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NOTE: In these notes, I've used x(t) in place of y(t) to denote the dependent variable.

Please make suitable changes to your own notes while working things out. ¢ is always used

to denote the independent variable.

We now turn to second order ODEs, both linear and nonlinear. Second order systems are
ubiquitous in nature and engineering—spring-mass-damper oscillators, newton’s second law
etc. come immediately to mind. Just as we did in the 1D or first order case, consider the
following prototypical form for a second order ODE:

d*z dx dx
oz = (E,%t) (to) = o, %(to) = o (1)

The first thing we notice is that complete specification of the system now requires two addi-
tional conditions instead of just one. This results in a natural dilemma—at what points ¢,
do we specify these conditions? Can we specify them independently at two different ¢ values?
Do we need derivative information in addition to just the values of x at these t7 All of these
possibilities are allowed. Consequently, we can classify the nature of the problem depending

on the type of conditions we specify:

da

e Initial value problem: Second order ODE + x(t), %

specified at single point ¢t =
e Dirichlet problem: ODE + z(t) specified at two different points t = ¢;,¢ =t
e Neumann problem: ODE + % specified at two different points ¢ = t;,t = t;

e Mixed problem: ODE + a combination of z(t) and 4 specified at two different points
t=tit=t;

The final three options are usually referred to as boundary value problems in the theory of
ODEs sice our domain is bounded between ¢ = ¢; and ¢t = ty. For the remainder of these

notes we will restrict ourselves to studying initial value problems.
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1 Linear second order ODEs

Just we did with first order systems, we can obtain exact solutions to the ODE problem if

the RHS f(4,

statements about general solutions for linear second order ODEs, of which there are several

x,t) takes on certain special forms. In the present case, we can only make
sub-classes.

1 Homogeneous: f(%, z,t) = —p(t)% — q(t)z

Linear homogeneous ODEs are of the form:

d*x d

— +p(t) 2 +alt)r =0 (2)

dt

Any linear second order homogeneous ODE of this form has two linearly independent solu-
tions, irrespective of the initial conditions. We will denote these by x1 (%), z2(t). The general

solution x(t) is consequently given by
x(t) = c1z1(t) + cawa(t) (3)

where the constants ¢y, cy are determined by the initial conditions. It is easy to see that if
x1(t) is a solution to the ODE, and if another linearly independent xo(t) # x(t) is also a
solution, then any linear combination of z; and z, is also a solution to the homogeneous
linear ODE. So in principle, if we can find two linearly independent solutions to the ODE,
we can solve it in closed form for any initial conditions. But first, how do we know if two

functions x; and x5 are linearly independent?

Theorem 1. (Linear independence of functions) Two functions x1(t) and xo(t) are linearly

independent if and only if the Wronskian W (xy,z5) = 331“% — Ty djtl S mon-zero.

As an example, the functions exp(t) and exp(—t) are linearly independent by this measure.
This theorem can be proved by considering the linear combination ¢y + coxo = 0 and its
derivative ¢y fl“"tl + c d;f = 0. The constants are stricly zero only if the determinant of the
multiplying matrix—the Wronskian—is non-zero.

For linear homogeneous second order ODEs, determining both linearly independent x1, x5 is
often not possible. However, we can use a clever technique to generate a linearly independent
To if an xp is known—this is known as the method of reduction of order. The idea is as

follows. First, we write xo(t) = v(t)x;(t) and substitute this for z5 in the original ODE.
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Second, simplifying this using the fact that z(¢) obeys the ODE as well, we obtain

d*v dz, dv

Since z; and its derivatives are known, we can write w = % to obtain a first order linear

equation for w(t)

fl_jzl + (25 + a0 w =0 )

it
w(t) = Cexp( E%dw (t)dt)

_ cx—% exp (— / p(t)dt>
:0/ L{% exp (—/p(t)dt)] dt

so that the second linearly independent solution is (constant of integration can be dropped)

o(t) = 2, / xi%exp (— / p(t)dt) dt (6)

So given one solution z(t) of the ODE in Eq. , we can generate a second linearly independent
solution z,(t) via Eq. @ and hence the general solution x = c1x1 + coxe. All of this is done
without any recourse to the initial conditions being specified in the problem. For a general
homogeneous problem, this is all we can say. So either one must guess a solution x; or obtain
it by some other means initially. However, this can be done systematically when p(t) and
q(t) are constants.

