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Abstract— During the motion of one dimensional 

flexible objects such as ropes, chains, etc., the 

assumption of constant length is realistic. Moreover, 

their motion appears to be naturally minimizing some 

abstract distance measure, wherein the disturbance at 

one end gradually dies down along the curve defining the 

object. This paper presents purely kinematic strategies 

for deriving length-preserving transformations of flexible 

objects that minimize appropriate ‘motion’. The 

strategies involve sequential and overall optimization of 

the motion derived using variational calculus. Numerical 

simulations are performed for the motion of a planar 

curve and results show stable converging behavior for 

single-step infinitesimal and finite perturbations
1
 as well 

as multi-step perturbations. Additionally, our generalized 

approach provides different intuitive motions for various 

problem-specific measures of motion, one of which is 

shown to converge to the conventional tractrix-based 

solution. Simulation results for arbitrary shapes and 

excitations are also included. 

 
Keywords: flexible object simulation, hyper-redundant robotics, length 

preserving transformation, optimization, tractrix. 

I. Introduction 

Simulation of motion of one dimensional flexible 

object such as ropes, chains, hair etc., is an active area of 

research. This problem has its parallel in hyper-redundant 

robots where the inverse kinematics problem doesn’t 

have unique solution [1-7]. In hyper-redundant robots, 

for a given motion of the end-effecter, there exist 

infinitely many solutions for the joint variables and hence 

additional constraints are imposed to obtain unique 

inverse kinematics solution. This is known as resolution 

of redundancy. There exist many possible motions for the 

trailing part of a hyper-redundant chain, whose leading 

end has a prescribed motion. Choosing a useful solution 

among them constitutes the problem of resolution of 

redundancy. Such a problem is encountered in the 

simulation and visualization of motion of flexible objects 
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such as rope or human hair wherein, given a predefined 

motion of the leader end, how should the trailing parts 

follow. Useful and easily implementable strategies are 

required to select the motion of the trailing parts from the 

myriads of redundant possibilities. This has received 

much attention in the late few decades and there exists a 

large amount of literature on this topic [8]. Allied topics 

of tissue simulation for surgical training where flexible 

objects such as the suturing threads modeled as spring-

mass-damper systems [9, 10] are also investigated. In 

those works equations of motion are solved to predict the 

motion of parts of the rope. A major difficulty in this 

approach is the choice of parameters because there is no 

systematic way of choosing the spring and damping 

parameters. In another approach [11], Cosserat theory of 

elastic rods is applied to solve the problem. In another 

attempt to solve this problem [12], ‘key-framing 

techniques’ are used without considering the kinematics 

or dynamics governing the motion. This method suffers 

from lack of uniqueness and reality in the simulation so 

produced. In a recent work, the authors have proposed a 

purely kinematics/geometric approach based on the 

classical curve called tractrix [13]. The tractrix curve 

was discovered by Leibniz, who obtained the differential 

equation and analytical solution of the curve. According 

to Steinhaus H. [14], tractrix is “the path traced by an 

object starting off with a vertical offset when it is 

dragged along by a string of constant length being pulled 

along a straight horizontal line”. One main property of a 

tractrix, which makes it a prospective and promising 

candidate for motion simulation of a moving flexible 

object, is that for a given motion of the leader, the 

motions of the trailing parts die down. That is the 

perturbations tend to die out as one moves away from the 

perturbed end [15, 16].  It has another interesting 

property that the velocity of the trailing end is always 

along the curve defining the flexible object.  

In the tractrix-based approach, the entire flexible 

object is discretized into a finite number of rigid 

segments. For a prescribed motion of the ‘head’ of the 

leading segment, the motion of the `tail’ end of the same 

segment is computed, by employing the tractrix equation. 

