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Partitioning instantaneous degrees-of-freedom and its application to
three-degrees-of-freedom parallel manipulators

Adapala Chandra Sekhar∗ Sandipan Bandyopadhyay† Ashitava Ghosal‡

Dept. of Mechanical Engg. Dept. of Engineering Design Dept. of Mechanical Engg.
Indian Institute of Science Indian Institute of Technology Indian Institute of Science

Bangalore, India Chennai, India Bangalore, India

Abstract—In general, a rigid body moving in space can
possess three translational and three rotational degrees-of-
freedom. In many situations, the motion of the rigid body
is constrained, and therefore has less than six-degrees-of-
freedom. In such cases, it is often important to understand
how the degrees-of-freedom are distributed between pure
translation and pure rotation. In this paper, we present a
general approach towards the partitioning of the available
instantaneous degrees-of-freedom for the constrained mo-
tion of rigid-bodies. The approach is based on computing
the eigenvalues and eigenvectors of certain matrices asso-
ciated with the instantaneous motion of a rigid body. The
eigenvalue problem involves the solution of at most a cubic
polynomial, and hence the eigenvalues can be obtained in
closed form in all the cases. The approach is applied to
several well known three-degrees-of-freedom spatial paral-
lel manipulators. It is well-known that parallel manipula-
tor can gain one or more degrees-of-freedom at a gain-type
singularity. The general approach is also applied to deter-
mine if the gained degree(s)-of-freedom are in translational
or rotational in nature.

Keywords: Partitioning, instantaneous degrees-of-freedom, eigen-
problem, gain singularity

I. Introduction

It is well known that the rigid body displacements form a
Lie group, known as the Special Euclidean Group denoted
by SE(3)(see, for example, [1]). The linear and angular
velocities associated with rigid body motions are real 3-
vectors each, but can be suitably composed into vectors in
six dimensions, known as the twists in kinematic literature.
The twists lie in the Lie algebra associated with SE(3),
which is denoted by se(3). The twists can also be described
by a linear combinations of screws, which are elements of
P5 and can be thought of simply as twists of unit magni-
tude [2]. This description of the twists allows one to obtain
the the resultant twist of a n-degrees-of-freedom rigid body
motion in terms of the n independent input screws (known
as a n-screw system). Furthermore, it also leads naturally to
the notion of a set of principal screws, which form a canon-
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ical basis of a system of screws. The knowledge of the prin-
cipal screws can reveal important properties of a rigid body
motion, and therefore it has received a lot of attention in the
past century. Most of the important results of this type of
analysis can be found in the seminal works of Ball [3] and
Hunt [4].

In reference [5], [6], the authors take a slightly different
viewpoint and analyse the space of twists directly instead
of the underlying space of screws. One of the major ad-
vantages of such analysis is that it leads to an understand-
ing of the nature of the degrees-of-freedom of a rigid body
motion, i.e., in a general n-degrees-of-freedom motion, it
can clearly obtain the number of degrees-of-freedom in-
volved in pure translational motion (equivalently, number
of screws with infinite pitch) and the remaining involved
in rotational as well translational motion in a general screw
mode (equivalently, the number of screws with finite pitch).
For instance, in a 3-degrees-of-freedom motion, we can
have either 3, 2, 1 or 0 linearly independent angular ve-
locities, and 0, 1, 2 or 3 linearly independent translational
velocities, respectively. The first combination, namely 3
angular and 0 translational velocities, is a pure rotational
motion, and the last combination, namely 0 angular and 3
translational velocities, is pure translational motion. These
two combinations in a three-degrees-of-freedom motion are
relatively intuitive to ascertain. However, screw theory does
not answer this question in a direct way. In this paper,
we use the approach and concepts presented in [5], [6] to
present a systematic approach to obtain the exact division
of linear and angular velocities, and extend the results pre-
sented in [7]. The approach for three-degrees-of-freedom
motion is discussed in detail in section II. For general n-
degrees-of-freedom motion the reader is referred to [6],
[7].

The identification of the twists associated with angular
and purely linear velocities allows us to determine a par-
titioning of possible degrees-of-freedom of a rigid body
motion. We present an analytical approach which can be
directly used for serial, parallel and hybrid manipulators.
The concept of partitioning degrees-of-freedom is illus-
trated with the help of several well known three-degree-of-
freedom parallel manipulators in section III.

A parallel manipulator is known to gain one or more
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degrees-of-freedom of freedom at a gain singularity [8].
However, it is not easy to determine if the gain of the
degree(s)-of-freedom is in terms of angular or linear veloc-
ity. Using the analytical approach to determine the parti-
tioning of the degrees-of-freedom, we can determine if the
gained degree-of-freedom is in linear or angular velocity.
This specific advantage of the approach developed in this
paper is shown for several three-degrees-of-freedom spatial
parallel manipulators, at their respective gain-singular con-
figurations, in section IV.

