

P
d2x

dt2
+Q

dx

dt
+Rx− d2P

dt2
x+

dQ

dt
x−Rx+

dP

dt

dx

dt
− dP

dt

dx

dt
= 0 (26)

=⇒ d

dt

(
P
dx

dt

)
+
d

dt

(
Qx− dP

dt
x

)
= 0

=⇒ P
dx

dt
+

(
Q− dP

dt

)
x = const. = C

The final linear ODE is of first order and can be solved in terms of an integrating factor.

Hence, whenever we have an exact ODE, i.e., whose coefficients obey Eq. 25, we can reduce

it to a first order linear ODE and obtain an explicit solution.

2 Phase space analysis

We have already noted some important features of second order systems. Firstly, comparing

linear first and second order ODEs, we see that the latter are, in general, much more complex.

Furthermore, we realized that even the most general second order linear system cannot

be solved in closed form (upto one quadrature step), in contrast to its first order cousin.

These are symptomatic—we will see that the nature of fixed points, parameter dependence,

bifurcations etc. are all much more complex in the second order case.

From a phase space point of view, this complexity arises because second order systems can
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be reduced to a 2D first order system, with two dependent variables, say x1, x2
1. This

two dimensionality of phase space makes all the difference—we can now have closed orbits,

isolated orbits, degenerate fixed points, Lyapunov stable points, spirals and centres about

which all trajectories revolve.

Analyzing linear systems in phase space is thus much more instructive in the second order or

2D case. We will use these ideas when we talk about linearization of nonlinear systems, just

as we did for the first order case. Again, we will restrict ourselves to autonomous systems

where there is no explicit t-dependence.

1 Types of fixed points

Before we start considering phase space, we first notice that, for linear second order au-

tonomous or for 2D first order ODEs in general, of the form

d~x

dt
= A~x A = 2× 2 matrix (27)

the origin ~x = (0, 0) is always a fixed point, since the LHS is zero here. However, in contrast

to 1D systems where only f ′(x) was necessary to determine stability, we now have to deal

with a matrix A.

Let us look at two concrete examples. Consider the system

dx1
dt

= αx1
dx2
dt

= −x2 (28)

which consists of uncoupled linear first order ODEs and can be solved individually. Conse-

quently, the general solution is

x1 = x01 exp(αt) x2 = x02 exp(−t) (29)

Depending on α, we can now draw trajectories in phase space, just as we did for the case

of 1D systems. The various possibilities for −∞ < α < ∞ are shown in Fig. 1. we can

interpret these diagrams as follows. Since the equations are decoupled, if we start with an

initial point (0, x02), our trajectory will always lie on the x2 axis, decaying towards the origin

as x02 exp(−t). On the other hand, if we start at (x01, 0) our trajectory will lie on the x1 axis

while either decaying towards the origin or going away from it, depending on α.

Now consider a general trajectory starting at an arbitrary initial point (x01, x
0
2). For α < −1,

the x2 component of the trajectory decays slower than the x1 component, leading to a curve

1For this section and onward, x1, x2 will represent coordinates in phase space. These should not be
confused with the two linearly independent solutions we discussed for homogeneous ODEs
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Figure 1: Types of fixed points for varying α

like in Fig. 1(a). For α = −1, the decay along both axes is the same so that the trajectory

reaches the origin along a straight line x2(t)/x1(t) = x02/x
0
1. Likewise, for −1 < α < 0, the

decay along the x1 axis is slower than along the x2 axis, leading to the curve in part (c). In

all three cases, the origin is absolutely stable—any trajectory that starts in the vicinity of

the origin eventually reaches it as t→∞.

For α = 0, something interesting happens. The x2 component decays as exp(−t) but the x1

component remains unchanged. Now, any trajectory that starts at (x01, x
0
2) ends up at (x01, 0)

as t → ∞. Consequently an infinite number of non isolated fixed points arise all along the

horizontal x1 axis. The origin now, is no longer stable—it is only Lyapunov stable. Any

trajectory that starts close to the origin always remains in its vicinity but never reaches the

origin as t→∞.

For positive α, the situation changes yet again. Even though the x2 component of any

trajetory reduces with t, the x1 component increases continuously. Therefore, the origin is

stable for some directions (along positive and negative x2) but unstable for others—it now
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becomes a saddle fixed point. The trajectories for any other point not on this axis diverge

towards x1 = ±∞, as shown in Fig. 1(e).