This is fed as the input motion of the `head’ of the 

subsequent segment and following the same procedure 

progressively, the `tail’ motions are computed to the 
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trailing end. Since the entire flexible object is discretized 

into a finite number of rigid segments, the axial length of 

the flexible object is preserved. Due to the decaying 

motion property of the tractrix, the motion appears to be 

natural and intuitive [16].  The tractrix-based approach 

can resolve the redundancy and has the aforementioned 

two interesting properties.  In reference [16], the tractrix-

based approach is demonstrated for spatial motion. The 

main disadvantage of the tractrix-based approach is that 

the flexible object must be discretized into a finite 

number of piece-wise rigid linear segments and is not 

applicable for smooth continuous curves. In this paper we 

propose a formulation to simulate and visualize the 

motion of a flexible object so as to resolve the 

redundancy, using calculus of variations. 

Length preserving nature aside, the most important 

characteristic of the tractrix solution is its property of 

inducing motion tangent to the curve at all points, thereby 

minimizing velocity of all the points at all instants of 

time. One can also argue that velocity minimization 

implicitly implies that every point on the curve moves as 

little as possible. The last assertion motivates us to solve 

the problem using optimization techniques. In addition to 

the minimization objective defined in [15], we present 

two other objective functions that yield similar results. 

We will be calling these parameters as metrics. It is 

shown that the tractrix-based solution is only one of the 

many possible length-preserving transformations for a 

given perturbation and it can also be obtained by 

minimizing certain appropriately chosen distance or 

motion metrics, which in turn depend on the given 

problem.  

Above observations point towards a motion strategy 

wherein the perturbed curve tries to take a shape which 

minimizes its ‘distance’ metric from the original curve. 

However, the notion of ‘distance measure or metric’ 

between two configurations is rather abstract and 

depends on the nature of the problem to be solved. Based 

on the measure chosen, the motion derived will change 

and hence the metrics will be defined in a more problem-

specific and precise mathematical form. In addition to 

proposing different measures, we also suggest two 

different optimization approaches, one based on 

sequentially optimizing the motion of individual rigid 

links with respect to the chosen norm and the other based 

on the single step optimization of a metric defined on the 

total curve instead of individual links. We call the first 

approach as sequential optimization and the second 

approach as overall optimization. The problem is posed 

in variational formulation which is also the motivation 

behind the overall optimization scheme mentioned 

earlier. The governing differential equations are also 

derived from the Euler-Lagrange equations of the system. 

Numerical simulations are carried out. As can be seen in 

the results, intuitive motion is obtained because of 

suitably handling the kinematics of motion. 

In this paper, the entire analysis has been carried out 

for the planar motion of the rope. However, the approach 

can be generalized to spatial motions without any 

restrictions. The fmincon routine of MATLAB
® 

is 

employed [17] for the numerical simulation studies 

throughout this paper. 

 

A.  Organization of the paper 

The paper is organized in four sections. Section II 

describes the variational calculus-based formulation [18, 

19] using the overall optimization approach and the 

sequential optimization approach. The simulation results 

are described and discussed in section III. Section IV 

contains the concluding remarks. 

II. Formulations and Methods 

A. Variational Formulation 

It is usually believed that nature tries to optimize all 

processes by trying to minimize work done or energy 

loss. In a pure kinematic sense, we can reinterpret it as a 

minimization of movement in the direction of applied 

force or input motion. This motivated the concept of 

‘distance’ metric approach.  

While formulating the problem using variational 

calculus, we consider a curve of length l .The x and y  

coordinates of different points on the curve are given as 

functions of curve length s , namely ( )x s and ( )y s . 

These unknown functions parametrically define the final 

configuration and also act as the optimization variables. 

The initial configuration of the curve is given by the 

known functions ( )0x s and ( )0y s . Assume that the 

leading end moves from ( ) ( )( )0 0,  x s y s  to ( ) ( )( ),  x l y l  

as shown in Fig.1. 

 

 
Fig. 1. Initial and displaced configurations 
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With the above given, the variational calculus 

problem is stated as follows:  

( ) ( )
( ) ( )

2 2

0 0
, 

0

( ) ( ) ( ) ( )

l

x s y s
Minimize x s x s y s y s ds− + −∫  

Subject to 

                 

2 2

0

: 0

l
dx dy

ds l
ds ds

   
Λ + − =   

   
∫                     (1) 

Data: 

                
( ) ( ) ( ) ( )0 0,  ,  ,  x s y s x s l y s l= =  

The functional here represents the area between the initial 

and final configurations. It is a candidate for measuring 

the distance between the curves and thus acts as the 

metric mentioned in the previous section. The 

minimization of the functional automatically implies that 

each point on the curve moves as little as possible when 

subjected to a perturbation at one end.  