The paper is organised as follows: in section II, we
briefly discuss the formulations for the distribution of lin-
ear and angular velocities, and derive the closed-form ex-
pression for the principal twists in the ω basis. We also
present the concept of partitioning of available degrees-of-
freedom and present a classification for three-degrees-of-
freedom motion. In section II-D, we present the formula-
tion of the relevant matrices in terms of the constraint equa-
tions in parallel manipulators in non-singular and gain sin-
gularity configurations. In section III, we present the for-
mulation for a 3-UPU wrist manipulator, a 3-UPU manipu-
lator capable of pure translational motion, a 3-RPS manip-
ulator, a cylindrical manipulator and the Delta robot with
parallelogram linkage in a leg. We present results show-
ing the partitioning of degrees-of-freedom in a typical non-
singular configuration for these parallel manipulators. In
section IV, we present the singularity analysis of the cho-
sen three degrees-of-freedom manipulators and determine
the gained degrees-of-freedom In section V, we present the
conclusions.

II. Mathematical formulation

In this section, a brief description of the mathematical
formulation is presented. The theoretical developments pre-
sented in this paper follow [5], [6] closely, and the readers
are directed to the same for further details. This section
also briefly presents the formulation of matrices relevant
for analysis of parallel manipulators.

A. The partitioning of degrees-of-freedom

The angular velocity of a chosen output link (or end-
effector), ω, and the linear velocity of the chosen point on
the link, v can be written as

ω = Jωθ̇, v = Jvθ̇ (1)

where θ̇ denotes the vector of input joint rates and Jω

and Jv denote appropriate Jacobian matrices. One can con-
sider a dual linear combination of these matrices, to arrive
at a dual Jacobian matrix [5]:

Ĵ = Jω + ϵJv (2)

where ϵ is the dual unit with the property ϵ2 = 0, ϵ ̸= 0.
One can further define the matrix:

ĝ = Ĵ
T
Ĵ (3)

= g + ϵg0, where g = JT
ωJω, g0 = JT

ωJv + JT
vJω

Following [5], one can study the eigenproblem of the ma-
trix ĝ, and find the principal twists associated with the mo-
tion of the manipulator. Some of the main results of the
study are given below.
1. Since there can be at most three components of ω,
irrespective of the number of degrees-of-freedom, the
rank(g) ≤ 3.
2. If n denotes the degrees-of-freedom of the motion, then
for n > 3, there are m vanishing eigenvalues of the ma-
trix g, where m ≥ (n − 3). Correspondingly, there
are m eigenvectors in the null-space of g (or equivalently,
in the null-space of Jω). These eigenvectors, denoted by
θ̇
n

i , i = 1, . . . ,m, can be obtained as the non-trivial solu-
tion to the equation:

gθ̇
n

i = 0, i = 1, . . . ,m (4)

The eigenvectors θ̇
n

i can be obtained by any standard linear
algebra technique. The corresponding principal twists are
obtained as:

V̂
n

i = Jωθ̇
n

i + ϵJvθ̇
n

i

= 0+ ϵVi, i = 1, · · · ,m (5)

The significance of the zero-valued real part is that these
twists are not associated with any angular velocity and they
represent pure translational motions.
3. The number of pure linear velocity components, V i, can
at the most be three. To find the actual number of indepen-
dent linear velocities, one can construct the matrix JV such
that V i constitutes the ith column of JV , and further de-
fine:

gV = JT
V JV (6)

The number of non-zero eigenvalues of gV gives the num-
ber of linearly independent linear velocity components as-
sociated with the rigid-body motion, and the column-space
of gV gives the corresponding directions [5].

It is clear from the above discussion, that at a given in-
stant, the degrees-of-freedom of a rigid-body can be con-
sidered in terms of its angular and linear velocities, and ex-
pressed as the following formula:

degrees-of-freedom = rank(g) + rank(gV ) (7)

Equation (7) formalizes the concept of the partitioning of
degrees-of-freedom introduced in [5]. This concept of in-
stantaneous definition of degree-of-freedom helps in the
following:
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• Identification of the nature of independent degrees-of-
freedom in the case of multi-degree-of-freedom constrained
rigid-body motion. In our formulation, this division comes
out naturally, and examples are provided in the paper to
illustrate this point.
• Identification of the nature of singularity: It is well-
known in literature, that at a singular configuration, the
degree-of-freedom of a manipulator changes from its reg-
ular value. However, it is not easy to identify if the gained
or lost degree-of-freedom is translational or rotational. As
we show later in this paper, the effects of gain singularity
in a number of parallel manipulators are captured by our
formulation.

B. Classification of three-degrees-of-freedom non-singular
motions

In reference [6], [7], a detailed classification of non-
singular spatial motions based on equation (7) is presented.
In this section, we present, for sake of completeness,
the special case of possible partitions of three-degrees-of-
freedom in a chosen end-effector. We also present the an-
alytical solutions for the eigenvalue problems associated
with each of the classes. These equations are used for the
examples given in the paper.

