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Instantaneous Properties of Multi-
Degrees-of-Freedom 
Motions—Point Trajectories 
A general framework is presented for the study of the properties of trajectories 
generated by points embedded in rigid bodies undergoing multi-degrees-of-freedom 
motions. Quantities are developed to characterize point trajectories generated by 
different mechanisms and to distinguish between different positions along the same 
trajectory. Point trajectories are classified into three types according to whether the 
number of degrees of freedom is less than, equal to, or greater than the dimension of 
the space in which the motion takes place. Local and global motion properties are 
developed for each of these three cases. A new way of using the redundant degrees 
of freedom in (redundant) mechanisms is presented. These analysis techniques are 
applied to two- and three-degrees-of-freedom mechanisms containing rotary and 
prismatic joints. 

1 Introductio n 
Over the past 20 years, there has been rapidly growing in-

terest in mechanical manipulators, mechanical hands, walking 
machines and many other so-called robotic devices and smart 
products. Th e motio n o f the links o f suc h machine s are 
governed by more than one independent variable , in contrast 
to conventiona l machine s whic h hav e onl y on e controllabl e 
degree of freedom. 

One way to study the motion of links, which are assumed to 
be rigid bodies, of a multi-degree-of-freedom mechanism , is to 
consider the motion of points embedded in the moving links. 
For a one-degree-of-freedom motion , a point's path in three-
space is a twisted curve. For a two-degrees-of-freedom motio n 
a point's path i s a surface. Propertie s of curves and surface s 
are wel l know n [1-5] . However , littl e i s known abou t the 
properties of the trajectories o f points embedded in a moving 
rigid body undergoing more than two-degrees-of-freedom mo -
tion. Similarly, the effects o f the structural parameters of the 
multi-degrees-of-freedom mechanis m (e.g. , the dimensions of 
the links) on the properties of the trajectories traced out by the 
points of the moving body have not been studied. 

The majorit y o f the previou s work s i n connection wit h 
global propertie s o f poin t trajectorie s fal l unde r two 
categories: (1) Global theorems on curves and surfaces [5 , 6] ; 
(2) Workspaces of mechanical manipulators [7-9] . In the sec-
ond category, th e workspace boundar y ha s been of primary 
interest. 

In thi s paper , a  general framewor k fo r the stud y o f the 
properties of point trajectories i s presented. Point trajectorie s 
are classifie d int o thre e classe s accordin g t o whether the 
number of degrees of freedom is less than, equal to, r 
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than the dimension of the space of the point trajectory. First -
and second-order local properties and a few global properties 
of th e poin t trajectorie s ar e developed . Quantitie s ar e 
developed to characterize poin t trajectorie s generate d by dif-
ferent mechanism s and to distinguish between different posi -
tions along the same trajectory. Thes e quantities are obtained 
by using concept s fro m differentia l geometry . Tw o of these 
quantities ar e base d on a transmission efficienc y define d in 
terms of "areas" and "volumes." We present a novel way to 
utilize the extra freedom s in a system havin g motion redun -
dancy. Th e analysi s technique s an d th e ne w result s ar e il-
lustrated with examples of two- and three-degrees-of-freedo m 
open-loop chains containing rotary and sliding joints. 

2.1 Mathematica l Formulatio n 
In th e mos t genera l terms , th e pat h generate d b y a point 

moving unde r a n m-degrees-of-freedo m motio n ca n b e 
represented by a set of equations giving the coordinates of the 
point, in a fixed referenc e frame , a s functions o f m indepen-
dent motion parameters. In the case of manipulators or multi-
degrees-of-freedom mechanism s th e m independen t 
parameters ar e typicall y th e rotation s or translations a t the 
joints. The actual equations depend on the mechanism's struc-
tural parameters , e.g. , lin k lengths , offset s an d twis t angles. 
We can symbolically write these equations as 

*:(0, 6m)-(x,y,z) (1 ) 
Here, (dlt .  . . , 0m) are the m independen t motio n 

parameters, (x, y, z) are the coordinates of a point embedded 
in the moving rigid body (measured in a reference three-space, 
R3) and * may be thought of as a mapping which takes points 
in the motion paramete r spac e to points in th e space of the 
motion. The functions V depends on the point chosen in the 
moving rigi d bod y an d th e mechanism's structure . A s men-
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tioned before , fo r a  one-degree-of-freedo m motio n (m =  1) , 
the point' s pat h i n three-spac e i s a  twiste d curv e and , fo r a 
two-degrees-of-freedom motio n (jn = 2) , a  point' s pat h i s a 
surface. Unde r a  three-degrees-of-freedom motio n (m =  3) , a 
point's pat h i s a  "solid " regio n (wit h a  boundary) i n a  three-
space. Fo r four - o r higher-degrees-of-freedo m motio n (m > 
4), th e point' s pat h i s stil l a  soli d (wit h a  boundary) bu t no w 
we may have infinitely man y values of the independent motio n 
parameters fo r a  given (x, y, z) . When thi s situation arises , we 
have a  so-calle d redundan t motion . 

2.2 Loca l Propertie s 

In general , th e equation s represente d b y (1 ) ar e highl y 
nonlinear, eve n fo r simpl e mechanisms , an d henc e i t i s ver y 
difficult t o determine propertie s o f th e point trajector y whic h 
depend on the entire motion (so-calle d globa l properties) . I t is 
much easie r t o obtai n th e differentia l propertie s o f th e mo -
tion, tha t ar e valid i n the neighborhood o f th e position unde r 
consideration. Thes e ar e th e so-calle d first- , second- , an d 
other higher-orde r propertie s a t a  position , an d ar e obtaine d 
by finding th e first , secon d and higher derivatives a t that posi -
tion. Althoug h propertie s obtaine d fro m thes e derivative s ar e 
local, the y ofte n giv e u s valuabl e insigh t int o th e globa l 
properties o f th e poin t trajectory . 

If th e motion i s a function o f on e independent variable , we 
can talk of the tangent to the curve, the curvature, and the tor -
sion. Fo r a  curve the slop e of th e straigh t lin e (tangen t t o th e 
curve) is a first-order property , the curvature is a second-order 
property, an d th e torsion , whic h describe s th e twisting o f th e 
curve, i s a  third-orde r property . Thes e propertie s totall y 
describe the curve at a  poin t to , respectively , th e first , secon d 
and thir d orders . Thes e propertie s ar e geometric i n nature . I f 
we take tim e a s th e independen t variable , th e first- , second- , 
and third-orde r propertie s ar e th e velocity , acceleratio n an d 
jerk o f a  point' s motio n alon g th e path . Thes e time-base d 
quantities ar e ou r primar y concer n i n thi s paper . The y ar e 
referred t o as, respectively, the first-, second- , an d third-orde r 
motion properties . 