In (1), Λ is the Lagrange multiplier corresponding to 

the constraint that preserves the length of the curve as it 

is displaced. As the initial curve and the endpoint after 

perturbation are known, they are given as known input 

data in the variational statement. 

Therefore the Lagrangian of the variational problem 

is given as: 

         

{ }2 2
0 0

0

2 2

0

( ( ) ( )) ( ( ) ( ))

l

l

L x s x s y s y s

dx dy
ds

ds ds

ds

l

= − + −

       Λ +           

+

− Λ

∫

∫
       (2)

 

 

The corresponding Euler-Lagrange equations are 

                       0
L d L

x ds x

 
 
 

∂ ∂
− =

′∂ ∂
                               (3)                  

                                                          

 

                      

0
L d L

y ds y

 
 
 

∂ ∂
− =

′∂ ∂
                                   (4) 

Where 
dx

x
ds

′ =  and 
dy

y
ds

′ =
 

By using (2.a) and (2.b) respectively we obtain the 

following expressions: 

 

         

2

0

32 2 2 2 2
0 0

( )
0

( ) ( ) ( )

x x x y x y y

x x y y x y

′′ ′ ′ ′ ′′− −
− Λ =

− + − ′ ′+
       (5) 

         

2

0

32 2 2 2 2
0 0

( )
0

( ) ( ) ( )

y y y x x y x

x x y y x y

′′ ′ ′ ′ ′′− −
− Λ =

− + − ′ ′+
       (6) 

Eliminating  from (2.c) and (2.d), and subsequently 

simplifying the resulting expressions yield 

 

                        

0

0

( ) ( )

( ) ( )

x s x sy dy

x dx y s y s

′ −
= =

′ −
                         

(7) 

 

During the derivation of (7) it is assumed 

that
3

2 2 2( )x y′ ′+  cannot be equal to zero, which in turn 

implies the physical impossibility of any of the 

infinitesimal length elements shrinking to zero length. 

 

B. Overall Optimization 

Analytical solution for (7) is not possible for all but 

few simple curves. Hence, we solve the above variational 

problem using finite variable optimization wherein we 

discretize the curve into finite rigid link chain and give 

the perturbation in finite steps. 

For overall optimization we employed the non-linear 

optimization routines available in MATLAB
®
. To reduce 

the number of constraints imposed on the problem, we 

changed our optimization variables from x(s) and y(s), as 

used in the variational formulation, to dx
ds

. For any 

user defined initial curve, the program then extracts 

values of  dx
ds

at finite number of points on the curve 

using forward difference. Since the individual 

infinitesimal length elements are assumed to be un-

stretchable,  
dy

ds
 is computed as 

                

      

2

1
dy dx

ds ds

 
= −  

 
                               (8) 

 

The discretized optimization problem can now be 

restated as: 

 

( ) ( )
1

2 2

0 0
( ) 1

( ) ( ) ( ) ( ) ( )
n

dx i
ids

Minimize x i x i y i y i s i
−

=

− + − ∆∑  

 

where, i=1 to n-1 

 

Subject to 

                
( ) ( )

1
2 2

1

  : ( 1) ( ) ( 1) ( ) 0
n

i

x i x i y i y i l
−

=

Λ + − + + − − =∑  

Data: 

                 
( ) ( ) ( ) ( )0 0,  ,  ,  x s y s x s l y s l= =  

 

where, n represents the number of discretized points 

considered along the length of the given curve and 

( )s i∆ represents the spacing between the i
th 

and ( )1i +
th

 

points. 

Thus, following the previous argument, the functions 

dx
ds

will suffice to compute corresponding 
dy

ds
 using 

(8) for every value of s  during the motion. By knowing 
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the values of ( )dy
s

ds
, ( )dx s

ds
, 

and ( ) ( )( )0 ,  0x s y s= = , we can fully define the 

configuration of the curve at a given instant of time. 

