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Motions—Point Trajectories

A general framework is presented for the study of the properties of trajectories
generated by points embedded in rigid bodies undergoing multi-degrees-of-freedom
motions. Quantities are developed to characterize point trajectories generated by

different mechanisms and to distinguish between different positions along the same
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trajectory. Point trajectories are classified into three types according to whether the
number of degrees of freedom is less than, equal to, or greater than the dimension of
the space in which the motion takes place. Local and global motion properties are

developed for each of these three cases. A new way of using the redundant degrees
of freedom in (redundant) mechanisms is presented. These analysis techniques are
applied to two- and three-degrees-of-freedom mechanisms containing rotary and

prismatic joints,

1 Introduction

Over the past 20 years, there has been rapidly growing in-
terest in mechanical manipulators, mechanical hands, walking
machines and many other so-called robotic devices and smart
products. The motion of the links of such machines are
governed by more than one independent variable, in contrast
to conventional machines which have only one controllable
degree of freedom.

One way to study the motion of links, which are assumed to
be rigid bodies, of 2 multi-degree-of-freedom mechanism, is to
consider the motion of points embedded in the moving links.
For a one-degree-of-freedom motion, a point’s path in three-
space is a twisted curve. For a two-degrees-of-freedom motion
a point’s path is a surface. Properties of curves and surfaces
are well known [1-5]. However, little is known about the
properties of the trajectories of points embedded in a moving
rigid body undergoing more than two-degrees-of-freedom mo-
tion. Similarly, the effects of the structural parameters of the
multi-degrees-of-freedom mechanism (e.g., the dimensions of
the links) on the properties of the trajectories traced out by the
points of the moving body have not been studied.

The majority of the previous works in connection with
global properties of point trajectories fall under two
categories: (1) Global theorems on curves and surfaces [5, 6];
(2) Workspaces of mechanical manipulators [7-9]. In the sec-
_ond category, the workspace boundary has been of primary
interest,

In this paper, a general framework for the study of the
properties of point trajectories is presented. Point trajectories
are classified into three classes according to whether the
number of degrees of freedom is less than, equal to, or greater
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than the dimension of the space of the point trajectory. First-
and second-order local properties and a few global properties
of the point trajectories are developed. Quantities are
developed to characterize point trajectories generated by dif-
ferent mechanisms and to distinguish between different posi-
tions along the same trajectory. These quantities are obtained
by using concepts from differential geometry. Two of these
quantities are based on a transmission efficiency defined in
terms of ‘‘areas’” and ‘‘volumes.’”” We present a novel way to
utilize the extra freedoms in a system having motion redun-
dancy. The analysis techniques and the new results are il-
lustrated with examples of two- and three-degrees-of-freedom
open-loop chains containing rotary and sliding joints.

2.1 Mathematical Formulation

In the most general terms, the path generated by a point
moving under an m-degrees-of-freedom motion can be
represented by a set of equations giving the coordinates of the
point, in a fixed reference frame, as functions of m indepen-
dent motion parameters. In the case of manipulators or multi-
degrees-of-freedom mechanisms the m independent
parameters are typically the rotations or translations at the
joints. The actual equations depend on the mechanism’s struc-
tural parameters, e.g., link lengths, offsets and twist angles.
We can symbolically write these equations as

Wiy, . .., 0,)—=x0.2) {1

Here, (¢,, ..., 8,) are the m independent motion
parameters, (x, ¥, z) are the coordinates of a point embedded
in the moving rigid body (measured in a reference three-space,
R3) and ¥ may be thought of as a mapping which takes points
in the motion parameter space to points in the space of the
motion. The functions ¥ depends on the point chosen in the
moving rigid body and the mechanism’s structure. As men-
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tioned before, for a one-degree-of-freedom motion (m = 1),
the point’s path in three-space is a twisted curve and, for a
two-degrees-of-freedom motion (m = 2), a point’s path is a
surface. Under a three-degrees-of-freedom motion (m = 3), a
point’s path is a “‘solid’’ region (with a boundary) in a three-
space. For four- or higher-degrees-of-freedom motion (m =
4), the point’s path is still a solid (with a boundary) but now
we may have infinitely many values of the independent motion
parameters for a given (x, y, z). When this situation arises, we
have a so-called redundant motion.

2.2 Local Properties

In general, the equations represented by (1) are highly
nonlinear, even for simple mechanisms, and hence it is very
difficult to determine properties of the point trajectory which
depend on the entire motion (so-called global properties). It is
much easier to obtain the differential properties of the mo-
tion, that are valid in the neighborhood of the position under
consideration. These are the so-called first-, second-, and
other higher-order properties at a position, and are obtained
by finding the first, second and higher derivatives at that posi-
tion. Although properties obtained from these derivatives are
local, they often give us valuable insight into the global
properties of the point trajectory.

If the motion is a function of one independent variable, we
can talk of the tangent to the curve, the curvature, and the tor-
sion. For a curve the slope of the straight line (tangent to the
curve) is a first-order property, the curvature is a second-order
property, and the torsion, which describes the twisting of the
curve, is a third-order property. These properties totally
describe the curve at a point to, respectively, the first, second
and third orders. These properties are geometric in nature. If
we take time as the independent variable, the first-, second-,
and third-order properties are the velocity, acceleration and
jerk of a point’s motion along the path. These time-based
quantities are our primary concern in this paper. They are
referred to as, respectively, the first-, second-, and third-order
motion properties.