The first-order propertie s o f a  point trajectory du e to multi-
degrees-of-freedom motion s are obtained from th e first partia l 
derivatives o f the function " ^ with respect t o 0 ;, i =  1 , .  . ,  m. 
The matrix o f th e firs t partia l derivatives , whose columns ar e 
dty/ddh i s called th e Jacobia n matrix , J(M') , [5] . Denoting th e 
dimension o f th e space in which the motion i s taking place by 
«, we can see that J(* ) i s a n X  m matrix . The velocity, v, of a 
point (x, y, z) located i n the fixed spac e by the position vecto r 
p, i s obtaine d b y evaluatin g th e element s o f J(^ ) a t p ; 
denoting this as J(¥)p we have 

v = J(*)pe (2) 

where, 0  i s an w-dimensiona l vecto r o f th e rate o f chang e o f 
the parameter s (i.e. , 0  =  (0, , .  . . ,  0m)T). B y usin g a  dif -
ferent 0 , w e obtain a  differen t velocit y fo r th e moving point . 
By varyin g 9 , w e ca n ge t a  distribution of velocities o f th e 
moving point . Thi s first-orde r propert y i s o f primar y impor -
tance and wil l be developed i n detail fo r poin t trajectorie s du e 
to multi-degrees-of-freedo m motions . 

If ther e i s n o constrain t o n th e 0,'s , th e magnitud e o f th e 
velocity vecto r ca n b e arbitrar y an d no t muc h ca n b e sai d 
about the magnitude o f v . I t is much more instructive to use a 
normalizing constrain t on the 0,'s . There are two natural ways 
to pu t a  constrain t o n 0 : 

(1) On e coul d us e a  linea r equatio n relatin g th e 0,'s . Thi s 
equation ca n be of th e form, 6k equal s a  constant o r 6k equal s 
a linear combination o f al l (or some) of the 0,'s . However , th e 
use o f suc h relation s effectivel y reduce s th e numbe r o f in -
dependent parameter s an d henc e i s not o f muc h us e in study -
ing w-degrees-of-freedo m motions . 

(2) On e could bound th e magnitude o f 0  wit h a  quadrati c 

relation o f th e for m 0 r 0 =  k2. Whe n k =  1 , we call the mo-
tion unit speed. By varying k i t is possible to obtain al l possible 
velocities a t th e poin t unde r consideration . W e wil l us e 0 rQ 
= k2 a s the normalization constrain t o n 0 . 

The second-orde r motio n propert y considere d wil l b e th e 
rate o f change o f velocity , i.e. , th e acceleration o f th e moving 
point a t p . In the cases where (m < n), w e will have two com-
ponents of acceleration : the normal and the tangential compo-
nent. Fo r poin t trajectorie s wher e th e numbe r o f motio n 
parameters i s equa l t o o r greate r tha n th e dimensio n o f th e 
space (m >  n), ther e is no notio n o f a  normal component . I n 
the cases when m i s equal t o n, instea d o f th e normal compo -
nent, we consider th e rate of chang e of certai n area o r volume 
(both define d late r on ) a s a  second-order propert y o f interest . 
Where the number o f parameter s excee d the dimension o f the 
space (m > ri), w e hav e fre e choice s whic h ca n b e use d t o 
modify th e first - an d second-orde r motio n properties . 

2.3 Classificatio n o f Poin t Trajectorie s 

In general , poin t trajectorie s ca n b e classifie d int o thre e 
classes. First , w e have the case s where th e numbe r o f degree s 
of freedom , m, i s les s than th e numbe r o f coordinates , n, re -
quired t o specif y a  point . Second , w e hav e case s wher e m is 
equal to n and , finally , w e have cases where m i s greater tha n 
n. Whe n a  point's trajector y i s a curve (m = 1 , n = 2 or 3 ) or 
a surface s {m = 2, n =  3) , w e hav e th e firs t class . Soli d 
regions wit h boundarie s com e unde r th e secon d clas s an d 
redundant motion s belon g t o th e thir d category . W e d o no t 
discuss curve s since they hav e been widel y studied , th e reade r 
is referred instea d t o [1-5] . W e will however us e the case m = 
2 an d n =  3  (i.e. , th e trajector y i s a  surface ) t o develo p th e 
concept o f distributio n o f velocities . 

3.1 Poin t Trajectorie s Wit h m < n 

In thi s section , w e conside r poin t trajectorie s wit h m =  2 
and n =  3  (surfaces i n three-dimensional spac e R3). The set of 
equations x= ^i(Bi,62),y = ^2(^1 . 82), z = \l/i(dl,62) defines 
a surface generate d b y a poin t (x, y, z) in terms o f th e motion 
parameters d, an d 0 2. W e wil l represen t a  surfac e a s a  con -
tinuous, differentiate functio n V: U — R3 wher e U E  R 2, is 
open with coordinates 0 , an d 0 2, and (d¥/d0, ) x  (d¥/30 2) * 
0. I f ther e exis t position s o n th e surfac e wher e thi s cros s 
product o f th e partia l derivative s i s zer o o r no t define d uni -
quely, w e hav e a  singularit y an d w e d o no t a t tha t positio n 
have a  two-degrees-of-freedo m motion . Fo r convenience , we 
define symbol s ^ , an d ~9y for th e partia l derivative s o f th e 
function "ty with respec t t o th e parameters 0,- ; with i,j = 1 , 2 , 
we have 

* , = d*/30,-

IJ ddfidj 

3.2 First-Orde r Propertie s 
Using th e notatio n 0, o t o denot e a  specifi c valu e o f 0, , i t 

follows tha t th e tangen t plan e t o a  surfac e ir : U —  R3 a t a 
point p =  • * (0| iO. #2,0) is t ne plan e through p  perpendicular to 
* i (0i,o > ̂ 2,0) x  * 2 (0i,o > "2,0)• The unit normal is given by 

where th e expressio n o n th e right-han d sid e i s evaluate d a t 
(0i,o> 02,o) - Th e se t 0? , , * 2 , n ) a t p  i s linearl y independent , 
though i n genera l no t orthogonal , an d serve s a s a  loca l coor -
dinate basis for th e trajectory surfac e in R3. Th e tangent plan e 
at p  i s independen t o f parametrizatio n [5] . Th e Jacobia n 
matrix J(*) p =  (* ] (0 ]iO, 0 2jO) *2 (0 liO, 0 2,o)) i s o f ran k two . 
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Any vector i n th e tangen t plan e ca n b e expresse d a s a  linea r 
combination o f ^i an d * 2 . I n particular, i f the parameters 0 , 
a nd 0 2 are given as functions o f time t, the velocity of the point 
p moving on a curve ^ (0i(O > 02(0) can be expressed as 

v = *1 e , + * 2 0 2 (5 ) 
From equation s (4 ) an d (5 ) v  •  n  =  0 , i.e. , al l point -

velocities lie in the tangent plane . Also, as 0\ an d 0 2 are varied 
without any constraint , al l possible directions and magnitude s 
of v  ar e obtained . T o ge t a  bette r understandin g o f th e 
distribution o f v , w e loo k a t th e magnitud e o f v . Th e do t 
product of the velocity vector with itself may be written as 

w=g1 101
2+2gne le2+g2 2e2 (6) 

where gtf =  *, • •  •*;, i,j =  1 , 2. The matrix [g] , with element s 
gu i s symmetric an d positive-definit e [10] . In th e languag e o f 
differential geometr y o f surfaces , th e elements gy's determin e 
the first fundamental form o f th e surface . Th e do t produc t 
also define s a  metric1 i n th e tangen t plane . W e mak e th e 
following observation s fro m th e definitio n o f th e gj/s an d 
equation (6) : 