A chosen end-effector in a three-degree-of-freedom par-
allel manipulator can exhibit a)three rotations and zero
translation, b) two rotations and one translation, c) one ro-
tation and two translations, and d) three translations and
zero rotations. These are termed as class χ30, χ21, χ12 and
χ03, respectively (see [6], [7] for details). For 3-degree-
of-freedom motion, the characteristic equation of g is given
by [5]:

λ3 − 3λ2 +
1

2
(3−A1)λ+

1

2
(1 +A1 − 4A2) = 0 (8)

where A1 = cos 2ϕ12 + cos 2ϕ23 + cos 2ϕ31, A2 =
c12c23c31. Here, cij indicates cosϕij , where ϕij is the an-
gle between the ith and the jth input screws.

Based on the values of A1, A2, and consequently the val-
ues of the coefficients of the cubic equation, one can rec-
ognize the following subclasses within the three-screw sys-
tem.
1. Class χ30: The input screws belong to this category
when all the roots of equation (8) are non-zero.
2. Class χ21: In this case one of the roots of equation (8)
vanish. The conditions can be written as

1 +A1 − 4A2 = 0

3−A1 ̸= 0 (9)

It may be verified easily, that the geometric implication of
equation (9) is that the three input screws axes are all par-
allel to a single plane, i.e. the angular velocity vector has
zero component in the direction perpendicular to the plane.

The residual quadratic equation is:

λ2 − 3λ+
1

2
(3−A1) = 0 (10)

This equation can be solved for the two non-zero eigenval-
ues, and the corresponding eigenvectors can be mapped to
the respective principal twists. The third eigenvector in the
null-space of g maps to the single pure translational veloc-
ity in this case, and we require this velocity is non-zero for
the screw system to belong to this category.
3. Class χ12: This class is complementary to the last one,
and it requires that two of the roots of equation (8) vanish.
The conditions can be written as

1 +A1 − 4A2 = 0 (11)
3−A1 = 0 (12)

In this case there is only one independent rotational mo-
tion possible. The two eigenvectors in the null-space of g
give rise to two pure translational velocities. For the motion
to be non-singular, i.e. of 3-degree-of-freedom, rank(gV )
needs to equal two in this case.
4. Class χ03: As in the case of class χ02, this requires that
Jω is a null matrix, and we analyse the matrix gV to ob-
tain the distribution of the pure translational velocities. We
assume here that this form is non-degenerate, i.e. all the
eigenvalues of gV are non-zero. An obvious class of ma-
nipulators generating this kind of motion is the serial 3-P
translational manipulators.

C. Singularities and transitions between various classes of
rigid-body motion

The end-effector of a spatial manipulator can have mo-
tions belonging to different classes at different subsets of
its workspace. More importantly, some change in the archi-
tecture parameters of a manipulator can cause its motion to
shift from one class to the other, without changing the total
degrees-of-freedom (see the examples of a 3-UPU manip-
ulator as a wrist and as a purely translational device). Fur-
ther, a manipulator can lose or gain degree(s)-of-freedom at
a singularity [8], [9]. All the above can be generalised as a
transition from one motion class to another. Using the cor-
responding analytical formula one can analyse all of these
phenomena in a unified setting and provide a vital tool for
the design of parallel manipulators. In the illustrative ex-
amples in this paper, the nature of the gained singularity is
computed.

D. Equivalent Jacobian matrices and condition for gain
singularity in parallel manipulators

The theory developed above is applicable to serial and
parallel manipulators alike. However, there are some addi-
tional considerations for its application to parallel manip-
ulators. For instance, in a parallel manipulator, the choice
of the output link (or the end-effector) is not so obvious in
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all cases - in this paper, we study only platform-type ma-
nipulators, and the end-effector is taken to be the platform
in each case. Further, the motion of the end-effector is af-
fected not only by n active joints θ, but also m passive (i.e.,
non-actuated) joints ϕ. Therefore, the first-order kinematic
equations (1) can be rewritten for this case as:

ω = Jeq
ω q̇ = Jωθθ̇ + Jωϕϕ̇

v = Jeq
v q̇ = Jvθθ̇ + Jvϕϕ̇ (13)

where q = (θT ,ϕT )T ∈ Rn+m. In this paper, the point
of interest, p, is taken to be the origin of the reference
frame {P}, attached rigidly to the centroid of the moving
platform, which is taken to be symmetric in all the cases.
The angular velocity of the moving platform can be ob-
tained from its rotation matrix, 0

PR, with respect to the in-
ertial reference {0} as follows:

0ωP =
d

dt
(0PR) 0

PR
T
= Jeq

ω q̇ (14)

where 0
PR is the rotation matrix of moving platform {P}

with respect to the fixed platform {0}. Note that 0
PR is a

function of both θ and ϕ, and hence equation (14) can be
cast in the form of equation (13). The linear velocity of
the moving platform can be obtained as derivative of the
position vector p, which is given by:

p =
1

3
(p1 + p2 + p3)

⇒ vp =
dp

dt
= (ṗ1 + ṗ2 + ṗ3) = Jeq

v q̇ (15)

where pi, i = 1, 2, 3 denote the position vectors of the
vertices of the triangular platform in frame {0}.

