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Abstract

Multi-fingered hands have the capability of dexterous manipulation of grasped objects and thus
significantly increase the capabilities of a robot equipped with multi-fingered hands. Inspired by a multi-
jointed human finger and the hand, we propose a six-degree-of-freedom model of a three-fingered robotic
hand as a parallel manipulator. Two kinds of contact, namely point contact with friction and rolling
without slipping between the finger tips and the grasped object, are considered. The point contact with
friction is modeled as a three-degree-of-freedom spherical joint and for rolling without slipping, we use
the resultant non-holonomic constraints between the grasped object and the fingers. With realistic limits
on the joints in the fingers and dimensions of finger segments, we obtain the well-conditioned dexterous
manipulation workspace of the parallel manipulator using a Monte Carlo based method. Additionally,
we present two new general results – it is shown that maximum position and orientation workspace is
obtained when the cross sectional area of the grasped object is approximately equal to the area of the palm
of the hand and when rolling without slipping is ensured the size of of the well-conditioned workspace is
significantly larger (∼ 1.2 − 1.5 times). We also present representative experiments of manipulation by
a human hand show that the experimental results are in reasonable agreement with those obtained from
simulations. [DOI: 10.1115/1.4039001]

Keywords: Monte Carlo method, multi-fingered hand, well conditioned workspace, hybrid parallel manip-
ulator

1 Introduction

The ability of dexterous manipulation has been practiced to perfection by us throughout several thousands
of years of evolution ([1]) and therefore it is not surprising that the human hand is the gold standard for
design of mechanisms for dexterous manipulation ([2]). With this motivation, the robotics community has
been involved in developing multi-fingered hands that can achieve the dexterity, accuracy and load carry-
ing capacity of human hands. Investigation into the topic started in late 1960s with the development of
myo-electric devices and subsequently significant advancements have been made in the area till date (for a
comprehensive review of the state-of-the-art in this topic till early 2000s, see review paper by [3] and the
references contained therein). Some of the early major advances were a robotic hand with elastic fingers ([4]),
the Salisbury hand ([5]), the Utah-MIT hand ([6]) and the Styx hand ([7]). Post 2000s, due to availability
of better manufacturing techniques, more complex hands like the DLR hand ([8]) and the Shadow hand
([9]) were designed and developed. Several of these hands have large degrees of freedom (≥ 20), such as the
Utah-MIT hand, Shadow hand, DLR hand, and the RBO hand ([10]) have focused on simulating human like
grasping and manipulation of objects with complex shapes. While the anatomically correct testbed (ACT)
hand ([11]),focuses on accurately mimicking human hand joint kinematics. It maybe noted that none of these
hands have capabilities close to that of a human hand and one of the reasons could be that the human hand,
in addition to sophisticated sensing capabilities, has many more links and controlled joints – it is estimated

∗Graduate Student, Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India. Email:
arkadeepc@iisc.ac.in
†Corresponding Author, Professor, Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.

Email: asitava@iisc.ac.in

1



that there are 27 bones controlled by 38 muscles and almost 40 tendons (see [2] and [12]) and the human
hand has 27 degrees of freedom.

From modeling and theoretical development viewpoint, the works on obtaining conditions for form clo-
sure ([13], conditions for stable grasps in <3 ([14]), contact equations between arbitrary smooth bodies ([15]
and [16]), grasp criteria and grasp Jacobians ([17]) are some of significant milestones. In another line of
research (see, for example, Salisbury [5] and most recently Boras [18]), researchers have explored dexterous
manipulation from the context of a parallel manipulator focusing on dexterity, precision of manipulation of a
given object in a given workspace by considering a lower degree of freedom (∼ 6) approximation of the human
hand. In this work we start with the anatomical model of the palm and 3 fingers (index, middle fingers and
thumb) of the human hand ([19]) and approximate it as a 6 degree of freedom hybrid parallel manipulator
by ruling out certain impossible and unnecessary motions (see [12]). Next, we describe models of contact
between the finger tips and an object during manipulation and we consider two models – a point contact with
friction modeled as a three-degree-of-freedom spherical joint and a rolling without slipping contact which
is also ‘instantaneously’ modeled as a three-degree-of-freedom joint. From the kinematic models, we solve
the inverse kinematics problem for the proposed manipulator and obtain the well conditioned workspace of
the parallel hybrid manipulator using a Monte Carlo method. The main contributions of this work are: a)
an approach to find the well-conditioned workspace of a human hand inspired 6 degree-of-freedom hybrid
parallel manipulator under two possible models of contact between the fingers and the grasped object, b) we
show that the optimum workspace is obtained when the size of the palm is approximately equal to the size
of the grasped object, and the workspace when rolling without slipping is allowed is ∼ 1.2− 1.5 times more
than when it is not allowed, and c) we perform experiments on dexterous manipulation with a human hand
and show that the experimental results are in reasonable agreement with those obtained from numerical
simulations and thus validate the algorithm proposed and the methods used in the paper.