2 Homogeneous constant coefficients: f(

C
Gowt)=—20 —

When the coefficients are constant, the two linearly independent solutions x1,zs can be
individually obtained in a straightforward manner. First, we substitute x(¢) = exp(rt) for
some constant r into the ODE to obtain the characteristic equation:

—b+ Vb? — dac

ar’ +br+c=0 == T2 = 5 (7)
a

the nature of the roots determines the nature of the solutions to the ODE:

e 15 are both real = 1 = exp(rit), x2 = exp(rat) are both exponential functions
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e 115 are complex conjugate = z; = exp(—gt) cost, xg = exp(—gt) sin~yt where

= % are both sinusoidal with exponentially varying amplitudes

e 715 are both real and equal, i.e., b* — 4ac = 0. In this case, both solutions xy,zs =
exp(—%t) are the same; their Wronskian is zero and another linearly independent solu-

tion must be generated using Eq. [6]

So for constant coefficient homogeneous equations, we can generate exponential or sinusoidal
solutions using this technique.
dx

3 Non-homogeneous: f(z,t) = —p(t)% — q(t)r — g(t)

For an ODE that does not have the homogeneous property, things get a little more com-
plicated. Firstly, the presence of the g(¢) term invalidates our linear combination solution
since if an z(t) obeys the ODE, cx(t) now does not. However, any such non-homogeneous
ODE can be solved by splitting it into two parts. The complementary equation is obtained

by setting g(t) = 0

d*x dx

— t)— thxr =20 8

b0 4 g(t)e )
and can be solved as before with two linearly independent solutions x1, xs. Now, we define a
particular solution x,(t) as solving the non-homogeneous ODE with g(t) # 0

d*x dx

P05+ alt)e = g(t) )

so that the general solution z(t) is given by
z(t) = c1a1(t) + cowa(t) + xp(t) (10)

So far, given an z; solving Eq. [} we know how to obtain 5. Now, given x1,zs, how do we
obtain z,?7 For this, we use a technique called the method of variation of parameters. We

define

Tp = U T + UaT2 (11)

where uy, uy are a priori unknown functions. We substitute this form for z, into Eq. @, and
add the auxiliary condition
du1 d’UQ
T1—— + 10— =10 12
APTER T (12)
on uy,us. We can always do this because both functions are arbitrary and independent of
each other. This condition only puts a small constraint on the possible functions that we

wish to consider. Substituting x, from Eq. [I1]into Eq. [9 and using the fact that z;,z, are
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solutions of Eq[§] we obtain
dl’l du1 dZL’Q dUQ

22— g(t

it at a a9

We now have two linear algebraic equations Eq. , for %, % which we can invert to
obtain (dot denotes d/dt)

(13)

duy  g(t)zy duy g(t)zy

- _ A S 14
dt T1T9 — T129 dt T1Tg — T1T2 (1)

which can be integrated to obtain

= / o2, / _9n (15)

T1Tg — T1T2 T1Tg — T1T2

The sequence of operations is as follows. Given an inhomogeneous linear second order ODE
Eq. [9] we first obtain one solution z; of the complementary ODE Eq. [§] and the second x,
using Eq. [6l Then, using the variation of parameters, we obtain u,us given by Eq. SO
that the particular solution z,, Eq. is determined. Finally, the general solution to Eq. @
is obtained in the form of Eq.

