

Optimum Design of a Compliant Foot for a Quadruped

1 Pramod Pal
2

3 pramodpal@iisc.ac.in
4

5 Department of Mechanical Engineering,
6 Indian Institute of Science, Bangalore, India
7

8 Shishir Kolathaya
9 shishirk@iisc.ac.in
10

11 Robert Bosch Centre for Cyber Physical Systems,
12 Indian Institute of Science, Bangalore, India
13

ABSTRACT

15 Improving the mechanical design of a quadruped in order to im-
16 prove its performance and efficiency is an area of active research.
17 The design of the feet with compliant element, such as a spring, can
18 play an important role in the performance of a quadruped robot.
19 In this work, we obtain the optimum value of the spring stiffness
20 which results in efficient hopping behavior of a single leg using
21 an evolutionary strategy. We start with an initial set of controller
22 gain parameters for the hip and knee actuators along with the foot
23 spring stiffness. The performance of each candidate solution was
24 evaluated based on the maximum hop height. The algorithm is able
25 to efficiently search the high-dimensional solution space and find
26 the optimal control parameters, resulting in an improved hopping
27 mechanism. The optimized controller gain parameters with a spe-
28 cific range of foot spring stiffness values showed that the compliant
29 element at the foot helps the leg hop higher than a rigid foot.
30

KEYWORDS

32 Quadruped, Single-leg hopping, CMA-ES Evolutionary Strategy,
33 Compliant foot
34

ACM Reference Format:

36 Pramod Pal, Anubhab Dasgupta, Shishir Kolathaya, and Ashitava Ghosal.
37 2023. Optimum Design of a Compliant Foot for a Quadruped. In *Proceedings*
38 of ACM Conference (Conference'17). ACM, New York, NY, USA, 7 pages.
39 <https://doi.org/XXXXXX.XXXXXXX>

1 INTRODUCTION

42 Legged robots have gained a lot of interest and significance in
43 recent years due to their potential applications in many different
44 fields. Legged robots can climb, walk, and jump, making them suited
45 for activities requiring movement across challenging or uncertain
46 environments [4, 7]. Legged robots can mimic human movements,
47 making them perfect for activities that require interaction with
48 people, such as search and rescue operations or helping those who
49

50 Permission to make digital or hard copies of all or part of this work for personal or
51 classroom use is granted without fee provided that copies are not made or distributed
52 for profit or commercial advantage and that copies bear this notice and the full citation
53 on the first page. Copyrights for components of this work owned by others than ACM
54 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
55 to post on servers or to redistribute to lists, requires prior specific permission and/or a
56 fee. Request permissions from permissions@acm.org.

57 Conference'17, July 2017, Washington, DC, USA
58 © 2023 Association for Computing Machinery.
59 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00
60 <https://doi.org/XXXXXX.XXXXXXX>

61 Anubhab Dasgupta
62

63 anubhab.dasgupta@jgpian.iitkgp.ac.in
64

65 Department of Mechanical Engineering,
66 Indian Institute of Technology, Kharagpur, India
67

68 Ashitava Ghosal
69

70 asitava@iisc.ac.in
71

72 Department of Mechanical Engineering,
73 Indian Institute of Science, Bangalore, India
74

75 have mobility impairments [18]. Designing a quadruped robot ne-
76 cessitates a broad range of considerations, including the design
77 of the legs, actuators, control systems, power supply, and overall
78 structure. The leg design must offer stability and mobility, with the
79 ideal number and configuration of joints, actuation type, and foot
80 design depending on the intended use and environment. Therefore,
81 it is essential to investigate foot design that may provide stability,
82 terrain adaptability, increased energy efficiency, and less impact
83 force of the robot movement on the environment, making it safer
84 to use in populous or sensitive locations. Recent years have seen
85 an increase in research and development of compliant feet which
86 are intended to be flexible and deform under external stresses and
87 this is expected to improve the robot's performance across various
88 terrains and situations.

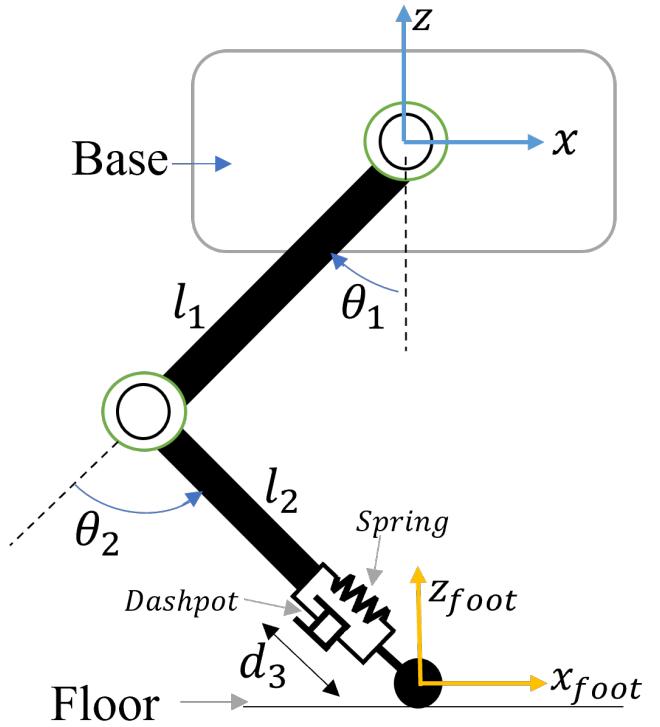
89 Legged locomotion experiences energy losses for three main
90 reasons: transmission losses due to friction, actuator losses due
91 to heating, and system-environment interaction losses. Reducing
92 the first two losses requires a new actuator design and electronics,
93 which can be system-specific and challenging to implement [24].
94 More sophisticated series elastic actuators (SEAs) can solve the
95 latter issue. By placing compliant parts in series with the actuator,
96 SEAs reduce the ground impact force. However, SEAs are typically
97 more expensive, complicated, and power-consuming than conven-
98 tional actuators. They also have limited bandwidth and force range
99 and can have limited accuracy due to mechanical compliance and
100 control electronics [15]. Other forms of advanced actuation, like
101 quasi-direct drive (QDD) actuators with a lower gear ratio, provide
102 direct torque input and exhibit good control. However, these motors
103 are expensive and have poor torque output with increased Joule
104 heating [11].