(1) Th e matri x [g] is th e sam e a s J r J , where , fo r conve -
nience, J  i s used to denot e th e Jacobian matrix , JC*) P. 

(2) Th e element s gn, g 12, an d g 22 ar e in general function s 
of 6\ an d 0 2, an d henc e depen d o n th e complete two-degrees -
of-freedom motion . 

(3) Fo r an y give n valu e o f gn, g}2, an d g22, equatio n (6 ) 
describes a quadratic surface i n the (d1, 62, I  v I) space. I f v2 i s 
constant, equatio n (6 ) describes an ellipse in the (0,, 02) space. 
If 0[ o r 0 2 is constant, equatio n (6 ) describes a  hyperbola . 

(4) Sinc e [g] is positive-definite, th e minimum value of I  v I 
is zero onl y whe n 0 , an d 0 2 ar e bot h zero . Thi s cas e i s rule d 
out a s i t implie s n o motion . Th e maximu m valu e o f I  v I goes 
to infinity i f 0 , o r 0 2 goes to infinity . A s mentioned before , i t 
is instructive to use the normalizin g conditio n 0 2 +  6\ = 1 . 

The maximu m an d minimu m v 2, subjec t t o th e uni t spee d 
condition (0\2 +  0 2

2 =  1) , are obtained by solving dv*2/d0,- = 
0, i =  1,2 , wher e 

v*.v*=g1101
2+2g120102+g2202

2-X(0 )
2 + 0 2

2 - l ) (7) 

This reduces to solving the eigenvalue problem 
[g ]9 -X9 =  0 (8 ) 

Since the matrix [g] is symmetric and positive-definite, th e two 
eigenvalues ar e rea l an d positive . I f \ l an d X 2 ar e th e eigen -
values, we can write 
Xi12 =  ( l /2) ( (g„+g2 2 )±[ (g 1 1 +g 2 2 ) 2 -4(g 1 1 g 2 2 -g 2

2 ) ] 1 / 2 j (9 ) 
Assuming X t >  X 2, th e maximu m an d minimu m value s o f 

ivl ar e 
Ivl =X! /2 
1 *  '  max ' M 
Ivl - X 1 / 2 
1 v '  min -  A 2 

(10) 

(11) 

and these occur at each point whe n the ratio 02/0\ ar e given by 
(5)1=(l/2)tan-1[2g1 2 / (g„-g2 2)] 
(5)2 =  ( l /2) tan-' [2g12/(gH -  g 22)] + TT/2 

where tan 8 =  (0 2/0,). 
Equations (11 ) when use d wit h 0\ 2 +  0 2

2 =  1  give uniqu e 
values of dx an d 0 2. When these values of 0, , 0 2 are substitute d 
in (5 ) we get th e maximu m an d minimu m Iv l an d th e direc -
tions i n th e tangen t plan e alon g whic h the y occur . I t ca n b e 
easily show n fro m (5 ) that , a t a  poin t p , th e directio n o f v 
depends onl y o n th e rati o o f 0 2 an d 6U an d henc e th e direc -
tions of maximum an d minimu m v  will not change if we use a 
nonunit speed condition, 0 2 +  B\ =  k1 (k ^  1) . However, th e 

A metric essentiall y define s distanc e and , i n thi s case , angl e i n th e tangen t 
plane, fo r detail s se e [5] . 

magnitude o f th e maximum an d minimu m v  will be scaled b y 
k. 

Next, we show that a t each point p , as we vary 9 , th e tip of 
the velocity vector lies on an ellipse in the tangent plane. Equa-
tion (5) can be written as 

v = JO (12 ) 

J r v =  [g]9 (13 ) 
[g] is nonsingular an d henc e w e can take th e inverse to obtai n 
9 . Fro m which it follows tha t 

vTHlg]-l)T(lgrl)3Tv = QT9 (14) 
As [g] and [g ] '  ar e symmetric we get 

9 r 9 =  vr(J[g]-1)(J[g]"1) rv (15 ) 
The quantity (J[g]~' ) (J[g ] ~ ' )T i s a symmetric 3 x  3matrixo f 
rank 2  (as both J  an d [g] _ 1 ar e o f ran k 2) . Hence, i f th e left -
hand side , 9 r 9 i s unity, the tip of the velocity vector describe s 
an ellipse . I f 9 r 9 =  k1, th e tip of th e velocity vector stil l lies 
on a n ellips e bu t th e siz e o f th e ellips e i s scaled b y k. 

When 9 r 9 i s unity, th e are a o r siz e of th e ellipse , denote d 
by Ae, i s given by 

/ l e =  7r(X1X2)1/2 = 1r(det[g])1/2 (16 ) 
The quantit y Ae/-w o r (det[g]) 1/2 i s a  measur e o f mea n v 2, 
where the (mean v 2) , / 2 i s the radius o f th e circle with the same 
area a s the ellipse . (I t i s also th e geometric mea n o f th e max -
imum an d minimu m Ivl. ) Henc e a s det[g] increases the mea n 
v2 als o increases . 

In th e contex t o f manipulator s th e quantit y 6\ + 6\ ca n b e 
seen as an input effor t (0\ , 02 are the joint rates ) and v 2 a s the 
output ( v is the velocit y o f a  poin t o n th e end-effector o f th e 
manipulator). If6\ +  0 2 =  A: 2 we can write 

lvlmax =  A:Xi'2 

lvlmin=A:Xl/2 (17) 

Denoting th e squar e o f th e geometri c mea n o f lvl max an d 
lvlm i nbyv2 ,weget 

f2/*2 = (X1X2)1/2 = (detfe]),/2 (18 ) 
Hence (det[g]) 1/2 ca n b e thought o f a s a  measure o f "velocit y 
transmission" a t th e poin t i n th e poin t trajector y unde r 
consideration. 