The first-order properties of a point trajectory due to multi-
degrees-of-freedom motions are obtained from the first partial
derivatives of the function ¥ with respectto 6,,i = 1,..,m.
The matrix of the first partial derivatives, whose columns are
d¥/a0,, is called the Jacobian matrix, J(¥), [5]. Denoting the
dimension of the space in which the motion is taking place by
n, we can see that J(¥) is a n X m matrix. The velocity, v, of a
point (x, v, 2) located in the fixed space by the position vector
p, is obtained by evaluating the elements of J(¥) at p;
denoting this as J(¥), we have

v=J(¥),0 @

where, 0 is an m-dimensional vector of the rate of change of
the parameters (i.e., ® = (6, ..., 6,)7). By using a dif-
ferent O, we obtain a different velocity for the moving point.
By varying ©, we can get a distribution of velocities of the
moving point. This first-order property is of primary impor-
tance and will be developed in detail for point trajectories due
to multi-degrees-of-freedom motions.

If there is no constraint on the §,’s, the magnitude of the
velocity vector can be arbitrary and not much can be said
about the magnitude of v. It is much more instructive to use a
normalizing constraint on the 6,’s. There are two natural ways
to put a constraint on ©:

(1) One could use a linear equation relating the §,’s. This
equation can be of the form, §, equals a constant or ék equals
a linear combination of all (or some) of the 6,’s. However, the
use of such relations effectively reduces the number of in-
dependent parameters and hence is not of much use in study-
ing m-degrees-of-freedom motions.

(2) One could bound the magnitude of @ with a quadratic
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relation of the form 670 = k2. When & = 1, we call the mo.
tion unit speed. By varying k it is possible to obtain all possibje
velocities at the point under consideration. We will use 67¢
= k2 as the normalization constraint on ©.

The second-order motion property considered will be the
rate of change of velocity, i.e., the acceleration of the moving
point at p. In the cases where (m < n), we will have two com.
ponents of acceleration: the normal and the tangential compo.
nent. For point trajectories where the number of motiop
parameters is equal to or greater than the dimension of the
space (m = n), there is no notion of a normal component. [y
the cases when m is equal to n, instead of the normal compo.
nent, we consider the rate of change of certain area or volume
(both defined later on) as a second-order property of interest,
Where the number of parameters exceed the dimension of the
space {(m > n), we have free choices which can be used to
modify the first- and second-order motion properties.

2.3 Classification of Point Trajectories

In general, point trajectories can be classified into three
classes. First, we have the cases where the number of degrees
of freedom, m, is less than the number of coordinates, #, re-
quired to specify a point. Second, we have cases where m is
equal to # and, finally, we have cases where m is greater than
n. When a point’s trajectory isa curve (m = 1, n = 2or 3) or
a surfaces (m = 2, n = 3), we have the first class. Solid
regions with boundaries come under the second class and
redundant motions belong to the third category. We do not
discuss curves since they have been widely studied, the reader
is referred instead to [1-5]. We will however use the case m =
2 and n = 3 (i.e., the trajectory is a surface) to develop the
concept of distribution of velocities.

3.1 Point Trajectories With m<n

In this section, we consider point trajectories with m = 2
and n = 3 (surfaces in three-dimensional space R3). The set of
equations x = (0, 6,), ¥ = ¥,(0y, 6,), 2 = ¥3(8;, 0,) defines
a surface generated by a point (x, y, z) in terms of the motion
parameters 6, and 6,. We will represent a surface as a con-
tinuous, differentiable function ¥: U — R? where U © R?, is
open with coordinates 6, and 8,, and (0¥/06,) x (9¥/d0,) #
0. If there exist positions on the surface where this cross
product of the partial derivatives is zero or not defined uni-
quely, we have a singularity and we do not at that position
have a two-degrees-of-freedom motion. For convenience, we
define symbols ¥; and ¥ for the partial derivatives of the
function ¥ with respect to the parameters 6;; with i, j = 1, 2,
we have

¥, =0¥/0,
o ¥ 3)
U 90,00,

3.2 First-Order Properties

Using the notation §,, to denote a specific value of 4, it
follows that the tangent plane to a surface ¥: U — R? at a
pointp = ¥ (6,4, 02,) is the plane through p perpendicular to
¥, (01,0, 020) X ¥, (14, 03,0). The unit normal is given by

n= (‘I,l X \1,2) (4)

¥, XV,

where the expression on the right-hand side is evaluated at
(0,0, 020). The set (¥, ¥,, n) at p is linearly independent,
though in general not orthogonal, and serves as a local coor-
dinate basis for the trajectory surface in R?. The tangent plane
at p is independent of parametrization [5]. The Jacobian
matrix J(¥), = (¥, (6,0, 920) W2 (815 0,0)) is of rank two.
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Any vector in the tangent plane can be expressed as a linear
combmatlon of ¥, and ¥,. In particular, if the parameters 0,
and 8, are given as functions of time ¢, the velocity of the point
p moving on a curve ¥ (0,(?), 6,(¢)) can be expressed as

V=‘I’ 0. +‘l’20'2 (5)