The same situation, but in reverse, could be envisaged if the ODE system were

dx1
dt

= αt
dx2
dt

= +x2 (30)

now we’d have a saddle for α < 0 and fixed points of similar kind, but unstable, as in Fig. 1

for α > 0.

As a matter of nomenclature, the axis along which the solution decays to the origin is called

the stable manifold and the axis along which it goes away to ±∞ is called the unstable

manifold. When both axes are stable, the entire phase space around the fixed point becomes

the stable manifold.

Let us now consider as a second example, the system

d2x

dt2
+ 2ζω

dx

dt
+ ω2x = 0 (31)

which, when cast as a 2D system, becomes

dx1
dt

= x2
dx2
dt

= −ω2x1 − 2ζωx2 (32)

These two ODEs are fully coupled unlike the previous case. We know how to solve this ODE

system in general form since it has constant coefficients.

Let us see how the solution curve looks in phase space. Consider the ζ = 0 case first. If we

pick a point (x01, x
0
2) in phase space, the trajectory will be a closed ellipse passing through

this point. Consequently, the origin, around which the ellipse is centered, is called a centre.

When ζ > 0, the solution will be an exponentially decaying term modulating the amplitude

of the oscillating terms so that the trajectory will be a spiral towards the origin. The origin

is now a stable spiral since it is absolutely stable. If ζ > 0, the trajectory spirals away from

the origin making it an unstable spiral. The centre, however, is only Lyapunov stable.

2 Classification of linear systems

We have seen two examples already—one where the two first order ODEs are decoupled

leading to fixed points and the other where they are completely coupled leading to centres

and spirals about the origin. But what if have a general 2D ODE system as below

d~x

dt
= A~x ~x =

(
x1(t)

x2(t)

)
A =

(
a b

c d

)
(33)
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If b = c = 0, we have fixed points, but if a = d = 0, we have centres/ spirals. When

a, b, c, d 6= 0, we have to obtain some invariants of the matrix to say anything about the

behaviour of the LHS. The two invariants are the trace τ = a + d and the determinant

∆ = ad− bc.
Generally speaking, any reasonably well-behaved matrix A as above can be diagonalized by

suitable change of coordinate axes. Formally, these axes correspond to the eigenvectors of

the matrix A. Motivated by this fact, we attempt to find two linearly independent, not

necessarily orthogonal, directions along which the coupled ODE system becomes decoupled.

We do this by finding the eigenvectors of A for, by definition, for eigenvectors ~v,

d~v

dt
= A~v = α~v =⇒ ~v = ~v0 exp(αt) (34)

with corresponding eigenvalues α. So the two linearly independent eigenvectors of the matrix

A give two directions along which the trajectory either decays (corresponding α < 0) or grows

(corresponding α > 0). Hence the information we need about the stability of fixed points

lies in the eigenvalues α1,2 given by:

α1,2 =
τ ±
√
τ 2 − 4∆

2
(35)

where τ,∆ are the trace and determinant of the matrix A, respectively.

If the eigenvalues are distinct, we can write the general solution as

~x = c1 exp(α1t)~v1 + c2 exp(α2t)~v2 (36)

So by analogy with the problem we introduced in Eq. 28, we can determine the nature of the

fixed point at the origin for a linear system by looking at the eigenvalues and corresponding

eigenvectors of the matrix A. But wait, what happens if the eigenvalues are complex conju-

gate? This happens when 4∆ > τ 2 and leads to complex conjugate eigenvectors! How do we

interpret the results now?

To understand this situation, recall the rotation matrix

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(37)

which has complex conjugate eigenvalues α1,2 = exp(±iθ). What does acting on a vector ~v by

the matrix R(θ) do to it? It rotates ~v by an angle θ, irrespective of what ~v is. So we can never

find a direction along which vectors remain unchanged except in magnitude. Consequently,
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Figure 2: Classification of nature of origin as a fixed point depending on τ,∆ of A

we realise that any such matrix A in Eq. 33 that has complex conjugate eigenvalues cannot

have a real direction along which trajectories decay towards or grow away from the origin.

From this, we see that when 4∆ ≥ τ 2, the behaviour is more like Eq. 31, which also had

complex conjugate eigenvalues, resulting in either centres or stable/unstable spirals at the

origin.

We can summarize our understanding of fixed points at the origin for a general linear 2D

system with RHS matrix A as follows, depending on the τ and ∆ of A, see Fig. 2.