105 Consequently, it is more practical to use a simple passive spring
106 to store energy during the foot's contact and then release it during
107 the other phases of the leg's motion. This not only increases the
108 stability but also increases the efficiency of the legged robot [5].
109 The linear springs may be designed to meet the needs of a given
110 application by considering parameters such as the robot's mass, size,
111 and operating environment. It may also be engineered to produce
112 damping to modify the rate at which the foot returns to its original
113 position after deformation. This plays a crucial role in limiting
114 the transfer of vibrations from the ground to the robot's frame.
115 Linear springs are a cost-effective solution due to their versatility,
116 durability, low material cost, and low manufacturing complexity.
117 They are also adaptable to robots of varying sizes and weights
118 because of their scalability. This paper will examine the effect of

117 compliant feet that use linear springs and aim to determine optimal
 118 control of the actuators along with the optimal foot stiffness.

119 The paper is organized as follows: in the rest of this section,
 120 we review the relevant literature. We present the leg design and
 121 its kinematics in section 2. We present the MuJoCo simulation
 122 parameters, control strategy, and optimization algorithms used for
 123 training the single-leg robot for hopping in section 3. We present
 124 the numerical simulation results in section 4, with the conclusion
 125 in section 5.

127 1.1 Related Work


129 Raibert was an early innovator in legged robotics, and his research
 130 on compliant feet for robot legs impacted the development of modern
 131 mono-ped, biped, and quadruped robots. In the studies by him
 132 and his co-workers, they focused on using passive dynamics to
 133 improve legged movement by introducing compliant features into
 134 the design of the foot. This allowed the robots to adapt to uneven
 135 terrain and recover from disturbances with less effort (see, for
 136 example, [26]). Buehler and co-workers developed hopping and
 137 quadruped running robots by incorporating springs in the robot's
 138 leg axis or hip joint [1, 21]. Kostamo et al. introduced a novel method
 139 for reducing bounce between a robotic leg and the floor using a
 140 semi-active responsive foot [16]. Hyon and Mita demonstrated that
 141 the spring converts the robot's kinetic energy to elastic potential
 142 energy and stores impulse energy for the next step [14]. The 'KOLT'
 143 leg design by Palmer et al. showed minimal impact loss, low inertia,
 144 variable stiffness, and an energy storage system [20]. Focchi
 145 demonstrated the effect of variable spring stiffness by plotting the
 146 torque produced by the impact in the knee joint when the leg hits
 147 the floor [8].

148 2 LEG DESIGN AND CONSTRAINTS FOR 149 HOPPING

152 The leg design has the following main components: the length of
 153 the links, the shape of the links, hip and knee joint placements,
 154 the actuator power ratings, and the foot design consisting of the
 155 shape of the part touching the ground and the added compliance
 156 mechanism. The ideal leg length for a jumping robot will vary
 157 depending on various elements, such as the robot's size and weight,
 158 the power of its actuators, and the environment in which it will
 159 be used—including surface friction coefficients, the incline of the
 160 surface, and so on. We have chosen to keep the shape of the links
 161 straight to keep the structure simple for analysis in the simulation.
 162 Both the actuators for the hip and knee joints were fixed to the
 163 top part of the hip link. The shank link is driven by a belt and
 164 pulley drive with a gear ratio of 1:2. For power transmission from
 165 the motor to the links, we have used a planetary gearbox with a
 166 gear ratio of 1:6. The foot is designed by adding a linear spring and
 167 damper which connects the lower extreme of the shank link to the
 168 foot part as shown in Fig. 1.

171 2.1 Selection of Link Lengths

172 In general, longer link lengths might give the robot a higher me-
 173 chanical advantage since they enable a longer stride and more

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
Figure 1: Schematic diagram of the single leg with compliant foot

leverage. Larger link lengths will increase stability during the leap, but they will also require more power to get the robot off the ground and more sophisticated control algorithms to keep it there. As the literature shows, longer legs could potentially be more vulnerable to harm or failure [2]. We decided to use economical 360 KV brushless motors in our hardware and this limited the torque values. To make our system simple, we assumed equal links of 0.17 m length, which is equivalent to a medium size dog leg length [9, 27]. The base frame of the leg is allowed to move vertically in the Z-direction. The base of the leg is connected to bearing shafts with the help of linear bearing, as shown in Fig. 1, thus constraining the base motion in the Z-direction.