In conclusion, w e have characterized th e first-order proper -
ty o f th e motio n b y th e siz e and shap e o f th e velocity ellipse . 
We have shown that ther e are directions (i n the tangent plane ) 
at p  alon g whic h th e poin t p  ca n mov e wit h maximu m an d 
minimum velocity. We have shown that for nonuni t speed mo-
tions (0 2 +  0 2 =  k2), a t p , the shape of the ellipse is the sam e 
as for th e unit spee d motio n bu t the size of th e ellipse and th e 
maximum an d minimu m velocitie s are simply scaled by k. W e 
have also shown that the area of the ellipse at p is a measure of 
the "velocit y transmission " an d th e magnitud e o f th e mea n 
velocity vector a t p  is larger i f the area of the velocity ellipse is 
larger. 

At thi s stag e w e make th e followin g remarks : 

(1) I n referenc e [11] , Mason deal s wit h th e application o f 
forces usin g manipulators . Ou r result s combine d wit h th e 
duality o f force s an d velocitie s [4] , immediately yield some of 
his result . Fo r example , th e principa l direction s o f forc e ap -
plication (i.e. , th e direction s alon g whic h w e ca n appl y max -
imum and minimum force ) ar e orthogonal to the directions of 
maximum an d minimu m velocities . I n referenc e [12] , 
Salisbury an d Crai g us e the conditio n numbe r o f J 7* to stud y 
forces i n mechanical hands . Th e condition numbe r o f J  i s the 
ratio of its maximum and minimum eigenvalues , and would be 
a measur e o f th e shap e o f th e velocity ellips e in ou r analysis . 

(2) Yoshikaw a [13 ] ha s introduce d th e concep t o f 
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manipulabihty measur e fo r redundan t motions . Th e dif -
ference between our measure of velocity transmission and the 
manipulabihty measur e o f Yoshikaw a i s tha t w e us e 
[det(JrJ)]1/2 rathe r tha n hi s [det(JJ r)]1/2. I n th e particula r 
case of m = 2 and n = 3, Yoshikawa's measure, [det(JJr)]1/2 

is always zero and is not o f much use. 
(3) Asad a [17 ] and Thomas , e t al . [18] , have studied th e 

inertia ellipse s fo r som e two-degrees-of-freedo m chain s an d 
developed dynamic criteria to synthesize linkage and actuator 
parameters. Ou r approac h ca n b e used i n conjunctio n wit h 
theirs fo r design , thereb y incorporatin g bot h kinemati c an d 
dynamic criteria. 

Next, we look at some of the global properties of the point 
trajectory. Thes e are obtained by examining the elements gu, 
Sn< Sn> ar, d the eigenvalues of the matrix [g]. 

g12 =  0  is a curve in the (0,, 82) plane . At each point of this 
curve, the basis ('9l, ¥' 2, n ) i s orthogonal and the major an d 
minor axe s of th e ellipse are along ^r{ an d V2; whic h of the 
two is the major axi s depends on whether gn i s greater or less 
than g22. Fo r point s on gn =  0 , the expressions fo r v 2 does 
not contain an y 6\d2 term, an d w e say that th e effects o f 0 , 
and 62 on the velocitiy are independent. 

If the two eigenvalues of the [g] matrix are equal, the ellipse 
reduces t o a  circl e an d i t i s equally "easy " t o mov e in an y 
direction. Th e point s wher e th e eigenvalue s ar e equa l ar e 
found b y setting th e quantit y (gn -  g22)

2 + 4g2
2 equal t o 

zero, i.e., by setting gn =  g22 and gl2 =  0 . For manipulators 
with revolut e joints , thes e condition s ar e generall y no t 
satisfied sinc e gn, g12, an d g22 are only functions o f 62. For 
some particula r value s o f lin k length s an d 62 the y ma y b e 
satisfied, an d the equal eigenvalues then lie on two circles in 
the workspace . Th e point s wher e th e eigenvalue s ar e equa l 
have been called isotropic points [12]. 

In general, the area of the velocity ellipse is a function o f 6y 
and 62. Th e maximum value of det[g] is obtained by solving 

-^de t [g] = 0 /=l, 2 (19 ) 

In the case of a manipulator with revolute joints, equation (19) 
is always satisfied fo r / = 1 and fo r tw o values o f 62. Henc e 
equation (19) is satisfied alon g two circles in the workspace of 
the manipulator . 

If det[g] is zero, the degrees of freedom is no longer two. A t 
such points, the velocity ellipse degenerates into a straight line 
or a  point, an d al l possible velocity vectors a t thi s point ar e 
parallel to a single straight line or are zero. The first situation 
happens at the boundary or at a singularity. The second situa-
tion is possible only if dt an d 62 are zero, and this is ruled out 
as it implies no motion. The equation, det[g] =  0 , can be used 
to fin d th e boundar y o f a  two-degrees-of-freedo m poin t 
trajectory. 

3.3 Second-Orde r Propertie s 
To find the second-order motion properties of the point tra-

jectory, we consider the acceleration of p. The acceleration is 
obtained by differentiating th e velocity equation, (5). We get 

a = *,6>1+*26i2 + *11(J2 + 2>M102 + ¥2 2 ^ (20 ) 
The introduction o f the 6{ and 82 terms means that the ac-

celeration vector , a t eac h point , depend s upo n fou r motio n 
variables (8U 0 2, b\, 0 2). Hence , unlik e th e velocit y vector , 
there is no single simple way to describe the distribution of the 
acceleration vector. To deal with this problem, we separate the 
acceleration vector into components. The normal component, 
a„, i s obtained b y taking the dot produc t o f n  and a , an d is 
given as 

2 

"n= E  LuWj (2 D 

where the Ly's ar e the dot products ^,y-n, they are called the 
coefficients o f the second fundamental form [5] . Two tangen-
tial component s al{ an d a, ar e obtaine d b y taking th e do t 
product with vectors ^ an d *'2, respectively: 

2 

%=h+ L  ru¥j k=l,2 (22 ) 

The rf/s ar e known as the Christoffel symbols [5]. 
The maximum and minimum values of a„, fo r th e case 0\2 

+ 0 2
2 = 1 , are the eigenvalues o f th e symmetric matrix [L] 

whose elements are the Z-y's. (Unlike the matrix [g], [L] is not 
necessarily positive-definite , an d th e eigenvalue s coul d b e 
positive, negative or zero.) The unit vectors corresponding to 
the eigenvectors o f [L] li e in the tangent plane , and give the 
direction of maximum and minimum a„. I f the eigenvalues of 
[L] are equal, the a„ at that point are equal in all directions. 