From equations (4) and (5) v » n = 0, i.e., all point-
velocities lie in the tangent plane. Also, as 01 and 02 are varied
without any constraint, all possible directions and magnitudes
of v are obtained. To get a better understanding of the
distribution of v, we look at the magnitude of v. The dot
product of the velocity vector with itself may be written as

vev=g,,0,2+2g,6,0, + g0, (6)

whereg; = ¥, » ¥;,i,j = 1,2. The matrix [g], with elements
g;; is symmetric and positive-definite [10]. In the language of
differential geometry of surfaces, the elements g;’s determine
the first fundamental form of the surface. The dot product
also defines a merric! in the tangent plane. We make the
following observations from the definition of the g;’s and
equation (6):

(1) The matrix [g] is the same as J?J, where, for conve-
nience, J is used to denote the Jacobian matrix, J(¥),.

(2) The elements g,;, g5, and g5, are in general functions
of #, and 8,, and hence depend on the complete two-degrees-
of-freedom motion.

(3) For any given value of gy, g),, and g5, equation (6)
describes a quadratic surface in the (6;, 02, Ivl) space. If v? is
constant, equation (6) describes an ellipse in the (4,, §,) space.
If§, or 6, is constant, equation (6) describes a hyperbola.

(4) Since [g] is positive-definite, the minimum value of Ivl
is zero only when 6, and 6, are both zero. This case is ruled
out as it implies no motion. The maximum value of |v| goes
to infinity if 4, or 02 goes to infinity. As mentioned before it
is instructive to use the normalizing condition 62 + 2 =

The maximum and minimum v2, subject to the unit speed
condition (6,2 + 6,2 = 1), are obtained by solving dv*?/30, =
0,i =1, 2, where

V¥ ev*=g,,0,2 +2g1,0,0;, + 80,2 N (6,2 + 6,2 -1) (7)

This reduces to solving the eigenvalue problem
[216-16=0 ®)

Since the matrix [g] is symmetric and positive-definite, the two
eigenvalues are real and positive. If \, and A, are the eigen-
values, we can write

M2=1/2){ (g +82) =g +80) —4gugn -2} 9

Assuming A\, > \,, the maximum and minimum values of
[vl are

1V nax = A2
lv Imin = )\5/2
and these occur at each point when the ratio éz/ ¢ | are given by
®), = (1/2)tan "' [2g,,/(g1; — &3]
(8), =(1/2)tan~'[28,,/(g1; ~ &)1 +7/2
where tan 6 = (4,/6,). _

Equations (11) when used with 6,2 + 02 = 1 give unique
values of 4, and §,. When these values of §,, 02 are substituted
in (5) we get the maximum and minimum [v! and the direc-
tions in the tangent plane along which they occur. It can be
easily shown from (5) that, at a point p, the direction of v
depends only on the ratio of §, and §;, and hence the direc-

tions of maximum and minimum v will not change if we use a
nonunit speed condition, 67 + 63 = k2 (k # 1). However, the

(10

(11

A metric essentially defines distance and, in this case, angle in the tangent
plane, for details see [5].

Journal of Mechanisms, Transmissions, and Automation in Design

magnitude of the maximum and minimum v will be scaled by
k.

Next, we show that at each point p, as we vary O, the tip of
the velocity vector lies on an ellipse in the tangent plane. Equa-
tion (5) can be written as

v=J6 (12)

or
ITv=[g]0 13)

[g] is nonsingular and hence we can take the inverse to obtain
O, From which it follows that

vTI([g) )7 ([e)"HITv=676 (14)
As [g] and [g] ~! are symmetric we get
076 =v7(J[g] " HJel~HTv (15)

The quantity (J[g]~!) (J[g] ~!)7 is a symmetric 3 X 3 matrix of
rank 2 (as both J and [g] ! are of rank 2). Hence, if the left-
hand side, 676 is unity, the tip of the velocity vector describes
an ellipse. If 07 = k2, the tip of the velocity vector still lies
on an ellipse but the size of the ellipse is scaled by k.

When 070 is unity, the area or size of the ellipse, denoted
by A4,, is given by

A, =7(MN)V? =m(det[g])'”? (16)

The quantity A,/7 or (det[g])"/? is a measure of mean v2,
where the (mean v2)!/2 is the radius of the circle with the same
area as the ellipse. (It is also the geometric mean of the max-
imum and minimum |v|.) Hence as det[g] increases the mean
v2 also increases. o

In the context of manipulators the quantity 2 + 63 can be
seen as an input effort (¢,, §, are the joint rates) and v2 as the
output (v is the velocity of a point on the end-effector of the
manipulator). If 62 + 63 = k* we can write

(V] oy = kN2 a7
1V = AN2
Denoting the square of the geometric mean of Ivl . and
[vln by V2, we get
V2/k? = (N Ap) V% = (det[g])? (18)

Hence (det[g])!/? can be thought of as a measure of “‘velocity
transmission’’ at the point in the point trajectory under
consideration.

In conclusion, we have characterized the first-order proper-
ty of the motion by the size and shape of the velocity ellipse.
We have shown that there are directions (in the tangent plane)
at p along which the point p can move with maximum and
minimum velocity. We have shown that for nonunit speed mo-
tions (62 + 62 = k?), at p, the shape of the ellipse is the same
as for the unit speed motion but the size of the ellipse and the
maximum and minimum velocities are simply scaled by k. We
have also shown that the area of the ellipse at p is a measure of
the ‘‘velocity transmission’’ and the magnitude of the mean
velocity vector at p is larger if the area of the velocity ellipse is
larger.