2.2 Kinematic Modelling and Tracking Trajectory Generation

The leg is a critical component of any quadruped or a walking robot. A well-designed leg should be able to absorb sudden impact force to prevent its parts from breaking. This may be accomplished by simply attaching a compliant link to the foot, which can minimize the force of contact and simultaneously store and transfer energy while executing various gaits. The single leg, as seen in Fig. 1, consists of a base, thigh, shank, and foot link joined by two active revolute joints and one passive prismatic joint. The lengths of the thigh and shank links are represented by l_1 and l_2 ; the rotations

of the links are represented by the angles θ_1 (from vertical) and θ_2 (from the direction along thigh link) and their range is listed in Table 1. The forward kinematics equations provide the Cartesian locations that can be tracked by the foot tip and are given as

$$x_{foot} = -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) - d_3 \sin(\theta_1 + \theta_2) \quad (1)$$

$$z_{foot} = -l_1 \cos(\theta_1) - l_2 \cos(\theta_1 + \theta_2) - d_3 \cos(\theta_1 + \theta_2) \quad (2)$$

where d_3 denotes the linear motion of the spring (see Fig. 1).

The cyclic trajectory is made linear by constraining one of the coordinates to be a fixed point, and the resulting reference path is used to approximate the foot end-point trajectory to make the leg hop in one place. The end-point trajectory is given by

$$x = 0, \quad z = -0.174 + 0.026 * \sin(\phi)$$

where the angle ϕ is used to divide the trajectory into 200 equally spaced points.

There are three joint variables in a leg, and to obtain θ_1 , θ_2 , and d_3 for a given (x, z) , a redundancy resolution scheme needs to be used. In this work, we have used a sequential least squares programming (SLSQP) algorithm, originally implemented by Kraft [17] (see also [10]). We use the quantity $\|q\|^2$ as the objective function in the optimization, where q denotes the vector of the hip angle, knee angle, and the change in length divided by the original length of the spring-damper system, to obtain the inverse kinematics solution of the compliant legged system.

Joint Variable	Joint name	Type of joint	Range
θ_1	hip	Revolute	0 to 1.6 radian
θ_2	knee	Revolute	-2.1 to 0 radian
d_3	foot	Prismatic	0 to 0.012 m

Table 1: Joint variables motion range

3 MUJOCO SIMULATION AND PARAMETERS USED

To study the effect of linear spring at foot, we made use of the open AI MuJoCo simulation environment [25]. MuJoCo captures contact dynamics with state-of-the-art capabilities. It is a popular open-source program for robotic system simulation and is simple to use. To communicate with the simulator and get experimental data, we used the MuJoCo-py module. In reference [6], MuJoCo is shown to be the quickest and most accurate for robotics-related system. The model shown in the Fig. 2 represents the single leg that has been designed using the Solidworks program, and then the URDF (Unified Robotics Description Format) is created with the help of an add-on module. Taking reference from the URDF file for the position and orientation of the links, an XML file world body tag is made. Using XML API documentation, we first make the ground plane on which the single leg will jump and then added other leg elements along with the base frame.

To correctly depict the robot's behavior using the MuJoCo simulation, a number of parameters must be specified. These parameters

consist of model parameters, which determine the physical qualities of the simulation's objects, such as mass, size, and location. Simulation parameters, such as the time step size and the number of iterations, govern the simulation itself. Control parameters, such as actuator forces and torques, define how the robot is controlled. The visualization factors, such as camera position and lighting conditions, dictate how the simulation can be shown. Solver parameters can be used to control the numerical solver, which is utilized to solve the equations of motion and the stability and precision of the simulation can be controlled with the use of these parameters. Environment parameters describe the attributes of the simulated environment, such as the coefficients of gravity and friction. All of these parameters work together to form a realistic depiction of the robot and its environment, enabling the realistic simulation and assessment of robotic systems.

In our simulations, we assigned a gravity that allows the single leg to fall to make contact with the ground when it hits the ground plane. In MuJoCo, a variety of actuators are available. We have used the proportional and derivative controller gain of a motor to simulate the behavior of a spring and damper as an added compliance mechanism to the foot of the single-legged robot. We have used a timestep of 0.001 which provides better accuracy and stability. For the solver, we have used Newton's method. A 4th-order Runge-Kutta method is used as an integrator, known to be better than the Euler method for the energy-conserving system both in terms of stability and accuracy [23]. The total mass of the single leg is 3 kg. At all joints, we have chosen a damping of 1 N s/m. The torque is limited in both hip and knee joints to 7 N-m.

