ME 261:Worksheet on Complex Analysis.

Instructor: Venkata R. Sonti

1. For the function $f(z)=\frac{\left(z^{2}-1\right)-\sin (z-1)}{(z-1)}$, find the residue at $z=1$.
2. Consider $J=\oint_{C} f(z) d z$, where C is the counter clockwise unit circle with its center at the origin. For $f(z)=\frac{e^{z}}{z^{2}-\frac{1}{4}}$, find the value of J.
3. Given the complex function $f(z)=\frac{\cos (z)}{z^{5}}$, find the residue at the only singular point.
4. Compute the integral $\int_{C} z d z$ along the straight line from the origin to $(2+2 i)$.
5. Compute the integral $\int_{C} z d z$ along a closed contour C, that is composed of a straight line from the origin to $2 \sqrt{2} i$. And then along a circular arc from $2 \sqrt{2} i$ to $(2+2 i)$ with centre at the origin. And then from $(2+2 i)$ to the origin.
6. Compute the integral $\int_{C} z d z$ along a closed contour C, that is composed of three straight lines: 0 to 2,2 to $(2+2 i)$ and $(2+2 i)$ to 0 in the anti-clockwise direction.
7. Consider $J=\oint_{C} \frac{\cos (z)}{z^{5}} d z$. C is the contour defined by a counter clockwise circle $|z-0.4|=$ 0.5 . Find the value of J.
8. Find the value of the integral $J=\oint_{C} \frac{5 z^{2}+17}{z^{3}-2 z^{2}+4 z-8} d z$ for three different contours C given below. C is a counter clockwise circle given by
(a) $|z-3|=3$
(b) $|z-(1+i)|=3$
(c) $|z|=3$
9. Find the value of the integrals given below using contour integration
(a) $I=\int_{0}^{\infty} \frac{1}{\sqrt{5 x\left(1+25 x^{2}\right)}} d x$
(b) $I=\int_{0}^{\infty} \frac{1}{\sqrt[3]{x}\left(1+x^{2}\right)} d x$
(c) $I=\int_{-1 / a}^{1 / a} \frac{\sqrt{1-a^{2} x^{2}}}{1+a^{2} x^{2}} d x$
(d) $I=\int_{0}^{2} \frac{1}{\sqrt{x(2-x)}} d x$
(e) $I=\int_{0}^{\infty} \frac{x^{1 / 3}}{(x+2)(x+1)} d x$
10. The Bromwich integral $f(t)=\mathcal{L}^{-1}(F(s))=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} F(s) e^{s t} d s$. Find $f(t)$ when $F(s)$ is
(a) $F(s)=\frac{1}{s-3}$
(b) $F(s)=\frac{3}{s^{2}+9}$
(c) $F(s)=\frac{s}{s^{2}+4}$
(d) $F(s)=\frac{2}{s^{3}}$
(e) $F(s)=\frac{5+s}{s^{2}+1}$