At this stage we make the following remarks:

(1) In reference [11], Mason deals with the application of
forces using manipulators. Our results combined with the
duality of forces and velocities [4], immediately yield some of
his result. For example, the principal directions of force ap-
plication (i.e., the directions along which we can apply max-
imum and minimum force) are orthogonal to the directions of
maximum and minimum velocities. Inm reference [12],
Salisbury and Craig use the condition number of J7 to study
forces in mechanical hands. The condition number of J is the
ratio of its maximum and minimum eigenvalues, and would be
a measure of the shape of the velocity ellipse in our analysis.

(2) Yoshikawa [13] has introduced the concept of
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manipulability measure for redundant motions. The dif-
ference between our measure of velocity transmission and the
manipulability measure of Yoshikawa is that we use
[det(JT])]*/2 rather than his [det(JJ7)]'/2. In the particular
case of m = 2 and n = 3, Yoshikawa’s measure, [det(JJ7)}/2
is always zero and is not of much use.

(3) Asada [17] and Thomas, et al. [18], have studied the
inertia ellipses for some two-degrees-of-freedom chains and
developed dynamic criteria to synthesize linkage and actuator
parameters. Our approach can be used in conjunction with
theirs for design, thereby incorporating both kinematic and
dynamic criteria.

Next, we look at some of the global properties of the point
trajectory. These are obtained by examining the elements g,;,
812, 81, and the eigenvalues of the matrix [g].

g1, = Ois a curve in the (0,, 6,) plane. At each point of this
curve, the basis (¥,, ¥,, n) is orthogonal and the major and
minor axes of the ellipse are along ¥, and ¥,; which of the
two is the major axis depends on whether g, is greater or less
than gy,. For points on g, = 0, the expressions for v2 does
not contain any #,6, term, and we say that the effects of 4,
and 4, on the velocitiy are independent.

If the two eigenvalues of the [g] matrix are equal, the ellipse
reduces to a circle and it is equally ‘‘easy’’ to move in any
direction. The points where the eigenvalues are equal are
found by setting the quantity (g, — &,,)* + 4g%, equal to
zero, i.e., by setting g;; = g,, and g,, = 0. For manipulators
with revolute joints, these conditions are generally not
satisfied since g,,, g2, and g,, are only functions of 6,. For
some particular values of link lengths and 6, they may be
satisfied, and the equal eigenvalues then lie on two circles in
the workspace. The points where the eigenvalues are equal
have been called isotropic points [12].

In general, the area of the velocity ellipse is a function of 8,
and §,. The maximum value of det[g] is obtained by solving

ad
30, det[g]=
In the case of a manipulator with revolute joints, equation (19)
is always satisfied for i=1 and for two values of 6,. Hence
equation (19) is satisfied along two circles in the workspace of
the manipulator.

If det[g] is zero, the degrees of freedom is no longer two. At
such points, the velocity ellipse degenerates into a straight line
or a point, and all possible velocity vectors at this point are
parallel to a single straight line or are zero. The first situation
happens at the boundary or at a singularity. The second situa-
tion is possible only if §, and @, are zero, and this is ruled out
as it implies no motion. The equation, det[g] = 0, can be used
to find the boundary of a two-degrees-of-freedom point
trajectory.

i=1,2 19)

3.3 Second-Order Properties

To find the second-order motion properties of the point tra-
jectory, we consider the acceleration of p. The acceleration is
obtained by differentiating the velocity equation, (5). We get

a=V¥, 0, +¥,0, + ¥, 0% +2¥,,6,0, + ¥,,03 20)

The introduction of the §, and @, terms means that the ac-
celeration vector, at each point, depends upon four motion
variables (6,, 6,, §,, §,). Hence, unlike the velocity vector,
there is no single simple way to describe the distribution of the
acceleration vector. To deal with this problem, we separate the
acceleration vector into components. The normal component,
a,, is obtained by taking the dot product of n and a, and is

given as
2
= ), L6 @1
=1
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where the L;’s are the dot products ¥, -n, they are called the
coefficients of the second fundamental form [5]. Two tangen.
tial components a, and @, are obtained by taking the dot
product with vectors ¥, and ¥,, respectively:

=0+ E 6.0,

i, j=1

The I'%’s are known as the Christoffel symbols [5].

The maximum and minimum values of a,, for the case §,2
+ 6,2 = 1, are the eigenvalues of the symmetric matrix [L]
whose elements are the L;’s. (Unlike the matrix [g], [L] is not
necessarily positive-definite, and the eigenvalues could be
positive, negative or zero.) The unit vectors corresponding to
the eigenvectors of [L] lie in the tangent plane, and give the
direction of maximum and minimum a,,. If the eigenvalues of
[L] are equal, the a,, at that point are equal in all directions.