With this, our solution scheme for any linear second order ODE is complete. We must
remember that in the general case, for arbitrary p(t), ¢(t), one solution x; is necessary before
we can go ahead with it. However, when p(t) and ¢(t) are both constants, we can determine

the general solution irrespective of the form of g(t).

4 Special techniques for certain p(t), q(t), g(¢)

We now discuss three specialized techniques for linear second order ODEs, depending on the
form of the functions p(t), q(t), g(t) in Eq. @

Method of undetermined coefficients

This technique is applicable only to constant coefficient ODEs with a RHS ¢(¢). Even though
the method discussed for Eq. @ applies when p(t), ¢(t) are constants, it can often be very
cumbersome to implement. When the function g(¢) is such that its derivatives start repeating
after a certain order (e.g., sines/cosines, exponential functions, polynomials), an alternative
technique becomes much easier to use.
As an illustration, consider the system

d*x  dx

@y + bd_t + cx = sinwt (16)
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we could as well determine the particular solution x, using Eq. . However, in general we
note that the function z, should have terms like sinwt and coswt with some coefficients. So
we assume a form

x, = a1 sinwt + ag coswt (17)

for the particular solution and put it back into the ODE in Eq.[16] Simplifying and comparing
the coefficients of the sine and cosine terms on both sides gives us relations for the constants
ai, as.
Now let us apply this to a forced undamped oscillator problem

d*x

Fy
- =2 1
7z + ax - cos wt (18)

Assuming z, = Acoswt + Bsinwt, the ODE reduces to

F
coswt (Aa — Aw2) + sinwt (aB — Bw2) = coswt— (19)
m
from which we get
F
A o/ s B=0 (20)
a—w

This type of ansatz for z, also works when g(t) is of the form exp(pt) or a polynomial of the
form At + Bt? + Ct.

Reduction techniques

For a general second order linear homogeneous system with arbitrary p(t), ¢(t), we can at-
tempt a reduction to a first order equation by using the substitution z(t) = exp(g(t)).

For instance, consider the equation

d?x dx
il - — 21
7z + p(t) 7 +q(t)z =0 (21)

which, with = = exp(g) reduces to

g (dg\® dg
E‘F(E) +p%+q—0 (22)

dg _

- = u(t), we obtain a first order nonlinear equation for u(t)

Now setting

d
d—?+u2+pu—|—q:0 (23)
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which we can analyze using the techniques we studied for 1D /first order nonlinear systems.
Incidentally, Eq. is called the Ricatti equation. Granted, the amount of information we
can glean from it is, in general, not much. However, for certain forms of p(¢) and ¢(t), this

technique may be useful.

Exact equations

The final special technique we will study pertains to what are called exact equations. These

linear second order ODEs have the general form

d2
PSS + Q05 + Rit)e = 0 (24)
with the condition that 2P dQ
—_ — 2
72 pr +R(t)=0 (25)

If this were so, Eq. [24] can be reduced to a linear first order ODE, which can always be solved
using an integrating factor. First, we subtract the condition in Eq. , multiplied by z(t)
from Eq. 24| and add and subtract an 429 to obtain

dt dt
£z 2P dO dPdz  dPdx
P Re—ti 1%, R0 AT, 26
dt2+Q R dt2x+dtx SRR T TR T (26)

d dx dP
SN pr (PE> (QZB — Ex) =0

d dP
:>P—x+(Q dt)a::const—C

The final linear ODE is of first order and can be solved in terms of an integrating factor.
Hence, whenever we have an exact ODE, i.e., whose coefficients obey Eq. we can reduce

it to a first order linear ODE and obtain an explicit solution.

2 Phase space analysis

We have already noted some important features of second order systems. Firstly, comparing
linear first and second order ODESs, we see that the latter are, in general, much more complex.
Furthermore, we realized that even the most general second order linear system cannot
be solved in closed form (upto one quadrature step), in contrast to its first order cousin.
These are symptomatic—we will see that the nature of fixed points, parameter dependence,
bifurcations etc. are all much more complex in the second order case.