The remaining task is to convert equations (14, 15) to
forms analogous to equation (1). For doing this, ϕ̇ must be
described in terms of θ̇, as done in the following.

The m passive variables can be determined from a set
of m constraint equations, which essentially ensure the clo-
sure of the loops in the mechanism. These can be written
as:

η(q) = η(θ,ϕ) = 0, η ∈ Rm (16)

Differentiating equation (16) with respect to time t, and re-
arranging, we get:

Jηθθ̇ + Jηϕϕ̇ = 0, Jηθ =
∂η

∂θ
, Jηϕ =

∂η

∂ϕ
(17)

where the ith column of the m× n matrix Jηθ consists of
the partial derivatives of η(q) with respect to the actuated
variables θi, i = 1, . . . , n and the ith column of m × m
matrix Jηϕ consists of the partial derivatives of η(q) with
respect to the passive variables ϕi, i = 1, . . . ,m.

If det(Jηϕ) ̸= 0, i.e., the matrix Jηϕ is not singular, we
can solve for ϕ̇ from equation (17) and write

ϕ̇ = −J−1
ηϕJηθθ̇ = Jϕθθ̇, Jϕθ = −J−1

ηϕJηθ (18)

We can now substitute ϕ̇ from equation (18) in equa-
tion (13) and get

ω = Jωθθ̇ + JωϕJϕθθ̇

v = Jvθθ̇ + JvϕJϕθθ̇ (19)

By comparison with equation (1), one can obtain the equiv-
alent Jacobian matrices as:

Jeq
ω

∆
= Jωθ + JωϕJϕθ = Jωθ − JωϕJ

−1
ηϕJηθ (20)

Jeq
v

∆
= Jvθ + JvϕJϕθ = Jvθ − JvϕJ

−1
ηϕJηθ (21)

It is clear that the above formulation of the Jacobian ma-
trices hold under the condition det(Jηϕ) ̸= 0. When this
is violated, i.e., the manipulator is at a constraint/gain-type
singularity, it is customary to investigate the motion arising
out of the gained degree(s)-of-freedom alone (see, e.g., [5],
[8]). In order to do so, the gained passive velocity is found
out first, while the actuators are held fixed, i.e., θ̇ = 0.
From equation (17), we get:

Jηϕϕ̇
n

i = 0, i = 1, . . . , nullity(Jηϕ) (22)

The gained angular and linear velocities can be obtained as:

ω = Jωϕϕ̇
n

v = Jvϕϕ̇
n

(23)

Equations (23) imply that even with the actuator locked the
end-effector of the parallel manipulator can instantaneously
have non-zero linear and/or angular velocities and the ma-
nipulator gains one or more degree(s)-of-freedom.

Similar to the analysis with g, we can solve the eigen-
value problem arising out of ω = Jωϕϕ̇

n
. We can further-

more classify the gained degrees-of-freedom as follows:
• For the non-singular motion of class χ30, if (with actu-
ators locked) the eigenvalue(s) of Jωϕ

TJωϕ is(are) zero,
then the gained motion(s) is(are) translational.
• For class χ21 or χ12, if (with actuators locked) the eigen-
value(s) of Jωϕ

TJωϕ is(are) zero, then the gained mo-
tion(s) is(are) purely translational, rotational or both.
• For class χ03, if (with actuators locked) the manipula-
tor gains one or more degrees-of-freedom, then the gained
motion(s) is(are) purely rotational.
It may be noted that in the above classification, we as-
sume that the gained degree-of-freedom does not lead to
redundant degrees-of-freedom. In the next section, we use
the concept of equivalent Jacobian to partition degrees-of-
freedom in several three-degrees-of-freedom parallel ma-
nipulators. We also study the gained degree-of-freedom at
a gain singularity.
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III. Degree-of-freedom partitioning for three-degrees-
of-freedom parallel manipulators

In this section, we illustrate the theory developed with
several examples of three-degrees-of-freedom parallel ma-
nipulators. The manipulators chosen are well-known in lit-
erature, such as: a) a 3-UPU manipulator as a wrist and a
purely translational manipulator, b) a 3-RPS parallel ma-
nipulator, c) a “cylindrical” robot, and d) the well-known
Clavel’s “Delta” robot.