From the differential geometry of surfaces, it is known that
a curve ¥ (0,(s), 6,(s)), where s is the arc length, is a geodesic if
the geodesic curvature, K, is zero [5]. The condition K, = 0,
gives two differential equations in 6,(s) and 6,(s). When the
parametrization is not by arc length, but by time, ¢, we again
obtain two differential equations when K, = 0. These are

=1,2 (22)

2
e+ Y U500, = — 6, 8dt/ds® k=1,
i f=1

23)

Using the expressions for the tangential components of the
acceleration, equation (22), we obtain that K, 0 only if
a, /6, = a,z/ 02 A specially interesting case is found by set-

ting a, . and a, equal to zero, we then get two coupled
nonlinear differential equations in 8, (¢) and 6,(7). A solution
to these equations gives a curve C in the (6,, 6,) space. If the
point p under consideration is moving so that 6,(¢) and 8,(?)
are on the curve C, then the point has zero tangential accelera-
tion, i.e., the velocity of the point has a constant magnitude
and its component in the tangent plane remains parallel to
itself. The locus of the moving point is a geodesic on the sur-
face. In general the two equations obtained by setting a, ) and
a, equal to zero are highly nonlinear and cannot be solved in
closed form; however they can be integrated numerically.

For the point trajectory due to a two-degrees-of-freedom
motion of a point, the time-dependent second-order motion
properties are determined by [L], [g], the Christoffel symbols
(which in turn can be expressed as functions of the coefficients
g,’s and their derivatives with respect to 6, and 8, [5]) and the
first and second rates of change of 6, and 6, with respect to
time. The elements g;’s, L;’s and their partial derivatives are
functions of 8,, 6, and the mechanism’s structural parameters.
At different points in the trajectory these coefficients will be
different. Also, at the same point in R?, the elements will be
different if different mechanisms are used to generate the
trajectories.

4.1 Point Trajectories Withn = m

In this section, we consider the case where the number of
coordinates required to specify a point is the same as the
number of degrees of freedom of the motion. We have two
cases: two-degrees-of-freedom motion of a point in a plane
and three-degrees-of-freedom motion in space. Examples of
such cases are the point trajectories generated by planar and
spatial two- and three-degrees-of-freedom manipulators and
mechanisms. The main difference in this section (from the
previous section) is that there is no such thing as the normal
space or the normal component of the acceleration vector. Il
order to study the second-order properties we have 1ntroduced
scaler measures of ‘‘effectiveness’’ which depend on the posS}'
ble locus of the tip of the velocity vector at each position. It 1§
shown that these measures can be formulated in terms of areas
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for planar motions and volumes for motions in space. The rate
of change of these scalar quantities give us the second-order
characteristics of the motions,

4.2 Point Trajectories of Two-Degrees-of-Freedom
Motion in a Plane

In a plane, a point is specified by two coordinates (x, y),
and, in general any position in the plane may be reached by a
two-degrees-of-freedom motion. However, when the motion
is generated by a mechanism, there are physical constraints
due to finite lengths. In such cases the trajectory can only fill a
region of the plane, and this region has one or more boundary
Curves.

The first-order property of interest is the velocity distribu-
tion. At points inside the region (not at the boundary), det[g]
> 0 and the analysis of Section 3.2 can be applied to show that
the velocity distribution can be pictured as an ellipse (for the
case 62 + 63 = k?) with the directions of maximum and
minimum velocities along the major and minor axis of the
ellipse. At the boundary, the velocity distribution is no longer
an ellipse. All the velocities lie on a straight line.

To analyze the second-order properties, we introduce a
scalar quantity which is proportional to the area of the veloci-
ty ellipse. The magnitude |¥, x ¥, | or det[g] is a differential
invariant denoted by A. A is a scalar quantity which depends
on #,, 8, and the function ¥. The quantity 4 is the square root
of the product of the eigenvalues of [g], and w4 is the area of
the velocity ellipse. A is zero at the boundary where there is
only one effective motion parameter, and A is maximum when
det[g] is maximum. From Section 3.2, A is also a measure of
the ‘‘transmission ratio’’ at p.

It is possible to generate curves of constant A in the point
trajectory. We will call them ‘‘curves of constant A4.”’ The
curves of constant A are fixed for a given two-degrees-of-
freedom mechanism and, in general, exist for all values of 4
from 0 to some maximum value. The gradient of an A4 (a two-
dimensional vector) is given by

VA= (3A/39,,0A4/80,) 24)

The gradient vector gives the direction of the maximum
change of the transmission ratio or the effectiveness. The con-
stant A curves are similar to curves in contour maps describing
the topography of a region. The gradient vector gives the
direction in the trajectory in which the constant 4 curves are
most bunched together.

For a Cartesian manipulator,? 4 is everywhere constant,
since ¥ is linear in the parameters of the motion. The gradient
vector is zero and all directions are equal. This is analogous to
a flat region with no hills. For a planar manipulator with two
revolute joints, A is independent of ,, and the constant A
curves are circles. In Section 4.4, we present the first and
second-order properties of trajectories generated by planar
two-degrees-of-freedom mechanisms.

The boundary (as has been mentioned before) can be ob-
tained from the equation 4 = 0. For a two-degrees-of-freedom
motion this is a curve. There may be several such curves.