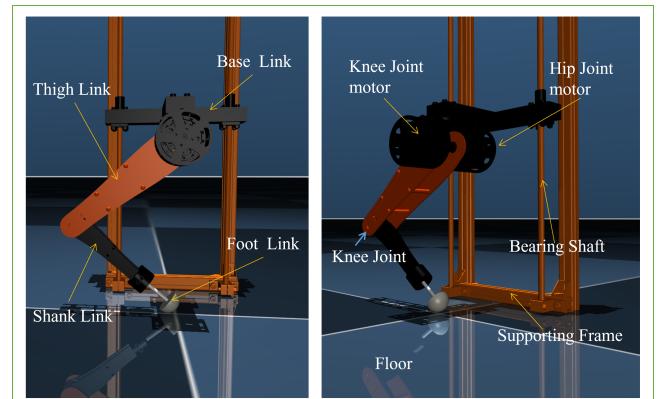
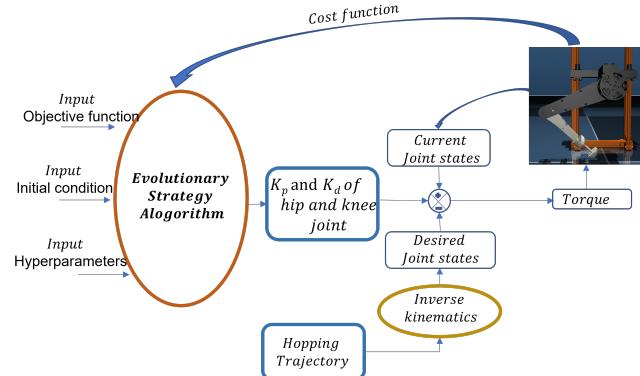



Figure 2: Single leg with compliant foot in MuJoCo environment

Fig. 3 shows the block diagram of simulation. We first find the optimal proportional (k_p) and derivative gains (k_d) for hip and knee joints motor with the help of a data-driven evolutionary algorithm – see section 3.2 below for the details of the three different evolutionary strategies that were attempted. These gains are applied to the errors of the joint state to yield torque commands. The torques are given to the drive motors to yield new joint states and the base position. The base position helps to compute the cost function, and the evolutionary strategy algorithm maximizes the cost function by maximizing the jump. We trained the model for a range of spring

349 stiffness to get optimal k_p and k_d for the hip and knee joint motor.
 350 We then chose the spring stiffness which gives the maximum cost
 351 function value.

367 **Figure 3: Schematic diagram of single leg with compliant
 368 foot**

3.1 Control Strategy

373 In the simulation, torque is used as the control input. The control
 374 system uses the proportional plus derivative (PD) strategy to cal-
 375 culate the necessary torque output based on the current position
 376 and velocity of the system as well as the desired position and ve-
 377 locity – see Fig. 2. The PD control continues to be one of the most
 378 popular strategies despite significant advancements in nonlinear
 379 control systems and development of model-based controllers. PD
 380 controllers draw more community interest since they don't require
 381 models (and its inherent uncertainty) and are simpler to develop.
 382 In walking robots like bipeds, PD controllers have been widely
 383 employed, and research has shown that these controllers are locally
 384 stable in a variety of circumstances. The PD controller for the three
 385 actuators can be written as

$$387 \tau_1 = k_{p1}e + k_{d1}\dot{e}, \quad \tau_2 = k_{p2}e + k_{d2}\dot{e}, \quad \tau_3 = k_{p3}e + k_{d3}\dot{e}$$

388 where, τ_1, τ_2, τ_3 , are the torques k_{p1}, k_{p2}, k_{p3} are the proportional
 389 gains, k_{d1}, k_{d2}, k_{d3} are the derivative gains, e is error in current
 390 position and desired position and \dot{e} is rate of change of error, re-
 391 spectively.

3.2 Evolutionary Algorithms

394 We have implemented three distinct evolutionary strategies to find
 395 the optimal controller gains for the single-legged system. A brief
 396 description of each of them is given below:

- 397 • **Covariance Matrix Adaptation Evolutionary Strategy:**
 398 We have implemented the work of Hansen et al. [13]. In the
 399 CMA-ES evolution strategy, new candidate solutions are
 400 sampled according to a multivariate normal distribution in
 401 $\mathbb{R}^n \times \mathbb{R}^n$. In our case $n = 6$ comprising of the hip, knee, and
 402 foot k_p, k_d values. We treat the problem as a black box opti-
 403 mization problem, and thus the optimization is model-free.

407 We sample controller gains from the multivariate normal
 408 distribution and perform a mutation operation. Mutation
 409 amounts to adding a random vector, a perturbation with
 410 zero mean. Pairwise dependencies between the variables in
 411 the distribution are represented by a covariance matrix. The
 412 covariance matrix adaptation (CMA) is a method to update
 413 the covariance matrix of this distribution, which gives the
 414 next distribution with an updated covariance matrix and
 415 mean, from which the following iteration's controller gains
 416 will be sampled from. CMA-ES uses the following as its
 417 equation for sampling:

$$418 \mathbf{k} \leftarrow \mathbf{m} + \sigma \mathbf{k}' \sim \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$$

419 where $\mathbf{k}' \sim \mathcal{N}(0, \mathbf{C})$. Following the above, the covariance
 420 matrix \mathbf{C} is updated, and the mean vector \mathbf{m} is updated
 421 using linear weighted recombination followed by step-size
 422 control.