From a phase space point of view, this complexity arises because second order systems can

7 Author: Koushik Viswanathan



be reduced to a 2D first order system, with two dependent variables, say x1,xs E| This
two dimensionality of phase space makes all the difference—we can now have closed orbits,
isolated orbits, degenerate fixed points, Lyapunov stable points, spirals and centres about
which all trajectories revolve.

Analyzing linear systems in phase space is thus much more instructive in the second order or
2D case. We will use these ideas when we talk about linearization of nonlinear systems, just
as we did for the first order case. Again, we will restrict ourselves to autonomous systems

where there is no explicit t-dependence.

1 Types of fixed points

Before we start considering phase space, we first notice that, for linear second order au-
tonomous or for 2D first order ODEs in general, of the form
dzr

== A7 A =2 x 2 matrix (27)

the origin # = (0, 0) is always a fixed point, since the LHS is zero here. However, in contrast
to 1D systems where only f’(x) was necessary to determine stability, we now have to deal
with a matrix A.

Let us look at two concrete examples. Consider the system

dlEl d(L’g

% = ax E = —T2 (28)

which consists of uncoupled linear first order ODEs and can be solved individually. Conse-

quently, the general solution is
z1 = 29 exp(at) Ty = 29 exp(—t) (29)

Depending on «, we can now draw trajectories in phase space, just as we did for the case
of 1D systems. The various possibilities for —oo < a < oo are shown in Fig. we can
interpret these diagrams as follows. Since the equations are decoupled, if we start with an
initial point (0, 29), our trajectory will always lie on the z, axis, decaying towards the origin
as 79 exp(—t). On the other hand, if we start at (z9,0) our trajectory will lie on the z; axis
while either decaying towards the origin or going away from it, depending on «.

Now consider a general trajectory starting at an arbitrary initial point (z9,29). For a < —1,

the x5 component of the trajectory decays slower than the x; component, leading to a curve

IFor this section and onward, x,zs will represent coordinates in phase space. These should not be
confused with the two linearly independent solutions we discussed for homogeneous ODEs

8 Author: Koushik Viswanathan



@) o

a < —1 —1<a<0
(d) ©) L
a=20 a >0

Figure 1: Types of fixed points for varying a

like in Fig. (a). For a = —1, the decay along both axes is the same so that the trajectory
reaches the origin along a straight line z5(t)/z(t) = 9/2?. Likewise, for —1 < a < 0, the
decay along the z; axis is slower than along the z5 axis, leading to the curve in part (c). In
all three cases, the origin is absolutely stable—any trajectory that starts in the vicinity of
the origin eventually reaches it as t — oc.

For ao = 0, something interesting happens. The x5 component decays as exp(—t) but the z;
component remains unchanged. Now, any trajectory that starts at (z¢,z9) ends up at (z9,0)
as t — co. Consequently an infinite number of non isolated fized points arise all along the
horizontal x; axis. The origin now, is no longer stable—it is only Lyapunov stable. Any
trajectory that starts close to the origin always remains in its vicinity but never reaches the
origin as t — oo.

For positive a, the situation changes yet again. Even though the x5 component of any
trajetory reduces with ¢, the x; component increases continuously. Therefore, the origin is

stable for some directions (along positive and negative x5) but unstable for others—it now
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becomes a saddle fixed point. The trajectories for any other point not on this axis diverge
towards 2, = £00, as shown in Fig. [[e).
The same situation, but in reverse, could be envisaged if the ODE system were

diL’l dlL’Q

— =at — =+ 30
dt dt ? (30)
now we’d have a saddle for o < 0 and fixed points of similar kind, but unstable, as in Fig.
for a > 0.
As a matter of nomenclature, the axis along which the solution decays to the origin is called
the stable manifold and the axis along which it goes away to +oo is called the unstable
manifold. When both axes are stable, the entire phase space around the fixed point becomes
the stable manifold.
Let us now consider as a second example, the system

d*x

d
o) + Qde—f +w?z =0 (31)

which, when cast as a 2D system, becomes

dl‘l dlL’Q

E = T2 E = —w2x1 — 2wa2 (32)

These two ODEs are fully coupled unlike the previous case. We know how to solve this ODE
system in general form since it has constant coefficients.