4.3 Point Trajectories of Three-Degrees-of-Freedom
Motion in Three-Space

) A point trajectory due to a three-degrees-of-freedom mo-
tion can be represented by a mapping of the form ¥: (6, 6,,
05) — (x, y, 2). 8;, 0,, and 6 are the three parameters of the
Ir}otion of a rigid body which contains the point p with coor-
dinates (x, y, z) in a fixed reference space R3. The function ¥
depends on the three-degrees-of-freedom mechanism, and the
trajectory is a region in R? with a boundary. The vectors, ¥/,

2In case of Cartesian manipulators, the independent motion parameters are
the translations at the joints.

Journal of Mechanisms, Transmissions, and Automation in Design

¥,, and ¥;, are independent except at the boundary of the
region, and form a local basis.

The first-order property is the velocity distribution which is
determined by the matrix [g]. In this case the matrix [g] is 3 X
3and g; = ¥,+¥;, i,/ = 1, 2, 3. Except at the boundaries, the
tip of the velocity vector for 82 + 6} + 6} = k2 lies on an
ellipsoid. The eigenvectors of [g] when mapped to the space of
the motion are along the axes of the ellipsoid. The maximum
and minimum velocities at p are along the major and minor
axes of the ellipsoid. The proofs of the foregoing statements
are very similar to those presented for the velocity ellipses in
Section 3.2.

For the second-order properties, we introduce a differential
invariant analogous to A. The scalar V is defined as (det[g])"/?
and is proportional to the volume of the ellipsoid described by
the tip of the velocity vector v. In general, V is a function of
the three parameters 8;, i = 1, 2, 3 and the dimensions of the
physical mechanism. The scalar quantity V is a measure of the
effectiveness of the three parameters — it has a maximum when
det[g] is maximum while at the boundary, where at least one
of the ¥; (i = 1, 2, 3) is parallel to one of the other two, V is
zero. It is also a measure of the transmission ratio at the point
p under consideration. The gradient of V is a three-
dimensional vector. It may be written as

vV =(0V/00,,0V/80,,0V/00;) 25)

V equals constant yields surfaces along which the measure of
transmission ratio, or effectiveness, remain the same. The gra-
dient of “V gives the direction along which these measures are
changing the fastest. For Cartesian manipulators V is the
same everywhere, as ¥ is a linear function of the three joint
displacements. The magnitude of the gradient of V is zero,
and all directions are equal with respect to effectiveness. For a
manipulator with three revolute joints V is independent of the
first joint rotation, hence V is constant at all points on a sur-
face of revolution. The gradient vector at a point is along the
normal to the surface of revolution through that point.

The boundary is given by det[g] = 0. This is the equation of
a surface in R3. We can use the theory presented in Section 3.1
and 3.2 to find the first- and second-order properties of this
surface.

4.4 Two-Degrees-of-Freedom Planar Mechanisms

In this section, we illustrate the foregoing concepts by
presenting the first- and second-order properties of trajec-
tories generated by two-degrees-of-freedom mechanisms. For
a detailed development of these results the reader is referred to
[14].

(1) The 2R Linkage. For a 2R linkage in a plane, shown
in Fig. 1, the equations describing the kinematics, ¥: (4,, 6,)
- (X, ), are?

X=0a15C) +a3C1 42

(26)
Y=a158 +a338) 12
Hence
_ 2
g1 =01 +a3; + 24,00,
812 = 0% + 1,050, 27

82 = a3
Since the elements of [g] do not contain §,, the shape of the
velocity ellipse for a given g, and a,,, depends only on the
value of 6,. In Fig. 1, the ellipse described by the tip of the
velocity vector is shown for ;2 + 6,2 = 1,4, = 2,4, = 1,
6, = 0°and 6, = 45°.

3We use the abbreviations of ¢; for cos(d;) and s; for sin(9;), the plus sign in
the subscript indicates a sum of tf;e two ang{es: Clpa = cos(b‘,l + 0,)and sy, 5
= sin(f; + 6;).
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Fig. 2 2P linkage

The scalar, 4, is given by A = ay4a;,5,. The constant 4
curves are concentric circles about the origin. A is maximum
when 6, is 90° and minimum when 6, is 0 or 180°. The
magnitude of the gradient of A is maximum when 0, is 0 or
180°. The boundaries of the workspace are obtained from set-
ting A equal to zero. The boundary curves are circles and are
given by x2 + ¥ = (a;; £ a,;)?. These circles and the circle
for A, for a;, = 2 and a,; = 1 are shown in Fig. 1.

(2) The 2P Linkage. For a 2P linkage in a plane, shown
in Fig. 2, the equations describing the kinematics, ¥: (S;, S,)
- (x,), are

x=58; +ay

y=35,
The elements gy, &2, and g,, are, respectively, 1, 0, and 1.
For 8,2 + §,% = 1, the locus of the curve traced out by the tip
of the velocity vector is the same at every point in the plane,
and moreover, it is a circle. The scalar, A4, is equal to 1 at every
point in the plane except at the boundaries where it is zero.
The gradient of 4 is maximum at the boundaries where A
changes from 0 to 1.