 

C. Sequential Optimization 

In this approach, the area minimization is applied at 

the elemental level and optimization propagates through 

the curve one segment at a time, i.e., sequentially. 

 
                      (a)                                  (b) 
Fig. 2. (a) Elemental Area Minimization (b) Elemental Distance 

Minimization 

 

Let the initial configuration of the rigid segment 

under consideration be AP. Assume the known input 

disturbance be PQ and the perturbed unknown 

configuration be BQ. The sequential optimization 

problem can then be stated in two ways. 

 

1. Area Minimization Approach: 

,  
(Area ABQP)

B Bx y
Minimize  

 

Subject to 

                   |BQ| = L 

Data: 

                   L, Step Length (PQ)   

 

2. Distance Minimization Approach: 

 

 
 

Subject to 

 

 

Data: 

                  L, Step Length (PQ)   

 

Both the formulations for distance minimization and 

area minimization arrive at the same result as is clear 

from the Fig.2. For the distance moved by the trailing end 

to be minimized, the trailing end point B should be 

collinear with the radius vector QA
�

, which is also the 

condition for minimization of area of the quadrilateral 

ABQP. Application of the above procedure to a single 

rigid link with straight line motion applied at the leading 

end generates a tractrix as the resulting motion of the 

trailing end, as shown below in Fig.3.From this very fact, 

it can be concluded that sequential element level 

optimization leads to conventional tractrix-based 

solutions as mentioned in the introductory part of this 

paper. 

 

 
Fig. 3. Comparison of curves obtained using analytical equation of a 

tractrix and the sequential numerical optimization 

 

To summarize, sequential optimization implies that, 

given an input curve, the configuration of the link that is 

nearest to perturbed end is obtained using area or 

distance minimization, the new position of the link’s 

endpoint is extracted and given as input perturbation to 

the following link and then this process is sequentially 

applied until the last link is reached. Thus, we get the 

new curve. In Fig.4 a known perturbation is given to the 

n th
 (last) point of the initial curve. Sequential 

optimization determines the motion of the ( )1n −
th

 link 

using the methods described above. This gives the locus 

of the ( )1n −
th

 point which is used as the known 

perturbation while determining the motion of the 

( )2n −
th

 link. Use of this method up to the 2
nd

 point will 

give us the motion of the entire curve. 

III. Results and Discussions 

As mentioned earlier, to quantify the abstract notion 

of distance between two configurations, we have selected 

different metrics defined between the configurations. We 

now present five chosen distance measures labeled as 

metric 1 to 5.  
Where, 

a) Metric 1: Sum of the squares of the distances (m2) 

b) Metric 2: Area traced (m2) 

c) Metric 3: Sum of squares of joint rotations (rad2) 

d) Metric 4: Weighted square sum of distances (m3) 

A 

x 

y 

x 

y 

B 

P 
Q 

L 

dr 

L 

B 
A 

P Q 

2 2( ) ( ) 0B Q B Qx x y y L− + − − =

2 2

, 
( ) ( )

B B

A B A B
x y

Minimize x x y y− + −

Circular 

arc of 

radius r 

with center 

at Q 
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e) Metric 5: Weighted square sum of joint rotations (m.rad2) 

      Metric 1 represents sum of the squares of the 

distances between the corresponding points lying on the 

two configurations. Metric 2 represents the area between 

the two configurations. Metric 3 represents the sum of 

squares of joint rotations while transforming from initial 

to perturbed configuration. Metric 4 represents the 

weighted square sum of distances moved by discretized 

points from initial to final configuration. Metric 5 

represents the weighted square sum of joint rotations 

from initial to final configurations. The weights used here 

are the curve lengths measured from perturbed tip to the 

respective discretized points.  

 

 
Fig. 4. Pictorial illustration of sequential optimization technique 

 

While the first three metrics are chosen to provide 

adequate measures of distance between two curves in 

general sense, the last two have been chosen specifically 

with an objective of minimizing the closeness measures 

for points away from the perturbed tip so that motion is 

constrained to the neighborhood of the perturbed tip. 