Let us see how the solution curve looks in phase space. Consider the ( = 0 case first. If we
pick a point (z9,z9) in phase space, the trajectory will be a closed ellipse passing through
this point. Consequently, the origin, around which the ellipse is centered, is called a centre.
When ¢ > 0, the solution will be an exponentially decaying term modulating the amplitude
of the oscillating terms so that the trajectory will be a spiral towards the origin. The origin
is now a stable spiral since it is absolutely stable. If ( > 0, the trajectory spirals away from

the origin making it an unstable spiral. The centre, however, is only Lyapunov stable.

2 Classification of linear systems

We have seen two examples already—one where the two first order ODEs are decoupled
leading to fixed points and the other where they are completely coupled leading to centres

and spirals about the origin. But what if have a general 2D ODE system as below

v L [ m(?) _fa b
pri AT = (@(t)) A= (C d) (33)
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If b = ¢ = 0, we have fixed points, but if a = d = 0, we have centres/ spirals. When
a,b,c,d # 0, we have to obtain some invariants of the matrix to say anything about the
behaviour of the LHS. The two invariants are the trace 7 = a + d and the determinant
A = ad — be.

Generally speaking, any reasonably well-behaved matrix A as above can be diagonalized by
suitable change of coordinate axes. Formally, these axes correspond to the eigenvectors of
the matrix A. Motivated by this fact, we attempt to find two linearly independent, not
necessarily orthogonal, directions along which the coupled ODE system becomes decoupled.

We do this by finding the eigenvectors of A for, by definition, for eigenvectors v,
dv . . L
i AV =at = ¥ =1exp(at) (34)
with corresponding eigenvalues «v. So the two linearly independent eigenvectors of the matrix
A give two directions along which the trajectory either decays (corresponding o < 0) or grows

(corresponding « > 0). Hence the information we need about the stability of fixed points

lies in the eigenvalues o o given by:

VY

04172 = 9 (35)
where 7, A are the trace and determinant of the matrix A, respectively.
If the eigenvalues are distinct, we can write the general solution as
T = ¢y exp(ait)v + co exp(aat) vy (36)

So by analogy with the problem we introduced in Eq. we can determine the nature of the
fixed point at the origin for a linear system by looking at the eigenvalues and corresponding
eigenvectors of the matrix A. But wait, what happens if the eigenvalues are complex conju-
gate? This happens when 4A > 72 and leads to complex conjugate eigenvectors! How do we
interpret the results now?

To understand this situation, recall the rotation matrix

R(O) = < cos Sin0> (37)

—sinf cos6

which has complex conjugate eigenvalues a; o = exp(=£ifl). What does acting on a vector ' by
the matrix R(#) do to it? It rotates ¥ by an angle 6, irrespective of what ¥ is. So we can never

find a direction along which vectors remain unchanged except in magnitude. Consequently,
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Equal roots
Unstable fixed point

Saddle point /ﬂ

Non isolated
fixed points
\

Unstable spiral
nsta esplra[\ Centre

A

Stable spiral

Saddle point

Stable fixed point

Figure 2: Classification of nature of origin as a fixed point depending on 7, A of A

we realise that any such matrix A in Eq. [33] that has complex conjugate eigenvalues cannot
have a real direction along which trajectories decay towards or grow away from the origin.
From this, we see that when 4A > 72, the behaviour is more like Eq. [31] which also had
complex conjugate eigenvalues, resulting in either centres or stable/unstable spirals at the
origin.