(3) The PR Linkage. For the PR linkage, shown in Fig.
3, the equations describing the kinematics, ¥: (S}, 8,) — (x,
y), are

(28

X= Sl + a23C2
J =435
Here, g, = 1, g1, = —ays, and g,, = a3;. Hence, the shape

of the ellipse traced out by the tip of the velocity vector for a
given a,, and for the unit speed motion* depends only on the

(29)

'4The unit-speed _motion in the case of a PR linkage chain is taken as
(S17(S1 lmax)” + 01 = 1, where (8|)pay is the maximum value which §; can
take. This ensures that the two terms are dimensionally the same.
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\52
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Fig. 4 RP linkage

parameter 6,. The scalar 4 is given by @3¢, 18, | s and is
maximum when 8, is zero or 180°. The constant area curves
are straight lines parallel to the X-axis. The gradient of A is
maximum when 6, is 90°.

(4) The RP Linkage. For the RP linkage, shown in Fig.
4, the equations describing the kinematics, ¥: (6, S,) — (%
»), are

x=(ap +ay)c, — 5,5 (30)
y=(ay; +an)s, +5,¢

The shape of the ellipse described by the tip of the velocity vec:
tor for the unit speed motion 62 + (S;/S; pax)? = 1 and
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known @, and a,; depends only on S,. The scalar A, is
18 | maxS2- It is zero when S, is zero and is maximum just
pefore S, reaches its maximum value. At the boundary the
aréa is again zero, as we have no motion along S,. The con-
stant area curves are circles.

5.1 Point Trajectories Withm > n

In this section, we consider the case of point trajectories
where the degree of freedom of the motion is larger than the
number of coordinates required to specify the point. Examples
of this case are point trajectories due to three- or higher-
degrees-of-freedom motion in the plane and four- or higher-
degrees-of-freedom motion in three-dimensional space.
Mathematically, these motions can be represented by mapp-
ings which takes points in m-dimensional spaces to points in n-
dimensional spaces, wWhere m > n. The map is many-to-one.
In the case of manipulators or multi-degrees-of-freedom
mechanisms, the dimension of the space of inverse kinematic
solutions is m—n, as there are m—n more unknowns than
equations. Such manipulators have redundant degrees of
freedom when it comes to positioning a point. A number of
researchers [13, 15, 16] have employed the pseudo-inverse of
the Jacobian matrix to make use of this redundancy. Their
work is concerned mainly with the control of redundant
manipulators. In this section, we give a procedure to use the
extra degrees of freedom for altering the velocity distribution
at a point without using the pseudo-inverse. A desirable
velocity capability is one in which the tip of the velocity vector
can: describe a circle (for motion in two-space) and a sphere
(for motion in three-space), at every position in the point tra-
jectory. We will show that by choosing a suitable rate of
change of the extra m — n parameters we can achieve a circular
velocity distribution. We present the analysis for a three-
degrees-of-freedom motion in a plane. A more general treat-
ment is in [14].

5.2 Three-Degrees-of-Freedom Motion Point
Trajectory in a Plane

Mathematically, a general point trajectory in a plane due to
a three-degrees-of-freedom motion can be represented as ¥:
0, 8,, 65) — (x, y) where 8;,, i = 1, 2, 3, are the motion
parameters, (x, y) are the coordinates of a moving point as
measured in a reference plane, R?, and the function ¥ depends
on the actual mechanism. (The inverse function to ¥, which
gives 6, i = 1, 2, 3, for known x and y has infinitely many
solutions.) The velocity of the point is given by

3
V= E‘I’,e,
i=1

For general points (except at the boundary), two out of three
¥,0s are independent. Let ¥,60; be a linear combination of
‘I’ 0,, i=1,2. (We could just as well write ¥, 6, or ¥,8, in
terms of the remaining two.) We can write

2
E O‘i\I’iéi
i=1

We assume that «; and «, are finite and real. If o (or o) is
zero, then W, 0, is parallel to ¥,6, (or ¥,6,). o; and o, can be
solved in terms of the 8,’s and the dot products ¥,;+¥;. Form-
ing the dot product of (32) with ¥, and ¥, yields

(¥32¥ )05 =, 81,0, + 08150,
(W329,)0; = 8120, + 2820,

where g, g,,, and g, are, respectively, the dot products ¥, o
Y,¥ «¥,,and ¥, « ¥
From equations (33), we have

€D)]

(32

‘1’30.3 =

(33)
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_ [(¥;F,)gn — (¥, "I’z)glzwz

o =a,(6;/6))
: (811822 — 850, 0 @i (34)
VoW ¥,
oy = — (¥ V)1~ (W3- ¥2)gn 105 _ a,(6,/6,)
(811822 — g12)92

We need one more equation to solve for ay, o, and ;. We
obtain the equation from the desired circular velocity
distribution.

Substituting (32) into (31), we get

2

i=1
The values of (6,, 6,), which give the maximum and minimum
v2, for 63 + 03 = 1, are the eigenvectors of the matrix [g’].
The matrix [g’] is symmetric and its coefficients are given by
gii=1+0)2(¥ o ¥)=(1+a;)%gy
giz=(+a)(1+o)(¥; = ¥)=(1+ )1 +a3)gr2
8=+ )2 (¥, W) = (1 + )’
The eigenvalues are real and are functions of g,;, g5, g2, @1,
and o,. The velocity distribution at a point is always an
ellipse, but its shape can be changed by choosing some velocity
criterion and then solving for ¢,, o, and «,. We give the solu-
tion procedure for the case when the eigenvalues of [g’] are
equal and the point being isotropic [12]. This corresponds to

the velocity distribution (at a point) being a circle.
The condition for equal eigenvalues is given by