Values of these metrics, calculated for a parabola, 

using sequential and overall optimization routines for 

single step as well as multi step perturbation are shown in 

TABLE 1. In the case of multi-step methods we used five 

steps with perturbation  unit/step and for single 

step a perturbation of  unit is given to the end 

point. 

 

Metric 
Overall Optimization Sequential Optimization 

Single step Multi step Single step Multi step 

Metric 1 8.6601 8.6931 8.9479 9.3228 

Metric 2 2.9847 2.9982 3.0491 3.1126 

Metric 3 0.1099 0.1526 0.0968 0.1430 

Metric 4 19.1153 19.2260 20.0979 21.1787 

Metric 5 0.4606 0.6406 0.3146 0.4532 

TABLE 1. Comparison of different metrics 

Fig. 5. shows the optimized perturbed configurations 

derived for a parabola using different optimization 

strategies described so far. Metric 2 was used as objective 

functions in all of the cases.  

 

 
Fig. 5. Different optimization techniques applied on a parabola 

 

As can be observed from TABLE 1, while metrics 1 

and 2 are low for overall optimization with single-step 

perturbation, metric 3 gets minimized for sequential 

optimization with single-step perturbation. Proceeding 

along the same lines, while metric 4 seems to favor 

sequential optimization with multistep perturbation, 

metric 5 shows that the weighted squares of joint 

rotations away from the perturbed tip are monotonically 

decreasing for the curves derived using sequential 

optimization and the same has been plotted in Fig.6. from 

which it can be inferred that sequential optimization (i.e. 

tractrix-based) solutions induce the least amount of joint 

rotation on points away from the perturbed tip, as most of 

the motion is taken up by joints closer to the leading end 

of the rope. For the same reason, metric 5 gets minimized 

for sequential elemental optimization solution. This 

reveals a common characteristic of all the optimization 

solutions presented here that the curve length-weighed 

joint rotations from the initial to the perturbed 

configuration decrease monotonically and they 

asymptotically approach zero as one moves away from 

the perturbed point. Another important outcome of the 

simulation is that, although the tractrix-based solution 

matches exactly with the elemental sequential 

optimization solution for any given flexible straight line 

input curves or input curves concave with respect to the 

given perturbation input (which is the case as shown in 

Fig. 8., a sine curve). The same is not true if given input 

curve is convex with respect to given perturbation 

direction (which the case in Fig. 5., a parabola). In such a 

scenario, as one can see from the results, that the 

optimization solution will intersect with the initial input 

curve AB at a point I. While the portion BI will follow 

motion matching with the tractrix-based solution, the 

portion AI exhibits a completely different behavior which 

deviates from a tractrix-based solution. The exact reasons 
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for this, needs to be investigated in detail at a later point 

of time. 

The results indicate that depending on the nature of 

the objective function, the resulting perturbed 

configuration depends on the choice of optimization 

strategy, whose choice, in turn rests on the minimization 

objective of the problem in hand. An alternate approach 

to the problem would have been to make all of these 

metrics (specifically 3,4 and 5) as objective functions for 

the optimization problem, but owing to the highly non-

linear nature of the objective function and the subsequent 

convergence issues of the numerical routine used, we 

opted for numerical evaluation of metrics as shown 

above. 

 

 
Fig. 6. Monotonically decreasing nature of weighted squares of joint 

rotations for the optimized final configurations 

 
 

The results found indicate that depending upon the 

nature and objective of the problem in hand, proper norm 

needs to be chosen. For example, if the application is for 

a flexible robotic manipulator chain, the main objective 

will be to minimize the joint rotations so as to minimize 

motor actuation and power consumption, in which case 

metric 3 may be employed. However, if the problem is 

connected with trajectory planning of a locomotive, then 

the importance shifts to minimizing the area traced by the 

locomotive over time. On the other hand, an objective of 

distance minimization will yield the classical tractrix-

based solution, as can be noted from the Fig. 7 where the 

above mentioned curves generated during the motion 

from initial configuration to perturbed configuration are 

shown in dotted lines. This proves our claim that the 

tractrix is one of the many possible solutions for a given 

perturbation and imposed length preserving nature of 

motion. 