- 423 • **Elitist Genetic Algorithm:** For comparison, we imple-
 424 mented the Elitist Genetic Algorithm, where the method
 425 keeps the best individuals of a generation alive until some
 426 better individual arrives. This ensures a monotonic evolu-
 427 tion of the cost function. It uses mutation and cross-over
 428 operations to optimize the objective, which is the cost func-
 429 tion of the environment setup. Bhandari showed EGA con-
 430 verges to the global optimal solution with any choice of
 431 initial population [3], Raji showed that it only takes a small
 432 number of fitness values to converge [22]. In this work, we
 433 observed that the CMA-ES algorithm performed better than
 434 this algorithm in most simulations.

- 435 • **Cartesian Genetic Programming:** We have also imple-
 436 mented Cartesian Genetic Programming [19], which shows
 437 the usage of a particular tree-based functional expression
 438 encoding to represent the parameters to be optimized –
 439 in this case the controller gains. Cross-over and mutation
 440 operations are then performed to update the encoding pa-
 441 rameters, which finally yields the updated set of controller
 442 gains. When compared, CMA-ES outperformed Cartesian
 443 Genetic Programming, and therefore, we selected the CMA-
 444 ES algorithm for the training.

445 The CMA-ES is particularly useful if the reward function is ill-
 446 conditioned or non-convex over the sample space and hence the
 447 choice of using it over several other evolutionary algorithms. It
 448 is known in the literature that the CMA-ES is a prominent algo-
 449 rithm best suited for non-convex problems with an uneven sample
 450 space [12], the reason being that CMA-ES uses a normal distribution
 451 from which gains are sampled and they have the largest entropy
 452 for a given sample space.

3.3 Training

453 We have used an evolutionary training method that finds the opti-
 454 mal gains of the controller by using a model-free objective function.
 455 The objective function has been chosen to depend solely on the
 456 jump height from the ground of the base slider. The motivation
 457 for choosing this as an objective, and not something like the range
 458 of jump, is because local maximization of the range is possible

even if the base slides down to the ground and moves up minimally. The selection of this objective function is also motivated by the fact that it is a convex function in h and that the speed of CMA-ES search is not greatly slowed by its use. In this work, we chose $Ke^{-(\mathbb{H}-h)}$ as an objective to be maximized, where K is a non-zero positive constant, \mathbb{H} represents an upper limit on the jumping height (assumed to be much bigger than what the robot can jump realistically), and h is the height of the base-slider in the step in which it is getting computed. We took 4000 steps and calculated the objective as $\max(R_i) \in [2000 \rightarrow 4000]$, where R_i is the objective function value at the i -th iteration of the training. This preserves the nature of the step-wise objective without affecting the end goal of the training.

4 RESULTS AND DISCUSSION

In this section, we present some of the main simulation results. We also present the training results and the usage of the trained controller gains to analyze the hopping behavior.

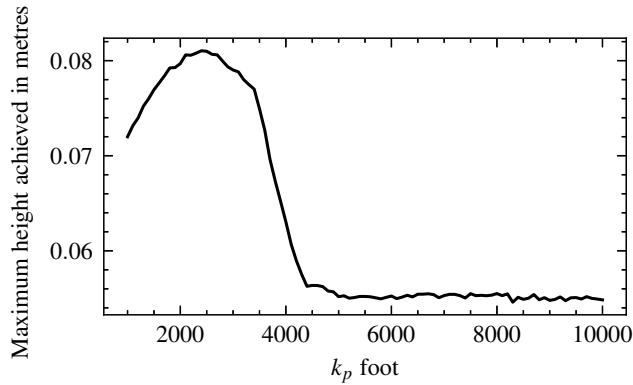


Figure 4: Maximum base height achieved with varying foot spring constant for fixed values of controller gains obtained after training

Figure 5: Hip angle with number of simulation time steps

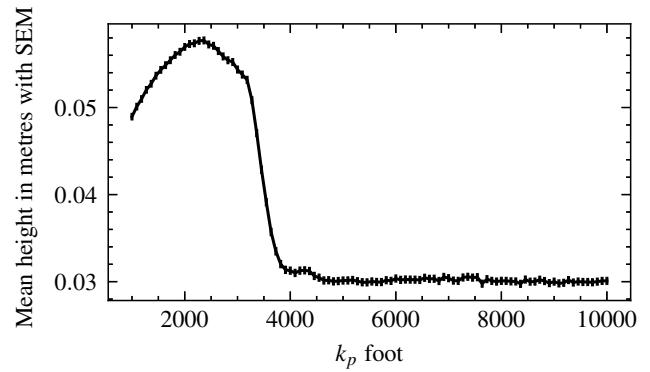


Figure 6: Mean height of base slider with standard error of the mean ($\pm 10^{-4}$)