We can summarize our understanding of fixed points at the origin for a general linear 2D
system with RHS matrix A as follows, depending on the 7 and A of A, see Fig. [2]

The features in this figure may be explained as follows:

e First, consider the parabola 72 = 4A shown in the figure. When 72 < 4A, we are
‘within’ this curve, leading to either spirals (7 # 0) or a centre 7 = 0, A > 0. Remem-
ber that A must be positive for centres to exist—this means that the product of the

eigenvalues s is positive—which is true for complex conjugate roots.

e Second, the regions for A > 0 but outside 72 = 4A have real a1, as. The roots are of
the same sign, both positive (so their sum 7 > 0, unstable fixed point) or both negative

(1 < 0, stable fixed point).

e All along the parabola 72 = 4A have equal and real roots since the square root becomes

zero. Depending on whether 7 > 0 or 7 < 0, these are stable or unstable fixed points.

e Whenever A < 0, the eigenvalues a1, ay are of opposite sign, irrespective of the sign of
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7—s0 all points to the left of the 7 axis correspond to saddles.

e Finally, when A = 0, all along the 7 axis, we have non-isolated fixed points since atleast

one of the roots is 0. This corresponds to the Lyapunov stability case we disucssed in

Fig.

To conclude, given any linear second order autonomous system, we first note two things—the
origin is always the only fixed point, and that the nature of trajectories near the origin is
determined by evaluating 7, A for the RHS matrix A and mapping it to the corresponding
zone in Fig. [2|

3 Linearization about a fixed point

Finally, given our understanding of linear second order systems, we can start saying something
about the fixed points for nonlinear ODEs. Just as we performed linearization for the 1D
case, we can do so again in the vicinity of fixed points for a 2D nonlinear system. However,
instead of merely looking at % at x = z* as in the 1D case, we presently have to evaluate the
RHS matrix and it’s properties 7, A to say anything about the nature of the fixed point about
which we’ve linearized. As one can perhaps also expect, second order systems can show other
interesting features such as isolated or limit cycles that 1D systems cannot. Consequently,
the types of bifurcations we can expect are also manifold. In the interest of time, we will
restrict ourselves to just fixed points and their behaviour using linearization.

Consider a 2D nonlinear ODE system given by

dl’l
dt

dCL’Q

= f(x1, 72) T g(1,72) (38)

where f, g are two arbitrary nonlinear functions. To obtain the coordinates (z7,x3) of the

fixed points, we have to solve the simultaneous nonlinear equations
g(xy,25) = f(ay,23) =0 (39)

Now consider a trajectory (xy(t),xo(t)) very close to one such fixed point (x3,z3) so that

1 —xf = m(t) and xo — x5 = no(t) are both very small. The derivatives become

Tt = f(2] +m, x5+ o) ﬁf(9?173?2)+% (771)+—8x (12) (40)
Hetep ?lepap

—= = g(x] +m, 75 +1n2) :9(5517%)"’_ (m) + == (172)

dt 01, @t .3) O l@t.e8)
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which can be recast as .
dj

dt Jl(f”f’“S)n (41)

a linear system in 7 with the Jacobain matriz playing the role of the RHS matrix A. We

have defined J as
of  Of
J = (%w; ?;;) (42)
dx1  dza
evaluated at the fixed point (x},z3). J therefore has constant entries once the fixed points
are known. Consequently, this is the linearized problem equivalent to Eq. [38 about the fixed

point (x7,x3). All we have to now do is evaluate the trace 7 and determinant A of J and

map it onto Fig. [2| to obtain the nature of the fixed point we have linearized about.

4 Other features

Just as we had bifurcations in 1D systems, we can envisage changes in stability of fixed points
even for the 2D case. However, as we have emphasized before, the number of possibilities
is now larger. Additionally, the possibility of isolated closed orbits (limit cycles) now means
that fixed points can not only change their stability but can also lead to emergence of limit
cycles as a parameter A\ is varied.

In general, linearization cannot give us any information about limit cycles (which incidentally
can have their own notions of stability just like fixed points). So we will restrict our attention

to fixed points alone for now.
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