The features in this figure may be explained as follows:

• First, consider the parabola τ 2 = 4∆ shown in the figure. When τ 2 ≤ 4∆, we are

‘within’ this curve, leading to either spirals (τ 6= 0) or a centre τ = 0,∆ > 0. Remem-

ber that ∆ must be positive for centres to exist—this means that the product of the

eigenvalues α1α2 is positive—which is true for complex conjugate roots.

• Second, the regions for ∆ > 0 but outside τ 2 = 4∆ have real α1, α2. The roots are of

the same sign, both positive (so their sum τ > 0, unstable fixed point) or both negative

(τ < 0, stable fixed point).

• All along the parabola τ 2 = 4∆ have equal and real roots since the square root becomes

zero. Depending on whether τ > 0 or τ < 0, these are stable or unstable fixed points.

• Whenever ∆ < 0, the eigenvalues α1, α2 are of opposite sign, irrespective of the sign of
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τ—so all points to the left of the τ axis correspond to saddles.

• Finally, when ∆ = 0, all along the τ axis, we have non-isolated fixed points since atleast

one of the roots is 0. This corresponds to the Lyapunov stability case we disucssed in

Fig. 1.

To conclude, given any linear second order autonomous system, we first note two things—the

origin is always the only fixed point, and that the nature of trajectories near the origin is

determined by evaluating τ,∆ for the RHS matrix A and mapping it to the corresponding

zone in Fig. 2.

3 Linearization about a fixed point

Finally, given our understanding of linear second order systems, we can start saying something

about the fixed points for nonlinear ODEs. Just as we performed linearization for the 1D

case, we can do so again in the vicinity of fixed points for a 2D nonlinear system. However,

instead of merely looking at df
dx

at x = x∗ as in the 1D case, we presently have to evaluate the

RHS matrix and it’s properties τ,∆ to say anything about the nature of the fixed point about

which we’ve linearized. As one can perhaps also expect, second order systems can show other

interesting features such as isolated or limit cycles that 1D systems cannot. Consequently,

the types of bifurcations we can expect are also manifold. In the interest of time, we will

restrict ourselves to just fixed points and their behaviour using linearization.

Consider a 2D nonlinear ODE system given by

dx1
dt

= f(x1, x2)
dx2
dt

= g(x1, x2) (38)

where f, g are two arbitrary nonlinear functions. To obtain the coordinates (x∗1, x
∗
2) of the

fixed points, we have to solve the simultaneous nonlinear equations

g(x∗1, x
∗
2) = f(x∗1, x

∗
2) = 0 (39)

Now consider a trajectory (x1(t), x2(t)) very close to one such fixed point (x∗1, x
∗
2) so that

x1 − x∗1 = η1(t) and x2 − x∗2 = η2(t) are both very small. The derivatives become

dη1
dt

= f(x∗1 + η1, x
∗
2 + η2) ' f(x∗1, x

∗
2) +

∂f

∂x1 |(x∗1,x∗2)
(η1) +

∂f

∂x2 |(x∗1,x∗2)
(η2) (40)

dη2
dt

= g(x∗1 + η1, x
∗
2 + η2) ' g(x∗1, x

∗
2) +

∂g

∂x1 |(x∗1,x∗2)
(η1) +

∂g

∂x2 |(x∗1,x∗2)
(η2)
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which can be recast as
d~η

dt
= J|(x∗1,x∗2)

~η (41)

a linear system in η with the Jacobain matrix playing the role of the RHS matrix A. We

have defined J as

J =

(
∂f
∂x1

∂f
∂x2

∂g
∂x1

∂g
∂x2

)
(42)

evaluated at the fixed point (x∗1, x
∗
2). J therefore has constant entries once the fixed points

are known. Consequently, this is the linearized problem equivalent to Eq. 38 about the fixed

point (x∗1, x
∗
2). All we have to now do is evaluate the trace τ and determinant ∆ of J and

map it onto Fig. 2 to obtain the nature of the fixed point we have linearized about.

4 Other features

Just as we had bifurcations in 1D systems, we can envisage changes in stability of fixed points

even for the 2D case. However, as we have emphasized before, the number of possibilities

is now larger. Additionally, the possibility of isolated closed orbits (limit cycles) now means

that fixed points can not only change their stability but can also lead to emergence of limit

cycles as a parameter λ is varied.

In general, linearization cannot give us any information about limit cycles (which incidentally

can have their own notions of stability just like fixed points). So we will restrict our attention

to fixed points alone for now.
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