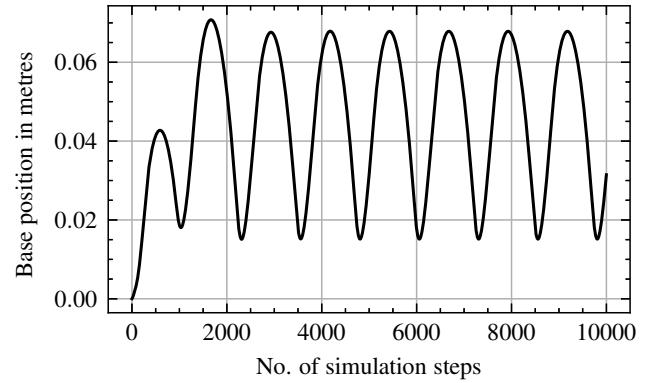


Figure 7: Height of base slider at 1000 k_p foot

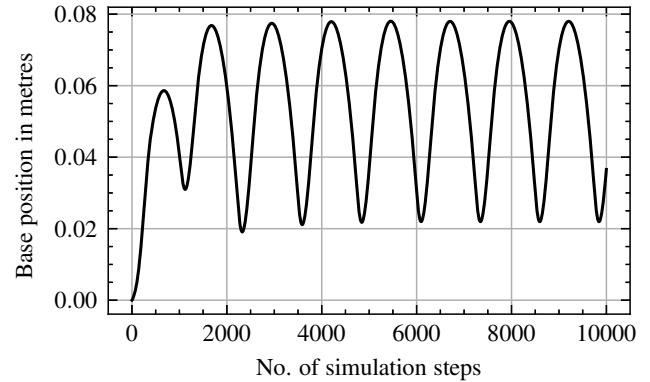


Figure 8: Height of base slider at 2400 k_p foot

The single-leg hopping is simulated for a range of spring stiffness (1000 N/m to 10000 N/m) in MuJoCo shown in Fig. 4. This graph is generated by varying the stiffness of the foot joint, keeping values of controller gains and other parameters fixed obtained after training. This graph clearly shows that the maximum height achieved by

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

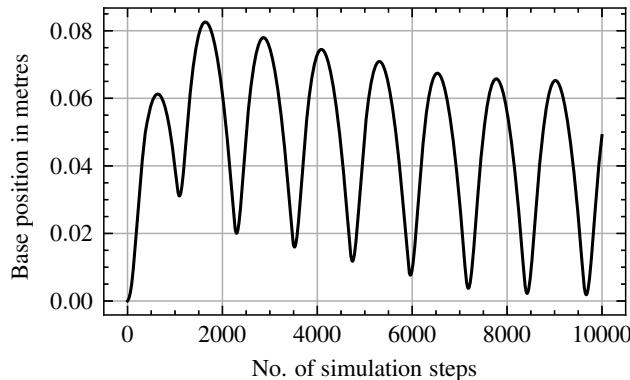
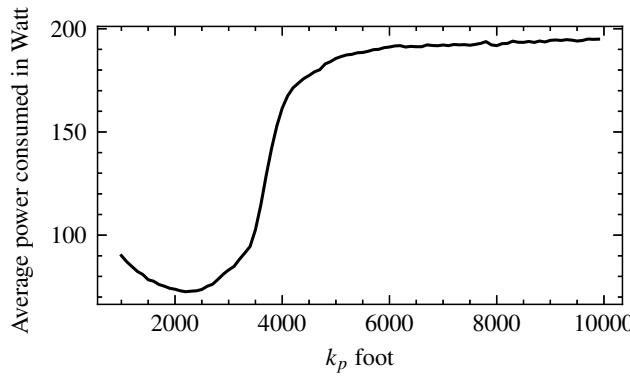


Figure 9: Height of base slider at 8000 k_p foot

Figure 10: Average power consumed with foot stiffness

the base link keeps on increasing until an optimum stiffness of the foot link. After the optimal stiffness, the maximum base link height decreases and gets saturated at very high stiffness values (fixed foot). Fig. 5 shows the variation of the hip angle with the number of simulation time steps, where the initial transient behavior of jumping down from a higher hip angle to a periodic lower value is due to the system trying to position itself at the correct hopping coordinates. As we have seen in multiple simulation results, the periodic behavior is independent of the initial starting position of the leg, which demonstrates the stability and robustness of the controller with respect to initial joint states.

Fig. 8 shows the variation of the base position with simulation time steps and this demonstrates that the base varies periodically with almost the same amplitude. It gradually increases and stabilizes itself about a particular mean. Fig. 6 shows the mean height of the base with varying spring constant of the foot with the error scales representing the deviation of the cumulative mean. The increasing error scales at the end demonstrate the fact that the standard deviation increases with the foot k_p up to a particular value and then decreases again. As is evident from Fig. 6, the standard deviation achieves a peak value at a k_p of the foot at around 2400 which is the region of maximum hopping range for the particular value of the controller gains. Fig. 7 shows the base position keeping the foot

k_p at 1000. The maximum height achieved by the base link is 0.071 m which is low compared to the optimal k_p of 2400 shown in Fig 8 where the height reached is 0.081 m. We also obtained the height achieved for a high k_p of 8000, and as shown in Fig. 9 a maximum value of 0.054 m was achieved. Fig. 10 shows the average power consumed as a function of foot stiffness and it can be seen that the power consumed is least for the optimum foot stiffness.

The overall the simulation results indicate that the trained controller is robust with respect to the initial position, and the base height from the ground gradually increases over time and stabilizes itself at a particular mean. There exists a local supremum in the maximum height achieved by the base slider as shown in Fig. 4 for the given inertial parameters and the trained controller gains, which demonstrates the existence of a particularly favorable range of foot spring-damper values for which the single leg demonstrates maximum hopping ability.