From the differential geometr y of surfaces, i t is known that 
a curve * (0 , (s), d2(s)), where 5 is the arc length, is a geodesic if 
the geodesic curvature, Kg, i s zero [5] , The condition Kg =  0, 
gives two differentia l equation s i n d^s) an d 62(s). When the 
parametrization i s not by arc length, but by time, /, we again 
obtain two differential equations when Kg =  0 . These are 

2 

ek+ Yi rfjelej = -eks
2d2t/ds2 k=i,2 (23 ) 

Using the expressions for the tangential components of the 
acceleration, equatio n (22) , w e obtai n tha t Kg =  0  only if 
a, /A ] =  a, /0 2. A specially interesting case is found b y set-
ting atl an d a,2 equa l t o zero , w e the n ge t tw o couple d 
nonlinear differential equation s in 8{ (t) an d d2(t). A solutio n 
to these equations gives a curve C in the (01; 82) space. If the 
point p  under consideratio n i s moving so that d^t) an d 82(t) 
are on the curve C, then the point has zero tangential accelera-
tion, i.e. , th e velocity of th e point ha s a  constant magnitud e 
and it s componen t i n th e tangen t plan e remain s paralle l t o 
itself. The locus of the moving point is a geodesic on the sur-
face. In general the two equations obtained by setting a, an d 
a,2 equal to zero are highly nonlinear and cannot be solved in 
closed form; howeve r they can be integrated numerically . 

For th e poin t trajector y du e t o a  two-degrees-of-freedo m 
motion o f a  point , th e time-dependent second-orde r motio n 
properties are determined by [L], [g], the Christoff el symbols 
(which in turn can be expressed as functions o f the coefficients 
gi/s an d their derivatives with respect to 0j and d2 [5] ) and the 
first an d secon d rates of chang e of 6l an d 62 with respect to 
time. The elements gy's, Lj/s an d their partial derivatives are 
functions o f dx, B2 and the mechanism's structural parameters. 
At different point s in the trajectory thes e coefficients wil l be 
different. Also , at the same point in R3, th e elements will be 
different i f differen t mechanism s ar e use d t o generat e th e 
trajectories. 

4.1 Poin t Trajectorie s Wit h n = m 

In thi s section , w e consider th e case where the number of 
coordinates require d t o specif y a  poin t i s th e sam e a s the 
number o f degree s o f freedo m o f th e motion . W e have two 
cases: two-degrees-of-freedom motio n o f a  point i n a  plane 
and three-degrees-of-freedo m motio n i n space . Example s of 
such cases are the point trajectorie s generate d b y planar and 
spatial two - an d three-degrees-of-freedo m manipulator s an d 
mechanisms. Th e mai n differenc e i n thi s sectio n (fro m th e 
previous section) is that ther e is no such thing as the normal 
space or the normal component o f the acceleration vector. In 
order to study the second-order properties we have introduced 
scaler measures of "effectiveness" whic h depend on the possi-
ble locus of the tip of the velocity vector at each position. It is 
shown that these measures can be formulated in terms of areas 
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for planar motions and volumes for motion s in space. The rate 
of change o f thes e scala r quantitie s giv e u s th e second-orde r 
characteristics o f th e motions . 

4.2 Poin t Trajectorie s o f Two-Degrees-of-Freedo m 
Motion i n a  Plan e 

In a  plane , a  poin t i s specifie d b y tw o coordinate s (x, y), 
and, in general any position i n the plane may b e reached b y a 
two-degrees-of-freedom motion . However , whe n th e motio n 
is generated b y a  mechanism , ther e ar e physica l constraint s 
due to finite lengths. In such cases the trajectory ca n only fil l a 
region of the plane, and thi s region has one or more boundar y 
curves. 

The first-orde r propert y o f interes t i s the velocit y distribu -
tion. At point s inside the region (no t a t th e boundary) , det[g ] 
> 0  and the analysis of Section 3.2 can be applied to show that 
the velocity distributio n ca n b e picture d a s a n ellips e (fo r th e 
case 8\ + 8\ = k2) wit h th e direction s o f maximu m an d 
minimum velocitie s alon g th e majo r an d mino r axi s o f th e 
ellipse. At the boundary, th e velocity distribution i s no longe r 
an ellipse. Al l th e velocitie s li e o n a  straigh t line . 

To analyz e th e second-orde r properties , w e introduc e a 
scalar quantity which i s proportional t o the area of th e veloci-
ty ellipse. The magnitude I  ^ x  * 2 1 o r det[g] is a differentia l 
invariant denote d b y A. A i s a  scala r quantit y whic h depend s 
on di, 02 a nd th e function ¥ . Th e quantity A i s the square roo t 
of the product o f th e eigenvalues o f [g], and -KA is the area o f 
the velocity ellipse . A i s zer o a t th e boundar y wher e ther e i s 
only one effective motio n parameter, an d A i s maximum whe n 
det[g] is maximum. Fro m Sectio n 3.2 , A i s also a  measure o f 
the "transmission ratio " a t p . 

It i s possible t o generat e curve s o f constan t A i n th e poin t 
trajectory. W e wil l cal l the m "curve s o f constan t A." Th e 
curves o f constan t A ar e fixe d fo r a  give n two-degrees-of -
freedom mechanis m and , i n general , exis t fo r al l values o f A 
from 0  to some maximum value . The gradient o f a n A ( a two-
dimensional vector ) i s given b y 

VA = (dA/d6l,dA/d02) (24 ) 
The gradien t vecto r give s th e directio n o f th e maximu m 
change of the transmission rati o o r the effectiveness. Th e con-
stant A curve s are similar to curves in contour maps describin g 
the topograph y o f a  region . Th e gradien t vecto r give s th e 
direction i n th e trajectory i n which th e constan t A curve s ar e 
most bunche d together . 

For a  Cartesia n manipulator, 2 A i s everywher e constant , 
since * i s linear in the parameters o f the motion. Th e gradien t 
vector is zero and al l directions are equal. This is analogous t o 
a flat regio n wit h no hills . For a  planar manipulato r wit h tw o 
revolute joints , A i s independen t o f 8U an d th e constan t A 
curves ar e circles . I n Sectio n 4.4 , w e presen t th e firs t an d 
second-order propertie s o f trajectorie s generate d b y plana r 
two-degrees-of-freedom mechanisms . 

The boundar y (a s ha s bee n mentione d before ) ca n b e ob -
tained from th e equation A =  0. For a  two-degrees-of-freedo m 
motion thi s i s a  curve . Ther e ma y b e severa l suc h curves . 