The rest of the paper is organized as follows: in section 2 we discuss the Monte Carlo based method used
in this work. In section 3 we propose a human hand inspired parallel manipulator model and describe the
two models of contact between fingers and objects during manipulation. In section 4 we describe numerical
simulation results and experiments and discuss them. Section 5 concludes the work by summarizing the
main results.

2 Review of Monte Carlo simulation

In this section we present a brief overview of the Monte Carlo method and how it can be used to quantify
and obtain a representation of the workspace of a manipulator in <3 – for a detailed discussion on the Monte
Carlo method, one may refer to any standard textbook of Monte Carlo method such as [20], [21]. The Monte
Carlo method has been used by researchers for design and optimization of parallel manipulators (see, for
example, [22] and [23] and [24].

The Monte Carlo method can be used to evaluate integrals of arbitrary functions (vector or scalar function
of smooth or non-smooth type) over an arbitrary domain. For the integral

I =

∫

[l,u]d
F (X) dx (1)

where F(·) is a bounded real valued function over the domain [l, u]
d
, an estimate of I can be obtained as

Î as

Î = lim
n→∞

1

n

n∑

i=1

F (Ui) (2)
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Equation (2), involves evaluation of F(U) where, U = [u1, u2, ..., ud]
T is a 1×d vector taking random values

ui ∈ [l, u] ∀i = 1, 2, ...d. It can be proved (see, for example, [21], [25]) using the strong law of large numbers1

that the expression in equation (2), almost surely 2 converges to I . The volume (area) of a manipulator
workspace can be posed as an integration problem in <3 (<2) and we use the Monte Carlo method to evaluate
the volume of the workspace of a multi-fingered hand3.

2.1 Obtaining the well conditioned workspace volume of a parallel manipulator

The workspace of a parallel manipulator depends on the choice of the end-effector. For a chosen end-effector,
the workspace is defined as the set of possible values of position and orientation of the end-effector that can
be achieved. Typically, the Cartesian co-ordinates (x, y, z) are used to denote the position and three Euler
angle(θ, φ, ψ) can be used to parametrize the orientation. In the Monte Carlo method describe above, U is
the set {x, y, z, θ, φ, ψ}T and this is denoted by X. It maybe noted that X ∈ SE(3).

The function equivalent of F(U) in the Monte Carlo method is the well conditioned workspace of a
parallel manipulator (see section 3.3 for a definition of the well-conditioned workspace). We assume that the
well-conditioned workspace W (W ∈ SE(3)) is a collection of a finite number (say n) of closed sets in SE(3)
bounded by surfaces Siw, ∀i = 1, 2..., n . We formulate an in-out function F for Siws which takes input of
the position and orientation of the end-effector of the manipulator. This function can be represented as

F(X) =

{
1 if X ∈ W
0 if X /∈ W

}
(3)

The inclusion (or exclusion) of a given position and orientation of the manipulator, X ∈ SE(3), is determined
by the fact that for a given X the inverse kinematics problem has real solutions, the active and passive
joint values in the parallel manipulator are within prescribed limits and the manipulator Jacobian is well
conditioned. Using algorithm 1 described below, we can obtain Ŵ, an estimate of the well conditioned
workspace W of the chosen parallel manipulator. In algorithm 2 below, Vs is the selected search space in
the Cartesian space (<3) and Va is the search space is the search space in orientation space (SO(3)). The
total workspace of the manipulator is a subset of Vs n Va (see [26]).

Purpose : To obtain an estimate of the well conditioned workspace
Input: F , Vs ∈ <3 and Va ∈ SO(3)

Output: Ŵ
1: S = 0, Φk = 0 ∀k, k = 0
2: Choose sample size Ntotal
3: for k ∈ {1, 2, ...Ntotal} do
4: Obtain a Xk ∈ SE(3) form a uniformly distributed random PDF in Vs and Va.
5: Evaluate Φk = F(Xk);
6: if Φk = 1 then
7: S = S + Φk
8: end if
9: k = k + 1

10: end for

11: Compute Ŵ =
S

Ntotal
Vs

Algorithm 1: Algorithm for evaluating the well conditioned workspace of a manipulator.