5 CONCLUSION

In this work, the effect of foot compliance on a single-legged hopping robot has been studied. The single leg has two motors and a spring at the feet, and the objective was to use evolutionary techniques to find the best combination of parameters for the highest vertical hop. MuJoCo a rigid body simulator, is used to study the effect of linear spring at the foot on the single-legged robot model. The primary finding of the study is that there is a stiffness and control gain range where the vertical jump is maximum. According to the simulation data, the optimum spring stiffness at the foot can enhance the highest point that can be reached by the base. This work is being extended to optimize the impact force and power consumption and to implement the findings on a physical hardware. The main goal is to apply this research to a quadruped, where stiffness will be added to each of the four legs to examine how the stiffness of the feet affects the quadruped's cost of transport.

REFERENCES

- [1] Mojtaba Ahmadi and Martin Buehler. 2006. Controlled passive dynamic running experiments with the ARL-monopod II. *IEEE Transactions on Robotics* 22, 5 (2006), 974–986.
- [2] Rafael M Andrade and Paolo Bonato. 2021. The role played by mass, friction, and inertia on the driving torques of lower-limb gait training exoskeletons. *IEEE Transactions on Medical Robotics and Bionics* 3, 1 (2021), 125–136.
- [3] Dinabandhu Bhandari, CA Murthy, and Sankar K Pal. 1996. Genetic algorithm with elitist model and its convergence. *International Journal of Pattern Recognition and Artificial Intelligence* 10, 06 (1996), 731–747.
- [4] Priyaranjan Biswal and Prases K Mohanty. 2021. Development of quadruped walking robots: A review. *Ain Shams Engineering Journal* 12, 2 (2021), 2017–2031.
- [5] Jie Chen, Zhongchao Liang, Yanhe Zhu, Chong Liu, Lei Zhang, Lina Hao, and Jie Zhao. 2019. Towards the exploitation of physical compliance in segmented and electrically actuated robotic legs: A review focused on elastic mechanisms. *Sensors* 19, 24 (2019), 5351.
- [6] Tom Erez, Yuval Tassa, and Emanuel Todorov. 2015. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In *2015 IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, 4397–4404.
- [7] Jorge Ferreira, A Paulo Moreira, Manuel Silva, and Filipe Santos. 2022. A survey on localization, mapping, and trajectory planning for quadruped robots in vineyards. In *2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)*. IEEE, 237–242.
- [8] Michele Focchi. 2013. Strategies to improve the impedance control performance of a quadruped robot. *Genoa: Istituto Italiano di Tecnologia* (2013).
- [9] Elena Garcia, Juan Carlos Arevalo, Gustavo Munoz, and Pablo Gonzalez-de Santos. 2011. On the biomimetic design of agile-robot legs. *Sensors* 11, 12 (2011), 11305–11334.
- [10] Ashitava Ghosal. 2006. *Robotics*. Oxford University Press.

697 [11] Gianluigi Grandesso, Gabriel Bravo-Palacios, Patrick Wensing, Marco Fontana,
698 and Andrea Del Prete. 2020. Exploring the limits of a hybrid actuation system
699 through Co-Design. (2020).

700 [12] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík. 2010.
701 Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In *Proceedings of the 12th Annual Conference Companion on
702 Genetic and Evolutionary Computation*. 1689–1696.

703 [13] N. Hansen, S.D. Müller, and P. Koumoutsakos. 2003. Reducing the time complexity
704 of the derandomized evolution strategy with covariance matrix adaptation (CMA-
705 ES). *Evolutionary Computation* 11, 1 (2003), 1–18.

706 [14] Sang-Ho Hyon and Tsutomu Mita. 2002. Development of a biologically inspired
707 hopping robot "Kenken". In *Proceedings 2002 IEEE International Conference on
708 Robotics and Automation (Cat. No. 02CH37292)*, Vol. 4. IEEE, 3984–3991.

709 [15] AG Leal Junior, Rafael Milanezi de Andrade, and Antônio Bento Filho. 2016.
710 Series elastic actuator: Design, analysis and comparison. *Recent Advances in
711 Robotic Systems* (2016).

712 [16] Esa Kostamo, Michele Focchi, Emanuele Guglielmino, Jari Kostamo, Claudio
713 Semini, Jonas Buchli, Matti Pietola, and Darwin Caldwell. 2014. Magnetorheologically
714 damped compliant foot for legged robotic application. *Journal of
715 Mechanical Design* 136, 2 (2014), 021003.

716 [17] Dieter Kraft. July 1988. *A software package for sequential quadratic programming*.
717 Technical Report DFVLR-FB 88-28, Institut für Dynamik der Flugsysteme,
718 Oberpfaffenhofen.

719 [18] Yibin Li, Bin Li, Jihong Ruan, and Xuewen Rong. 2011. Research of mammal
720 bionic quadruped robots: A review. In *2011 IEEE 5th International Conference on
721 Robotics, Automation and Mechatronics (RAM)*. IEEE, 166–171.