A. The 3-UPU manipulator as a wrist

The 3-UPU manipulator, as a parallel wrist, was first pro-
posed by Di Gregorio [10]. The 3-UPU manipulator, as the
name signifies, consist of three ‘legs’ each of which can be
modeled as R-R-P-R-R chain. With reference to the fig-
ure 1, the points Pi, Bi i = 1, 2, 3, are the centres of the
universal joints in the moving platform and the fixed base,
respectively. For the 3-UPU manipulator to function as a
wrist, in each leg the axes of first revolute joints making up
the U joint in the fixed base and the axis of the last revolute
joints making up the U joint in the moving platform meet at
a point P . Moreover, the point P is chosen as the origin of
the fixed base, i.e, O is same as P . Figure 1 shows a typical
leg of the 3-UPU wrist. In this figure, ai and bi are the con-
stant lengths of the segments PiP and BiP respectively; li
is the variable length of the segment BiPi and denotes the
joint variable of the actuated prismatic joint. The point P is
fixed in the stationary platform and is chosen as the origin
of a reference system attached to the same. Assigning co-
ordinate axis according to the standard convention [15], the
the Denavit-Hartenberg (DH) parameters [15]) for a leg can
be obtained. These are given in table I. In the table, the

i

P

p

R joint

R joint

R joint

P joint

i

a

b

i

i
li

O
θ

θ

1i

2i

R joint

U Joint as 2 R joints

θ4i

θ3i

B

Fig. 1. A typical leg for the 3-UPU wrist

variables li are active joint variables and θs are the passive
joint variables. Once the DH parameters are known, the
link transformation matrices i−1

i T can be computed eas-
ily (see, e.g., [15]). The product 0

1T
1
2T ...45T gives the posi-

Link αi−1 ai−1 di θi
1 0 0 b θ1i
2 π/2 0 0 θ2i
3 π/2 0 li π
4 π/2 0 0 θ3i
5 π/2 0 a θ4i

TABLE I. DH parameters of a leg of a 3-UPU wrist

tion vector of the point P which would be a function of li
and the four θs. We can also obtain the position vector of
the points Bi.

From the DH table, we can observe that there are 4 θ’s
for each leg and, potentially, the kinematics of the 3-UPU
wrist can involve all the 12 passive variables. However, due
to the special choice of P , only 9 passive variables are of
interest and we have to deal with 9 loop-closure equations.
The first 6 constraint equations are formed by equating the
X , Y and Z coordinate of the end point P from each leg:

xi − xj = 0

yi − yj = 0 (24)
zi − zj = 0

where i, j = 1, 2, 3 and i ̸= j. The other three equations
are formed by equating the point P to the origin of the base:

Px = 0, Py = 0 Pz = 0 (25)

The 9 equations above are functions of nine θ variables and
the three actuated variables. At a typical non-singular con-
figuration and for given values of the actuated variables,
these 9 non-linear equations can be solved for the pas-
sive variables. Once all the passive variables are known,
following the formulation shown in section II, we obtain
the equivalent Jacobian matrices, Jeq

ω and Jeq
v . The ma-

trix g = Jeq
ω

TJeq
ω is constructed next and its eigenproblem

is solved, leading to the classification of the manipulator1.
For the 3-UPU wrist, we have used bi = ai = 1, (i =

1, 2, 3) and computed several sets of numerical results. Two
representative results are as follows:

• For active variables values 1.5240, 0.9980, 1.2430, the 9
passive variables values are 1.2873, 0.7044, 0.7044, 1.0705,
-1.0484, 5.2348, 1.1328, -0.9001 and 5.3830. The eigenval-
ues of g are 0.296× 1020, 69.4340 and 0.3197× 1019.
• For active variables values 3/2, 1, 3/2, the 9 passive
variables values are 1.0, 0.7227, 0.7227, 0.7167, 1.0472,
1.0472, 1.0, 0.7227 and 0.7227. The eigenvalues of g are
0.255× 1018, 32.0 and 15.4012.

1In this work, for all examples, except for the numerical solution of the
passive variables, all other steps use symbolic expressions and results are
obtained in closed-form. Further, all lengths are in metres, and all angles
in radians.
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It can be observed that the eigenvalues of the matrix g are
non-zero and hence the moving platform in the 3-UPU ma-
nipulator has purely rotational degrees-of-freedom. As ex-
pected, the 3-UPU wrist belongs to the class χ30.

B. The 3-UPU manipulator as purely translation device

The 3-UPU mechanism discussed in example 1 can also
be configured as a purely translation device as presented in
Tsai and Joshi [11]. In this configuration, for the each R-R-
P-R-R chain in a leg, the first and fifth rotary joint axis and
the second and fourth rotary joint axis are constrained to be
parallel. One leg of the 3-UPU manipulator with this geom-
etry is shown in figure 2. Again, the direct kinematics of the

Z

a

Z
1i

4i

2i

5i

Moving platform

Fixed base

Y

X

b

Z

Z Z

{0}

O

O’

U Joint

Prismatic joint

3iZ

{P}X’
Y’

Z’

Fig. 2. A typical leg in the 3-UPU translational robot

3-UPU manipulator involve 12 passive variables and 3 ac-
tuated variables. To solve for the passive variables we form
the constraint equations as follows: 1) 6 equations are ob-
tained by equating the position vectors of the centre of the
moving platform obtained by following each leg from the
fixed origin, 2) three more equations are obtained by using
the fact that the points on the top platform a triangle whose
lengths are constants, and 3) three equations are obtained
by using the fact that the first and last rotary joint axes in
each of the UPU legs are parallel. The first 6 equations are
similar to equations (24). The second set of three equations
are given by:

(pi−pj)·(pi−pj)−3a2 = 0, i, j = 1, 2, 3, i ̸= j (26)

where pi and pj are the position vectors of the vertices of
the top platform whose sides are

√
3a. Finally, the remain-

ing three equations are given by:

(Z1i ·Z5i)− 1 = 0 (27)

Nine of these 12 equations are functions of 9 variables and
the remaining three equations are functions only four pas-
sive joint variables. Following the theory developed in sec-
tion II, for a given set of three actuated variables, the pas-
sive variables are to be solved numerically. Then the eigen-
problem for g is solved and based on the eigenvalues, the
mechanism can be characterised. In this example, it turns
out the equivalent angular velocity Jacobian matrix Jeq

ω is
trivially null. This implies that the 3-UPU with first and
fifth and second and fourth joint axes parallel is a purely
translational device, i.e., it belongs to the class χ03.

C. The 3-RPS manipulator

The 3-RPS parallel manipulator was introduced in 1988
by Lee and Shah [12] and has since been studied exten-
sively by several researchers. The manipulator, as shown
in figure 3, consists of a fixed and a moving platform.
The fixed platform is connected to the moving platform by
means of three legs, each of which has a rotary, a prismatic
and a spherical joint. The prismatic joints are actuated and
all other joints are passive. This gives rise to three-degrees-
of-freedom for the moving platform.

Moving Platform

Base Platform

Y

O

Z’
Spherical Joint

Axis of 2nd Rotary Jointθ3

θ2

θ1

l

l

l

3

1
{0}

{P}

O’

Spherical joint

2

Axis of 3rd Rotary Joint

Axis of 1st Rotary Joint

Spherical joint

X

Fig. 3. The 3-RPS robot

For the sake of convenience, we have chosen the fixed
base and moving top platforms as equilateral triangles and
the rotary joint axes to lie in the plane of the fixed plat-
form. The Denavit-Hartenberg parameters for each R-P-S
chain can be easily derived and we can observe that there
are three actuated (li, i = 1, 2, 3 and three passive variables
ϕi, i = 1, 2, 3 which need to be solved for [15]. The three
constraint equations to solve for the passive variables are

6
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given by

(p2 − p1) · (p2 − p1)− 3a2 = 0

(p3 − p2) · (p3 − p2)− 3a2 = 0

(p1 − p3) · (p1 − p3)− 3a2 = 0

where pi, i = 1, 2, 3 are the position vectors of the three
points on the moving platform where the legs are connected
and

√
3a is the distance between any two of them. These

three equations are numerically solved for given values
of actuated variables and as in the previous examples the
eigenvalues of the matrix g are calculated. At two typical
non-singular configuration and for a = 0.5 and b = 1, we
get the following results:
• For active variables values 0.5, 1 and 2, the 3 passive vari-
ables are given by 0.4, 0.7535, 0.2402 and the eigenvalues
of g are 19.6269, −0.250× 10−15, and 1.1675.
• For active variables values 1, 1, and 1, the 3 passive vari-
ables are given by 1.0472, 1.0472, 1.0472 and the eigenval-
ues of g are 3.5556, 0.14× 10−38, and 3.5556.
It is seen that two eigenvalues are non-zeros and one eigen-
value is zero. This implies that the moving platform has
two rotational degrees-of-freedom and one pure transla-
tional degree-of-freedom. The eigenvectors of the equiv-
alent rotational Jacobian matrix can be used to obtain the
angular velocity vector. This is given as:

0ωP =

 0.1830
0.1830
0.5773

 θ̇1+

 0.7320
0.7320
0.5773

 θ̇2+

 0
0

0.5773

 θ̇3

The 3-RPS manipulator was originally proposed as a par-
allel wrist in reference [12]. It can be seen from the above
analysis that this is not possible – the manipulator belongs
to the class χ21 since there are only two rotational degrees-
of-freedom.

D. The cylindrical manipulator

This parallel robot was proposed by Wang and Liu [13].
As shown in figure 4, it consists of a fixed base and a
moving platform linked together by three legs. Two of the
three legs have identical geometry, each consisting of a two-
degrees-of-freedom universal joint and two rotary joints.
The third leg consists of a planar four-bar parallelogram
mechanism and three rotary joints. One of the rotary joints
in each leg is actuated. In this example, the top moving
platform and the fixed base are assumed to be isosceles tri-
angles. All the revolute joint axes in all the legs are parallel
to each other. The revolute joints attached to the base are
actuated and all others are passive. The DH parameters of
the first and the second legs are identical, whereas the DH
parameters for the third leg are different because of the use
of a parallel four-bar mechanism. The DH parameters of the
first and second legs are given in table II below. The DH pa-
rameters for the third leg are given in table III. It may noted

Fig. 4. A three-degree-of-freedom cylindrical robot

i αi−1 ai−1 di θi
1 0 0 0 θ1k
2 0 l1 0 ϕ1j

3 0 l2 0 ϕ2j

4 π/2 0 0 ϕ3j

TABLE II. DH parameters of first and second legs of the cylindrical ma-
nipulator

that the due to the four-bar linkage the link length ai−1 and
offset di are not constant and depend on the joint rotation.