Next we are giving more cases considering straight 

line and sine curve as the initial configurations in Fig. 7-

Fig. 14. The continuous curves shown are the initial input 

curves; the pull direction is the predefined direction of 

perturbation to the leading end of the curve, indicated by 

the chain line. The dotted curves show the intermediate 

and final configurations assumed by the curve after each 

finite input perturbation. As can be observed from the 

figures, sequential and overall optimization gives entirely 

different final configuration for the same input curve and 

perturbations. Similarly, the single-step and multistep 

optimization routines also yield substantially different 

solutions. 

In addition, to shows the applicability of the methods 

described so far to any generic scenario, simulation 

results have been given for motion derived in response to 

an arbitrary input perturbation at the ‘leading end’ of the 

curve are shown in Fig. 16 and Fig. 17. 

 

 

 

 

 
 

 
Fig. 7. Tractrices obtained in case of a straight rope 

 

 

 

 
Fig. 8. Initial and Final configuration of a Sine curve subjected 

To multi-step overall optimization 
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Fig. 9. Overall optimization for a sine curve subjected to multistep 

perturbation (with intermediate configurations) 

 

 

 

 
Fig. 10. Initial and Final configuration of a Sine curve subjected 

To multi-step sequential optimization 

 

 

 
 

 
Fig. 11. Sequential elemental optimization for a sine curve subjected 

 to multistep perturbation (with intermediate configurations) 

. 

 
Fig. 12. Initial and Final configuration of a Straight Line subjected 

To multi-step overall optimization 

 

 

 
Fig. 13. Overall optimization for a straight line subjected to multistep 

perturbation (with intermediate configurations) 

 

 

 

 
Fig. 14. Initial and Final configuration of a Straight Line subjected 

To multi-step sequential optimization 
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Fig. 15. Sequential elemental optimization for a straight line subjected 

to multistep perturbation (with intermediate configurations) 

 

 

 

 

 

 
 

 
Fig. 16. (a) 

 

 

 

 

 

 
Fig. 16. (b) 

 

 
Fig. 16. (c) 

 
Fig. 16. (d) 

 
Fig. 16. (e) 

 
Fig. 16. (f) 

 

Fig.16. Sequential elemental optimization for an arbitrary curve 

subjected to multistep generic perturbation (e.g. sinusoidal).  (a) shows 

the initial and final configurations along with the generic pull direction.  

(b)-(e) show intermediate configurations during motion showed in (a).  
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Fig. 17. (a) 

 

 
 

Fig. 17. (b) 

 

 

 
 

Fig. 17. (c) 

 

 

 
Fig. 17. (d) 

 

 
 

Fig. 17. (e) 

 

 

 
Fig.17. (f) 

 

Fig.17. Overall optimization for an arbitrary curve subjected to 

multistep generic perturbation. Fig. 17. (a) shows the initial and final 

configurations along with the generic pull direction.  Fig. 17.  (b), (c), 

(d), and (e) show intermediate configurations during motion showed in 

(a). Fig. 17. (e) shows the initial and final configurations with the loci 

of the intermediate joints 

IV. Conclusion and Future Work 

A new approach, based on calculus of variation, for 

the simulation and visualization of the motion of a 

flexible object is proposed in this paper. The proposed 

approach can also be used for redundancy resolution in 

hyper-redundant robotic manipulators. The approach is a 

generalization of an algorithm developed for piece-wise 

linear segments using a classical curve called the tractrix. 

It is shown that the tractrix-based approach is one of the 

many possible length-preserving transformations for a 

smooth curve. An important feature of the proposed 

algorithms is that it is a kinematics-based solution and it 

does not require assuming values for mass, stiffness, or 

damping of the flexible object which are required for 

simulations based on dynamics. Since approach is solely 

kinematics and geometry based, it can be applied to 

simulation and visualization of motion of generic flexible 

objects such as snakes, chains, etc. The minimization 

property leads to a more natural motion of these objects. 

The paper presents various objective functions for the 

minimization. Based on the objective function employed, 

the solution to the problem changes and this approach 
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can give the optimized and appropriate solutions for any 

given objective, which in turn will be decided by the 

problem in hand. 
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