4.3 Poin t Trajectorie s o f Three-Degrees-of-Freedo m 
Motion i n Three-Spac e 

A poin t trajector y du e t o a  three-degrees-of-freedo m mo -
tion can b e represented b y a  mapping o f th e for m •* : (8lt 82, 
9}) -- (x, y, z). 6X, 82, an d 0 3 ar e the three parameter s o f th e 
motion o f a  rigid bod y whic h contain s th e poin t p  wit h coor -
dinates (x, y, z) in a  fixed referenc e spac e R 3. Th e function * 
depends on the three-degrees-of-freedom mechanism , an d th e 
trajectory i s a region i n R3 wit h a  boundary. Th e vectors, ^ , 

2" 
In case of Cartesian manipulators , the independent motio n parameters are 

'he translations at the joints. 

^ 2 , an d * 3 , ar e independen t excep t a t th e boundar y o f th e 
region, an d for m a  loca l basis . 

The first-order propert y i s the velocity distribution whic h is 
determined b y the matrix [g]. In thi s case the matrix [g] is 3 x 
3 and gy = * , • * ; , i,j = 1 , 2, 3. Except at the boundaries, th e 
tip o f th e velocit y vecto r fo r 0 2 + 8\ + 82 = k2 lie s o n a n 
ellipsoid. The eigenvectors of [g] when mapped t o the space of 
the motion ar e alon g th e axe s o f th e ellipsoid . Th e maximu m 
and minimu m velocitie s a t p  ar e alon g th e majo r an d mino r 
axes o f th e ellipsoid . Th e proof s o f th e foregoin g statement s 
are ver y simila r t o thos e presente d fo r th e velocit y ellipse s i n 
Section 3.2 . 

For th e second-order properties , we introduce a  differentia l 
invariant analogous to A. Th e scalar "V is defined a s (det[g])1/2 

and is proportional t o the volume of the ellipsoid described by 
the tip o f th e velocity vecto r v . I n general , V i s a functio n o f 
the three parameter s 0,- , i =  1 , 2 , 3  and th e dimensions o f th e 
physical mechanism. The scalar quantity V i s a measure of th e 
effectiveness o f the three parameters - i t has a maximum whe n 
det[g] i s maximum whil e a t th e boundary , wher e a t leas t on e 
of th e ¥, (i = 1 , 2, 3) is parallel to one of th e other two , V i s 
zero. I t is also a measure of the transmission rati o a t the poin t 
p unde r consideration . Th e gradien t o f V i s a  three -
dimensional vector. I t may be written as 

VV = (dV/ddi, dV/882, dV/ddJ (25 ) 
V equal s constan t yield s surface s alon g whic h th e measure o f 
transmission ratio, or effectiveness, remai n the same. The gra-
dient o f V give s the direction alon g whic h thes e measures ar e 
changing th e fastest . Fo r Cartesia n manipulator s V i s th e 
same everywhere , a s ¥  i s a  linea r functio n o f th e thre e join t 
displacements. Th e magnitud e o f th e gradien t o f V i s zero , 
and al l directions ar e equal with respect to effectiveness. Fo r a 
manipulator wit h three revolute joints V i s independent o f th e 
first join t rotation , henc e V i s constant a t al l points o n a  sur -
face o f revolution . Th e gradien t vecto r a t a  point i s along th e 
normal t o th e surfac e o f revolutio n throug h tha t point . 

The boundary is given by det[g] =  0 . This is the equation o f 
a surface in R3. W e can use the theory presented in Section 3. 1 
and 3. 2 t o fin d th e first - an d second-orde r propertie s o f thi s 
surface. 

4.4 Two-Degrees-of-Freedo m Plana r Mechanism s 
In thi s section , w e illustrat e th e foregoin g concept s b y 

presenting th e first - an d second-orde r propertie s o f trajec -
tories generate d b y two-degrees-of-freedom mechanisms . Fo r 
a detailed development o f these results the reader is referred t o 
[14]. 

(1) Th e 2R Linkage. Fo r a  2R linkage in a  plane , show n 
in Fig . 1 , the equation s describin g th e kinematics , ^ : (8lt dz) 
- (x,y), are 3 

x = anCi+a2icl+1 (26) 
y = al2sl+a2isl+2 

Hence 
£ll=«12+4i+2a12«23C2 
Sn=a2i+al2a2ic2 (27 ) 

822 = ah 
Since th e element s o f [g] d o no t contai n 8l, th e shap e o f th e 
velocity ellips e fo r a  give n al2 an d a23, depend s onl y o n th e 
value o f 62. I n Fig . 1 , th e ellips e describe d b y th e ti p o f th e 
velocity vector i s shown fo r 0, 2 +  0 2

2 = 1 , ai2 = 2, a23 = 1 , 
0, =  0 ° and0 2 =  45° . 

We use the abbreviations of c, for cos((?,) and s,- fo r sin(0,), the plus sign in 
the subscript indicates a sum of the two angles: ci+2 = cos(Sj +  62) and sl+2 
= sin(0 , +  e2). 
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A = ( I 

Fig. 1 Planar 2R linkage 

//// 

Fig. 2 2P linkage 

The scalar , A, i s given b y A = a23ans2. Th e constan t A 
curves are concentric circles about the origin. A i s maximum 
when 62 i s 90 ° an d minimu m whe n 62 i s 0  o r 180° . Th e 
magnitude of th e gradient o f A i s maximum when 82 is 0 or 
180°. The boundaries of the workspace are obtained from set-
ting A equa l to zero. The boundary curves are circles and are 
given by x2 + y2 = (al2 ±  a2i)

2. Thes e circles and the circle 
for Amax, fo r al2 = 2 and a2i = 1  ar e shown in Fig. 1. 

(2) Th e 2P Linkage. Fo r a 2P linkage in a plane, shown 
in Fig. 2, the equations describing the kinematics, *: (Su S2) 
- (x,y), ar e 

x=S,+a23 , ^ 1 2 3 (28 ) 
y = S2 

The elements gn, gn, an d g22 are , respectively , 1 , 0, an d 1 . 
For^!2 +  S 2

2 =  1 , the locus of the curve traced out by the tip 
of the velocity vector is the same at every point in the plane, 
and moreover, it is a circle. The scalar, A, i s equal to 1 at every 
point i n the plane excep t a t the boundaries wher e it i s zero. 
The gradien t o f A i s maximu m a t th e boundarie s wher e A 
changes from 0  to 1 . 

(3) Th e PR Linkage. Fo r the PR linkage, shown in Fig. 
3, the equations describing the kinematics, *: (Su d2) — (x, 
y), ar e 

X — S [ +  fl 23 c 2 

J =  «23 J2 

Here, gn =  l,g 12 =  - a 2 is 2 and g12 = a2
3. Hence , the shape 

of the ellipse traced out by the tip of the velocity vector fo r a 
given a2} and for the unit speed motion4 depends only on the 

(29) 

The unit-spee d motio n i n th e cas e o f a  P R linkag e chai n i s take n a s 

o 

p(x,y) 

Si 

Fig. 3 PR linkage 

p(x,y) 

( V t f i W r = 1 , where (S j )r a a x i s the maximu m valu e which Sl ca n 
take. Thi s ensure s tha t th e tw o term s ar e dimensionall y th e same . 