There are altogether twelve joint variables – three are ac-
tuated and remaining nine are passive variables. To solve
for the nine passive variables, we need 9 constraint equa-
tions. Six of the constraint equations are obtained by equat-
ing the coordinates of the position vectors of a point on
the top moving platform2 and these equations are similar
to equation (24). The remaining three equations are similar
to the ones use for the 3-RPS manipulator and are given as:

(p1 − p2) · (p1 − p2)− 4a2 = 0

(p2 − p3) · (p2 − p3)− 2a2 = 0

(p3 − p1) · (p3 − p1)− 2a2 = 0 (28)

The first 6 equations are function of nine passive variables
and the last three equations are function of four passive
variables. In the non-singular configuration the nine pas-
sive variables can be obtained for given values of actuated
variables by numerically by solving the 9 non-linear equa-
tions. As explained in section II, the angular velocity and
the equivalent Jacobian matrix, Jeq

ω , are computed from the

2For this manipulator, it is more useful to choose the point on the moving
platform on one side of the isosceles triangle and not the centroid as in
other examples – this choice yields the simplest constraint equations.

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l1 0 ϕj1

3 π/2 l2 sin(ϕj2) l2 cos(ϕj2) ϕj3

TABLE III. DH parameters for the third leg of the cylindrical robot

7
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joint values and the eigenvalues of the matrix g are com-
puted to understand the partitioning of the threedegrees-of-
freedom. For b = 1, a = 0.6 and all link lengths equal to
1.2, we present two sample results.
• For active variables values -0.4000, -2.0944 and -1.9500,
the 9 passive variables are given by 2.4454, 2.60483,
1.5742, 1.7938, -1.2789, 1.5674, 1.0667, 0.5939 and
1.0589 and the eigenvalues of g are 0, 6.159, and 0.
• For active variables values -0.4854, -0.4854, -0.4854, the
9 passive variables are given by 0.6103, 1.3783, -1.5968,
0.6274, -1.7756, 1.5448, -0.5690, 1.5781 and 0.8960 and
the eigenvalues of g are 0, 12.335, 0.
It can be seen that the moving platform of the cylindrical
robot has one rotational degree-of-freedom, and the other
two degrees-of-freedom are translational. Therefore, the
manipulator belongs to the class χ12, which is complemen-
tary to the class of the 3-RPS manipulator.

E. Clavel’s Delta manipulator

In the early 80’s, Clavel presented the concept of using
parallelograms to build a parallel robot. In this example,
we use the approach developed in section II to partition
the degrees-of-freedom of the Clavel’s Delta manipulator,
as described in Zsombor-Murray [14]. In the Delta manip-

Fig. 5. Clavel’s Delta robot (from [14])

ulator, as shown in figure 5, the fixed frame supports three
actuated revolute (R) joints. These rotary joint axes form an
equilateral planar triangle. The other end of each link, con-
nected to the base revolute, supports another R joint whose
axis is parallel to the one at the base. The moving plat-
form also supports three R joints whose axes form another
triangle which is similar to and maintains the same orien-
tation as the one on the base platform. The base triangle R
axes are held parallel to those on top platform because the
moving platform and the intermediate revolute joints are

connected by a parallelogram four-bar linkage whose ro-
tary joint axes are all perpendicular to the rotary joint axes
to which it is connected. The Denavit-Hartenberg param-
eters for each leg of the Delta robot are given in table IV.
In this table, the θi1s are the active joint variables and ϕs

i αi−1 ai−1 di θi
1 0 0 0 θi1
2 0 l1 0 ϕj1

3 0 l2 sin(ϕj2) l2 cos(ϕj2) 0
4 0 0 0 ϕj3

TABLE IV. DH parameters of one leg of the Delta robot

are the passive joint variables. Hence, there are 9 passive
joint variables which need to be solved for. The required
9 constraint equations are obtained as follows: 6 equations
are formulated by equating the point coordinates of the ori-
gin of the coordinate system fixed to top moving platform.
These are similar to equations (24). The three remaining
equations are obtained from the fact that the distance be-
tween the any two of three points, Pi, i = 1, 2, 3, on the top
platform are constant and known. These three equations are
given below:

(pi−pj)·(pi−pj)−3/4a2 = 0, i ̸= j, i, j = 1, 2, 3, (29)

where Pi and Pj are the vertices of the top platform. Six of
these 9 equations are functions of all the 9 passive variables
and the remaining three equations are functions of only four
passive joint variables. These equations are non-linear and
need to be solved numerically. Once the passive variables
are known the equivalent angular velocity Jacobian can be
obtained and the eigenproblem for g can be solved. In this
example, it turns out that the matrix Jeq

ω is trivially null.
Hence, the motion of the top platform is purely transla-
tional, as reported by Zsombor-Murray [14]. Therefore the
manipulator belongs to the class χ03, i.e., the complemen-
tary class of the 3-UPU parallel wrist.