[+ oy)?8p — (1 +01)2gy, I
+4(1+a)?(1 + )8}, =0

(36)

(37

Since the left-hand side of the foregoing equation is the sum of
two squares, it follows that both terms must be zero for the
eigenvalues to be equal. If g, # 0, then

o =0oy=—1 38)
Otherwise, we require g,, = 0. Then
(1"1‘&1)
—_— = /g2 39
EPS) (8227811) (39

The first case results in v always equal to zero, from (35), and
hence is not of much interest. In the second case, equation
39), «, and a, are

oy = i(gll/gzz)l/z.‘l ]
15 (g11/82) " [a,0,/(a,0,)]
axéz
a0,

(40)

(Xl - az
where ¢, and a, are defined in (34), and by using (34) and 9% +
63 = 1, we get

03=1/[(a,/a,)* +(@,/ 23)*] (41)
The aforementioned procedure (to compute 93) can be used as
long as we can solve for a finite o; and o, from equations (34).
This cannot be done when «, and «, are in the indeterminate
form zero divided by zero. «; and o, are indeterminate where
the degrees of freedom is less than three. Setting the
numerator and denominator (of, say, «;) in (34) to zero yields
equations g,18; — &, = 0and (¥, » ¥3)g — (¥, » ¥3)gp;
= (. These equations represent curves, and when p is on these
curves its velocity distribution cannot be altered. It is in-
teresting to note that at boundaries, the degrees of freedom is
less than three and hence the boundaries of the trajectory are
included in these curves.

From the previous analysis, we can make the following
general statement for point trajectories due to three-degrees-
of-freedom motion in R2: in general, except for regions given
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Fig. 6 Regions in the workspace of the 3R manipulator

by det[g] = 0, o, = 0and o, = 0, we can at each point deter-
mine the values of §,, as a function of g,;, g2, 22, 01, 05, ¥; *
¥,, and ¥, o ¥,, which will give any required velocity
distribution. 93 as a function of the foregoing quantities can
be pictured, in general, in the (4, 6,, 8,) space as a curve on
the surface of a cylinder. Furthermore, for equal eigenvalues
g1, must be zero. The regions where alterations in the velocity
distribution are possible will be called the alferable regions of
the point trajectory.

The previous procedure can be easily modified for three-
degrees-of-freedom motion in three-space. For motions with
more degrees of redundancy (m — n > 1), a similar procedure
can be used to alter first- and second-order properties. For
more details the reader is referred to [14].

5.3 Example: A 3R Manipulator in a Plane

Figure 5 shows a three-degrees-of-freedom manipulator in
the plane XY. There are three revolute joints with rotations 6, ,
6,, and 6;. The link lengths are a,,, a,3, and a,. We are in-
terested in the motion of the point p(x, ¥). The kinematic
equations, ¥: (6, 65, 8;) — (x, ), are

X=0ayC) +ay3C) 4+ A34Cr 4043
Y=0Q138 T A23S1 42t 034511243
We use numerical values of @, = 4, a3 = 2, a3y = 1 in this

(42)
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Fig. 7 Plot of §3 with respect to §

example. For equal eigenvalues 0, and 6, have to be such that
g1, = 0. The condition g;, = 0, reduces to

5+8c,+4c,, 3 +4c;=0 (43)

From the aforementioned equation it follows that for each
value of 0; we have two values of 0, given by

tan(0,/2) = (1/3)[ — s, = (55 + 24c;, — 16¢2)12]  (44)

In this case, #, can take any value between 0 and 360° and
the extreme values of 0, are +138.59° and +104.47°, Since §,
can taken any value, the velocity distribution can be altered in
the annular shaded region shown in Fig. 6. In this region, on
one circle, X2 + y* = 9, o; and o, are indeterminate and the
velocity distribution cannot be altered. The conditions of
indeterminate «, and «, yields curves C;, C,, C; and
C4 —four concentric circles of radius 1, 3, 5, and 7, respec-
tively. The circles with radius 1 and 7 are the inner and the
outer boundaries, respectively. The circles are shown in Fig, 6.

One point where the velocity distribution can be altered is
when 6, = cos~! (—1/4) and §; = 180°. We plot @, (for this
point) as a function of the angle 6, defined by tan é = 92/ 6,,
in Fig. 7. The angle 8 varies from 0 to 360°.

6.1 Conclusion

A general framework, based on concepts from differential
geometry, has been presented to facilitate the study the prop-
erties of trajectories of points embedded in rigid bodies
undergoing multi-degrees-of-freedom motions. Quantities
such as the elements of the matrices [g], [L] and the I‘{j- have
been developed to characterize and distinguish between trajec-
tories generated by different multi-degrees-of-freedom
mechanisms. For motions where the degrees of freedom are
equal to or less than the dimension of the space in which the
motion takes place, scalar measures of effectiveness of veloci-
ty transmission were developed. For motions where the
degrees of freedom are greater than the dimension of the
space, a new approach has been developed for using the
redundancy to alter the first-order properties of the trajectory.
The theory has been applied to several examples of motions
generated by two- and three-degrees-of-freedom open-loop
mechanisms containing revolute and prismatic joints,

In a companion paper [19], we developed analogous results
for the trajectories generated by lines under multi-degrees-of-
freedom motions.
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