Fig. 4 RP linkage 

parameter 62. Th e scala r A i s given b y a2-ic2\Sl lmax an d is 
maximum when 62 is zero or 180° . The constant are a curves 
are straight line s parallel to the ̂ Y-axis. The gradient o f A is 
maximum when d2 is 90°. 

(4) Th e RP Linkage. Fo r the RP linkage, shown in Fig. 
4, the equations describing the kinematics, *: (0, , S2) —  {x, 
y), ar e 

x=(al2 + a23)cl-S2sl 

y = (an + a23)sl+S2cl 

The shape of the ellipse described by the tip of the velocity vec-
tor fo r th e uni t spee d motio n 0 2 +  (S2/S2 max )2 =  1  and 

(30) 
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known al2 an d a2} depend s onl y o n S2. Th e scalar A, i s 
1521 max̂ 2- I { i s z e r o w n e n 5 2 is zero an d is maximum jus t 
before S2 reache s it s maximum value . A t the boundary the 
area is again zero , as we have no motion alon g S2. Th e con -
stant are a curve s ar e circles . 

5.1 Poin t Trajectorie s Wit h m > n 

In thi s section , w e consider th e case o f poin t trajectorie s 
where the degre e of freedom o f the motio n is larger tha n the 
number of coordinates required to specify th e point. Example s 
of thi s cas e ar e point trajectorie s du e to three - o r higher -
degrees-of-freedom motio n i n the plan e an d four - o r higher-
degrees-of-freedom motio n i n three-dimensiona l space . 
Mathematically, thes e motion s ca n be represented b y mapp-
ings which takes points in /w-dimensional spaces to points in n-
dimensional spaces , wher e m > n. The ma p i s many-to-one. 
In th e cas e o f manipulator s o r multi-degrees-of-freedo m 
mechanisms, th e dimensio n o f the spac e of inverse kinemati c 
solutions i s m — n, a s there ar e m — n mor e unknown s tha n 
equations. Suc h manipulator s hav e redundan t degree s o f 
freedom whe n i t comes to positioning a  point. A  number of 
researchers [13 , 15, 16] have employe d th e pseudo-invers e of 
the Jacobia n matri x t o make us e of this redundancy . Thei r 
work i s concerne d mainl y wit h th e contro l o f redundan t 
manipulators. I n this section , w e give a procedure to use the 
extra degrees of freedom fo r altering th e velocity distributio n 
at a  poin t withou t usin g th e pseudo-inverse . A  desirabl e 
velocity capability i s one in which the tip of the velocity vecto r 
can describ e a  circle (fo r motion i n two-space) an d a spher e 
(for motion in three-space), at every position in the poin t tra -
jectory. W e will sho w tha t b y choosin g a  suitabl e rat e of 
change of the extra m — n parameters we can achieve a circular 
velocity distribution . W e present th e analysis fo r a  three -
degrees-of-freedom motio n in a plane. A more genera l treat -
ment is in [14]. 

5.2 Three-Degrees-of-Freedo m Motio n Poin t 
Trajectory i n a Plan e 

Mathematically, a  general point trajectory i n a plane due to 
a three-degrees-of-freedom motio n ca n be represented a s ¥: 
(0i, 62, 03) —  (x, y) wher e dh i = 1 , 2, 3, are the motion 
parameters, (x, y) are the coordinates o f a moving poin t as 
measured in a reference plane , R2, an d the function V depends 
on the actua l mechanism . (Th e invers e functio n t o ¥, whic h 
gives dh i = 1 , 2, 3, for known x an d y ha s infinitel y man y 
solutions.) The velocity of the point is given by 

£*/« (31) 

For genera l point s (excep t at the boundary) , tw o out of three 
*,-0,'s ar e independent . Le t *3 0 3 b e a linear combinatio n of 
Vfii, i =  1,2 . (We coul d jus t a s well writ e ^ , 0 , o r V2d2 in 
terms of the remaining two.) We can write 

*3*j=ii«M (32) 

We assume tha t a , an d a2 ar e finit e an d real . I f a, (o r a2) is 
zero, then * 3 0 3 is parallel to * 2^2 (o r * i^i)- « i a nd ce2 ca n be 
solved in terms of the 0,'s an d the dot product s *,••*; • Form -
ing the dot product of (32) with •*, an d *2 yields 

Wi'yl)6i=algn6i+a.2gl2e2 

(^i'^2)h=^guSi+oi2g22e2 

n, g 12, an d g22 are , respectively, the dot products ¥[ 
. * 2 , a n d * 2 •  * 2 . 

(33) 

where; 
* i ' * i 

From equations (33) , we have 

[Qiy*1)g22-(*3.*2)g12]<?3 . A 
ai =  J—: TTTA =  a,(03/0i) (811822-812)^1 

K*3'»l)gl2-(»3'*2)gll ld3 
(Sngn-ghWi 

(34) 

••a2(63/62) 

We nee d on e mor e equatio n t o solve for o^, a2, an d 03. We 
obtain th e equatio n fro m th e desire d circula r velocit y 
distribution. 

Substituting (32) into (31), we get 

Ea+«,)M (35) 

The values of 0,, 0 2), which give the maximum an d minimu m 
v2, fo r 02 +  62 = 1 , are th e eigenvector s o f the matri x [g']. 
The matrix [g' ] is symmetric and its coefficients ar e given by 

g1 '1=(l +  «1 ) 2 (^ 1 .* 1 ) =  ( l+a 1 ) 2 gu 
g1

,
2 = (l+o;1)(l+Q;2)(*1 .*2) =  ( l + a1 ) ( l + a 2 ) g 1 2 (36 ) 

£22 = (1 + «2)2(*2 «*2) = (1 + a2)
2g22 

The eigenvalues ar e rea l and ar e functions o f gn, g 12, g22, ai, 
and a2. Th e velocity distributio n a t a  poin t i s alway s a n 
ellipse, but its shape can be changed by choosing some velocity 
criterion an d the n solvin g for 63, otx and a2. W e give the solu -
tion procedur e fo r the case whe n th e eigenvalues o f [g'] are 
equal an d th e poin t bein g isotropi c [12] . This correspond s to 
the velocit y distributio n (a t a point) bein g a  circle. 