1For a sequence of independent, uniformly distributed real random variables X = {x1, x2, x3, ...xn} such that 〈F(xi)〉 < +∞
then lim

n→∞
1
n

∑n
i=1 xi = 〈X〉.

2It can be proved that the probability of this convergence is 1.
3We will also use the Monte Carlo method to obtain the intersection volume of two ellipsoids when rolling contact is assumed.
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We present some of the salient features of algorithm 1 which leads to efficient and realistic evaluation of
the workspace of a parallel manipulator.

• The for loop in line #3−#10 of algorithm 1, can be executed in parallel in a computer implementation.
This possibility of parallelization is in fact one of the biggest advantages of the Monte Carlo method
and contributes to the exceptional computational performance of the algorithm.

• By choosing a proper distribution F∗(X) using information about the underlying process contributing
to the success of a simulated sample, a significant improvement can be made in calculation of the
estimate of the function over a naive Monte Carlo simulation [21].

• It is well known that typically the inverse kinematics problem of a parallel manipulator is much simpler
to solve as compared to the forward kinematics, and we use the inverse kinematics in the formulation.
Once the inverse kinematics is solved, we check that the active and passive joint values are within the
prescribed limits.

• As shown in Section 3.3, the well-conditioning at a given X is based on the condition number of the
Jacobian matrices associated with linear and angular velocity of the end-effector. We have used a
conservative 1000 as the upper limit of the condition numbers in all our simulations. However, any
other upper limit can also be used.

The Monte Carlo simulation as discussed in this section (see also figure 8) classifies a set of position
and orientation of the end-effector of a manipulator according to their occurrence in the well conditioned
workspace, satisfaction of the inverse kinematics and the prescribed joint limits. The output is a set of points
in <3 and SO(3). For better visualization of the workspace, we obtain the alpha shape (see Edelsbrunner
and Mücke [28])of the cloud of points given by the set VS in figure 8 and use standard Delaunay triangulation
algorithms [27] to represent the shape of the workspace in 3D, in the form of a triangulated domain.

3 Model of a human hand and dexterous manipulation of objects

(a) A 3D scanned model of the human hand
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org/wiki/Hand}

Figure 1: Anatomical and schematic representation of the human hand
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Table 1: Sample finger and hand segment lengths (refer figure 3 for symbols)

Hand part Symbols Values (mm.)
Index finger {l11, l12, l13} {35, 23, 28}

Middle finger {l21, l22, l23} {41, 22, 28}
Thumb {l31, l32, l33} {45, 36, 34}
Palm {d, h} {13, 82}

Table 2: Joint notations in figure 3 and maximal permissible motions. The joints with least motion have
been selected to remain passive.

Joint center Joint variable Type Value/range
B0

1 and B0
2 θ1 and θ2 Active 0◦ to 90◦

B0
3 θ3 Active −45◦ to 45◦

B1
1 and B1

2 φ1 and φ2 Active 0◦ to 90◦

B1
3 φ3 Active 0◦ to 90◦

B0
1 and B0

2 ψ1 and ψ2 Passive −15◦ to 15◦

B2
3 ψ3 Passive 0◦ to 60◦

B2
1 and B2

2 γi and γm Fixed [0◦ - 30◦]
B0

3 γt Fixed γt = 45◦

S1, S2 and S3 {ξiX , ξiY } Passive ±45◦

Figure 1a shows a 3D scanned model of a human right hand4 of a 39 year old Caucasian male. The
model of the hand is rendered as an .stl file (see figure 1a). The anatomical details of a typical human
hand are shown in figure 1b. For the index and middle fingers, the labels with a suffix 0, i.e., B0

1 & B0
2

represent the metacarpo-phalangeal joints, B0
3 is the trapezium joint between the carpals and metacarpal

bone of the thumb. For the index and middle fingers, the joints with suffix one, i.e., B1
1 & B1

2 are the joints
between the proximal and intermediate phalanges, for the thumb, the joint B1

3 indicates the joint between the
metacarpal and the proximal phalanx bone. Finally, B2

1 & B2
2 indicate the joints between the intermediate

and distal phalanges, for the thumb, the joint B2
3 indicates the joint between proximal and distal phalanx of

the thumb. Kinesiological studies (see the work [30] and the references contained therein) have shown that
all the joints in the human finger do not equally participate in the prehensile movements of the human hand.
For a given grasping task, the motion is generally started from the proximal joints B0