IV. Gain singularity and gained motion

The results of the study of partitioning of degrees-of-
freedom shown in section III are for the manipulators at
non-singular configurations. As discussed in section II-D,
a parallel manipulators can gain one or more degrees-of-
freedom where det(Jηϕ) vanishes. We now use the ap-
proach developed in section II to determine the nature of
the gained degree-of-freedom, namely, whether it is trans-
lational or rotational. We present results for each of the five
three-degrees-of-freedom parallel manipulators discussed
in section III.
The 3-UPU Wrist
In order to find a gain-singular configuration, we need to
solve for the equation det(Jηϕ) = 0 in addition to the
9 constraint equations shown in the first example of sec-
tion III. The 10 equations are solved numerically and it

8
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is found that the values 0.7567, 1.5713, 2.238 for actu-
ated variables and 0.0673, 1.1828, 1.1828, 0.2737, 0.06671,
0.6671, -0.7969, -1.1828, -1.1828 for passive variables sat-
isfy the 10 equations. Two eigenvalues of JT

ηϕJηϕ is found
to be zero. In the non-singular configuration, the 3-UPU
wrist has three rotational degrees-of-freedom and one pos-
sible inference is that the gained degrees-of-freedom are
translational.

3-UPU Translational robot
For the 3-UPU translational robot, it was found that the
actuated joint values of (1, 1, 1) and the set -0.0006, -
1.5708, 1.5708, -3.1410, -0.0006, -1.5708, 1.5708, -3.1410,
-3.1422, 1.5708, -1.5708, 6.2838 for the passive variables
satisfy all the constraints and condition for gain singularity.
One of the eigenvalue of JT

ηϕJηϕ is zero. Since the non-
singular 3-UPU manipulator in this case is of class χ03, we
can conclude that the gained degree-of-freedom is rotary.

Clavel’s Delta robot
A gain-singular configuration of the Delta robot is given
by the following set of joint variables – -3.2087, 0.2094,
0.2992 for actuated variables and 2.2366, 1.6119, 1.7721,
0.7606, -1.9890, 1.2078, 3.8179, 1.1072, -1.9394 for pas-
sive variables. One eigenvalue of JT

ηϕJηϕ is zero imply-
ing that the manipulator has gained one degree-of-freedom.
The eigenvalues of JT

ωϕJωϕ are found to be 0, 0 and 1.
The Delta robot in a non-singular configuration belongs to
the class χ03. Hence, we can infer that the gained degree-
of-freedom is rotational.

The 3-RPS manipulator
For the 3-RPS parallel manipulator, the gain singularity oc-
curs at the set of values given by 0.5300, 0.4800, 2.0015
for actuated joints and 0.1304, 0.1455, 0.0553 for the pas-
sive joints. One eigenvalue of JT

ηϕJηϕ is found to be zero
for this set of joint variables. One eigenvalue of JT

ωϕJωϕ is
found to be very close to zero (0.8×10−7) and two are non-
zero (0.6719, 7.342) at this configuration. The non-singular
3-RPS belongs to the class χ21 implying that it has two ro-
tational degrees-of-freedom and one translational degree-
of-freedom. This partitioning of degrees-of-freedom are
same in the singular configuration and hence we can infer
that the gained degree-of-freedom is translational.

The Cylindrical robot
In the cylindrical robot, the constraints and condition of
gain singularity are satisfied by actuated variable values
of -1.5430, -1.9800, -2.8526 and 2.4626, -1.1807, 1.5710,
3.1752, -3.2030, 1.5708, 1.4856, 1.9090, 3.8477 for pas-
sive variables. One eigenvalue of JT

ηϕJηϕ was found to
be zero at this configuration implying that there is a gain of
one degree of freedom. The eigenvalues of JT

ωϕJωϕ are
found to be 0.9316, 2.1214, and 0, i.e., one is zero. The
non-singular cylindrical robot belongs to the class χ12 and
hence the gained degree-of-freedom is rotational.

V. Conclusions

In this paper, we have presented a formulation for parti-
tioning the instantaneous degree-of-freedom of a rigid body
moving in space. The general theory involves solution of
an eigenvalue problem which in turn involves solution of
at most a cubic equation. Hence, the approach presented
in this paper is semi-analytical. The developed theory has
been applied to five different parallel manipulators each
having three degrees of freedom. In each case, the devel-
oped approach allows us to determine whether the available
degrees of freedom of the output link are translational or
rotational. The developed approach also allows us to deter-
mine the kind of gained motion at a gain singularity. For
future work, we plan to extend the developed approach to
four and five degrees of freedom parallel manipulators.
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