The condition for equa l eigenvalues is given by 

[ ( l+«2) 2 &2-( l+« l ) 2 * l l ] 2 

+ 4(l + a i) 2 ( l + « 2 ) 2 g 2 2 = 0 (37 ) 

Since the left-hand sid e of the foregoing equatio n i s the sum of 
two squares , i t follows tha t bot h term s mus t b e zero fo r the 
eigenvalues to be equal. If g12 ^  0 , then 

a , = « 2 = - l (38 ) 
Otherwise, we require g12 =  0 . Then 

( 1 + a . ) 
±(822/gll)W2 (39) 

0 +  «2) 
The firs t cas e results in v always equal to zero, fro m (35) , an d 
hence i s not of much interest . I n the second case , equatio n 
(39), a, and a2 ar e 

±(8n/g22y
/2-i 

« 2 = 
l T ( « l , / « 2 ) W [ « , M « 2 * l ) ] 
axd2 

(40) 

M i 
« 2 

where ax an d a2 are defined i n (34), and by using (34) and Q\ + 
62 = 1 , we get 

6j = !/ [(«, /«,)2 + («2/«2)2] (41) 

The aforementioned procedur e (t o compute 0 3) can be used as 
long as we can solve for a finite ax and a2 from equation s (34). 
This canno t b e done whe n al an d a2 axe in the indeterminat e 
form zer o divided by zero. at an d a2 are indeterminate wher e 
the degree s o f freedo m i s les s tha n three . Settin g th e 
numerator an d denominato r (of , say, «[) in (34) to zero yields 
equations gng22 - g]2 = 0 and (¥ , •  *3)g2 2 -  (^ 2 •  *3)£i2 
= 0 . Thes e equations represent curves , and when p is on these 
curves it s velocit y distributio n canno t b e altered . I t i s in-
teresting to note that at boundaries, th e degrees of freedom is 
less than thre e an d henc e the boundaries of the trajectory ar e 
included in these curves . 

From th e previous analysis , w e can make th e followin g 
general statemen t fo r point trajectorie s du e to three-degrees-
of-freedom motio n in R2: i n general, excep t for regions give n 
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Fig. 5 Planar 3R manipulator 

A Y 

Fig. 6 Regions in the workspace of the 3R manipulator 

by det[g] =  0 , c^ = 0 an d a2 = 0 , we can at each point deter -
mine the values of 0 3, as a function o f gu, gn,g22, d\, 0 2, ^3 • 
Ity, an d ^ 3 •  ¥ 2 , whic h wil l giv e an y require d velocit y 
distribution. 63 a s a  functio n o f th e foregoin g quantitie s ca n 
be pictured , i n general , i n the (d\, 62, 0 3) spac e as a  curve o n 
the surfac e o f a  cylinder . Furthermore , fo r equa l eigenvalue s 
g12 mus t be zero. The regions where alterations in the velocit y 
distribution ar e possible wil l be called th e alterable region s o f 
the poin t trajectory . 

The previou s procedur e ca n b e easil y modifie d fo r three -
degrees-of-freedom motio n i n three-space . Fo r motion s wit h 
more degrees of redundancy {m — n > 1) , a similar procedur e 
can b e use d t o alte r first - an d second-orde r properties . Fo r 
more detail s th e reade r i s referre d t o [14] . 

5.3 Example : A  3 R Manipulato r i n a  Plan e 
Figure 5  shows a  three-degrees-of-freedo m manipulato r i n 

the plane XY. Ther e are three revolute joints with rotations 0{, 
62, an d 0 3. Th e lin k length s ar e au, a2i, an d aM. W e ar e in -
terested i n th e motio n o f th e poin t p(x , y). Th e kinemati c 
equations, Sh (6{, d2, 0 3) —  (x, y), ar e 

x=a„c, +anc. i +a™c 34<-l+2 + 3 (42) 
y = al2sl+a2isl+2 + a34s1+2+3 

We use numerical value s o f aX2 =  4 , a2J =  2 , « 34 =  1  in thi s 

200 25 0 30 0 
—> 6 {degrees) 

Fig. 7 Plot of 03 with respect to & 

example. For equa l eigenvalue s 02 and 0 3 have to be such that 
g12 =  0 . The condition gn =  0 , reduces to 

5 + 8c2 + 4c 2 + 3+4c 3 =0 (43) 

From th e aforementione d equatio n i t follow s tha t fo r eac h 
value of 03 we have two values of 62 given by 

tan(02/2) = ( l /3 ) [ -4s3 ±(55 +  24c3-16c3!)1/2] (44 ) 
In thi s case , <9 3 can tak e an y valu e betwee n 0  and 360 ° an d 

the extreme values of d2 are ±138.59 ° an d ±104.47° . Sincefl , 
can taken any value, the velocity distribution ca n be altered in 
the annula r shade d regio n show n i n Fig . 6 . I n thi s region , on 
one circle , x2 + y2 =  9 , a , an d a2 ar e indeterminate an d th e 
velocity distributio n canno t b e altered . Th e condition s o f 
indeterminate a , an d a2 yield s curve s Cx, C2, C 3 an d 
C 4 - four concentri c circle s o f radiu s 1 , 3 , 5 , an d 7 , respec -
tively. Th e circle s wit h radiu s 1  and 7  ar e th e inne r an d th e 
outer boundaries , respectively. The circles are shown in Fig. 6. 

One poin t wher e th e velocit y distributio n ca n b e altere d i s 
when 0 2 =  cos" 1 ( - 1/4 ) an d 0 3 =  180° . We plot 0 3 (for thi s 
point) a s a  function o f th e angl e 8, defined b y tan 5  =  62/dlt 

in Fig . 7 . Th e angl e 5 varies fro m 0  to 360° . 

6.1 Conclusio n 
A genera l framework , base d o n concept s fro m differentia l 

geometry, ha s bee n presente d t o facilitat e th e study the prop-
erties o f trajectorie s o f point s embedde d i n rigi d bodie s 
undergoing multi-degrees-of-freedo m motions . Quantitie s 
such a s the element s o f th e matrice s [g], [L] and th e Tfj have 
been developed t o characterize and distinguis h between trajec -
tories generate d b y differen t multi-degrees-of-freedo m 
mechanisms. Fo r motion s wher e th e degree s o f freedo m ar e 
equal t o o r les s than th e dimensio n o f th e spac e i n whic h th e 
motion take s place, scalar measure s o f effectivenes s o f veloci-
ty transmissio n wer e developed . Fo r motion s wher e th e 
degrees o f freedo m ar e greate r tha n th e dimensio n o f th e 
space, a  ne w approac h ha s bee n develope d fo r usin g th e 
redundancy to alter the first-order propertie s of the trajectory . 
The theor y ha s bee n applie d t o severa l example s o f motion s 
generated b y two - an d three-degrees-of-freedo m open-loo p 
mechanisms containin g revolut e an d prismati c joints . 

In a  companion pape r [19] , we developed analogou s result s 
for th e trajectories generate d b y lines under multi-degrees-of -
freedom motions . 
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