722 [19] Julian Miller. 2003. *Cartesian Genetic Programming*. Vol. 43. <https://doi.org/10.1007/978-3-642-17310-3>

723 [20] Luther R Palmer, David E Orin, Duane W Marhefka, James P Schmiedeler, and
724 Kenneth J Waldron. 2003. Intelligent control of an experimental articulated leg
725 for a galloping machine. In *2003 IEEE International Conference on Robotics and
726 Automation (Cat. No. 03CH37422)*, Vol. 3. IEEE, 3821–3827.

727 [21] Ioannis Pouliquen, James Andrew Smith, and Martin Buehler. 2005. Modeling
728 and experiments of untethered quadrupedal running with a bounding gait: The
729 Scout II robot. *The International Journal of Robotics Research* 24, 4 (2005), 239–256.

730 [22] Ismail Damilola Raji, Habeeb Bello-Salau, Ime Jarlath Umoh, Adeiza James Onu-
731 manyi, Mutiu Adesina Adegboye, and Ahmed Tijani Salawudeen. 2022. Simple
732 Deterministic Selection-Based Genetic Algorithm for Hyperparameter Tuning
733 of Machine Learning Models. *Applied Sciences* 12, 3 (2022), 1186.

734 [23] Nikita Rudin, Hendrik Kolenbach, Vassilios Tsounis, and Marco Hutter. 2021.
735 Cat-like jumping and landing of legged robots in low gravity using deep rein-
736 forcement learning. *IEEE Transactions on Robotics* 38, 1 (2021), 317–328.

737 [24] Sangoh Seok, Albert Wang, Meng Yee Chuah, Dong Jin Hyun, Jongwoo Lee,
738 David M Otten, Jeffrey H Lang, and Sangbae Kim. 2014. Design principles for
739 energy-efficient legged locomotion and implementation on the MIT cheetah
740 robot. *IEEE/ASME Transactions on Mechatronics* 20, 3 (2014), 1117–1129.

741 [25] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
742 for model-based control. In *2012 IEEE/RSJ International Conference on Intelligent
743 Robots and Systems*. IEEE, 5026–5033.

744 [26] David Wooden, Matthew Malchano, Kevin Blankespoor, Andrew Howard, Alfred
745 A Rizzi, and Marc Raibert. 2010. Autonomous navigation for BigDog. In
746 *2010 IEEE International Conference on Robotics and Automation*. IEEE, 4736–4741.

747 [27] Yuhai Zhong, Runxiao Wang, Huashan Feng, and Yasheng Chen. 2019. Analysis
748 and research of quadruped robot's legs: A comprehensive review. *International
749 Journal of Advanced Robotic Systems* 16, 3 (2019), 1729881419844148.

750 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456] [457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480] [481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504] [505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528] [529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552] [553] [554] [555] [556] [557] [558] [559] [550] [551] [552] [553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576] [577] [578] [579] [580] [581] [582] [583] [584] [585] [586] [587] [588] [589] [580] [581] [582] [583] [584] [585] [586] [587] [588] [589] [590] [591] [592] [593] [594] [595] [596] [597] [598] [599] [590] [591] [592] [593] [594] [595] [596] [597] [598] [599] [600] [601] [602] [603] [604] [605] [606] [607] [608] [609] [610] [611] [612] [613] [614] [615] [616] [617] [618] [619] [610] [611] [612] [613] [614] [615] [616] [617] [618] [619] [620] [621] [622] [623] [624] [625] [626] [627] [628] [629] [620] [621] [622] [623] [624] [625] [626] [627] [628] [629] [630] [631] [632] [633] [634] [635] [636] [637] [638] [639] [630] [631] [632] [633] [634] [635] [636] [637] [638] [639] [640] [641] [642] [643] [644] [645] [646] [647] [648] [649] [640] [641] [642] [643] [644] [645] [646] [647] [648] [649] [650] [651] [652] [653] [654] [655] [656] [657] [658] [659] [650] [651] [652] [653] [654] [655] [656] [657] [658] [659] [660] [661] [662] [663] [664] [665] [666] [667] [668] [669] [660] [661] [662] [663] [664] [665] [666] [667] [668] [669] [670] [671] [672] [673] [674] [675] [676] [677] [678] [679] [670] [671] [672] [673] [674] [675] [676] [677] [678] [679] [680] [681] [682] [683] [684] [685] [686] [687] [688] [689] [680] [681] [682] [683] [684] [685] [686] [687] [688] [689] [690] [691] [692] [693] [694] [695] [696] [697] [698] [699] [690] [691] [692] [693] [694] [695] [696] [697] [698] [699] [700] [701] [702] [703] [704] [705] [706] [707] [708] [709] [700] [701] [702] [703] [704] [705] [706] [707] [708] [709] [710] [711] [712] [713] [714] [715] [716] [717] [718] [719] [710] [711] [712] [713] [714] [715] [716] [717] [718] [719] [720] [721] [722] [723] [724] [725] [726] [727] [728] [729] [720] [721] [722] [723] [724] [725] [726] [727] [728] [729] [730] [731] [732] [733] [734] [735] [736] [737] [738] [739] [730] [731] [732] [733] [734] [735] [736] [737] [738] [739] [740] [741] [742] [743] [744] [745] [746] [747] [748] [749] [740] [741] [742] [743] [744] [745] [746] [747] [748] [749] [750] [751] [752] [753] [754]