1 , B
0
2 & B0

3 and end in
the distal joints B2

1 , B
2
2 & B2

3 , with the proximal joints being active for most of the time [30], the proximal
metacarpo-phalangeal joint was active for more than 59% of the motion, the proximal interphalangeal joint
was active for 32% of the time and the distal inter-phalangeal joint was active for only 9% of the total time
during the execution of a palmer pinching grasping task of a disc from a fully extended position. Based on
this reasoning we assume that the proximal joints are actuated and we fix the distal joints of the index and
middle fingers B2

1 , B2
2 and make B2

3 passive. This also makes the model amenable to kinematic analysis
since we have 9 joints in the three fingers with six actuated joints which can provide six degrees of freedom
to the grasped object5. The joints in the fingers have limits and we conservatively choose the joint limit
ranges to be at most ranging from 0◦ to 90◦. This is somewhat less to the angles specified by [12], [32], and
[33]. Table 1 gives the value of the finger segments of the hand shown in figure 1a measured by using [34].
Table 2 discusses about the joint types and the joint ranges and values of the proposed manipulator.

The possible contacts between the finger tips and the grasped object has been extensively studied in
literature (see, for example, [16], [35], [17] and [15]). In this work we study the workspace of the grasped
object for two kinds of contact, namely, point contact with friction and point contact with rolling without

4The model was obtained by Mr. Georg Weber-Unger Jr. using an EvaTM scanner ([29]). The data for figures 1a and 5b
are available in public domain and are being used with permission from their respective owners.

5A part of this section has been published as [31]. We are reproducing some of it for continuity.
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slipping.

3.1 Point contact with friction

Following [36] we can express the wrench basis for point contacts with friction as in equation (4) and assuming
a Coulomb friction model, the forces transmitted by the contact on the body is given by equation (5). In
equation (4), I3 is the identity matrix of the order 3 and Φ3 is the 3× 3 null matrix and in equation (5), µ
is the coefficient of friction and fX , fY and fZ are the forces transmitted by the point of contact along the
X, Y and Z directions.

W =

[
I3
Φ3

]
(4)

Fo = W



fX
fY
fZ


 ,

√
f2
X + f2

Y ≤ µfZ (5)

Since the ideal S joint has the same wrench basis as points of contact with friction and it can transmit forces
only in the directions given by equation (5), we can replace the contact point by a spherical joint, given that
there is negligible motion of the point of contact with respect to the body (see [17] for a similar argument).
Figure 2 shows the point of contact modeled as spherical joints with the point S in the figures indicating
the center of the joint. Figure 2b shows the interaction of the finger and the object, when the finger tip

{Object}

{Finger}

ξX

ξY

XF

ZF
YF

YS
XS

ZS, ZO

S

F

ξZ

(a) Schematic of the spherical joint

N

N’

{Object}

{Finger tip}

ξX

ξY ξZ

π
4

π
4

S

(b) Interaction of the finger with the object

Figure 2: Spherical joint approximation of the finger-tips with object

is approximated as a rigid object with lateral dimensions. The point of contact ”S” is assumed to be the
center of the S-joint. The green cone in figures 2a and 2b denote the solid angle subtended by the finger
about the axis ZS . By using the values for [R]FO and [R]SO, the orientations of the finger and the S-joint
center with respect to the ground frame, we can obtain the values ξX and ξY as rotations about XS and
YS , respectively. With the approximation of the fingertip as a point, the range of the values of ξX and ξY
can be as high as ±90◦, however, for fingertips with physical dimensions, such a high value is not possible
since, the finger-tip will have a tendency to roll over the object and the point of contact will change. This is
shown in figure 2b, where, a smaller permissible range of ξX and ξY has to be taken. For our simulation, we
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will consider a range of ±45◦, shown as the green cone in figure 2b. A schematic of the three-fingered hand
with S joint modeling the contact is shown in figure 3.
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Figure 3: Schematic of the parallel manipulator

3.2 Inverse kinematics

The hand is approximately modeled as a 6 DoF hybrid parallel manipulator where the palm and the object
being manipulated are denoted by platforms and each of the fingers are denoted by a serial 3R chain with
two actuated and one passive joint per chain. Using the Grübler-Kutzbach criterion, it can be observed the
degree of freedom of the hybrid parallel manipulator shown in Figure 3 is six. For a given position vector of
the point S1 (see figure 3), the expressions of the X, Y and Z coordinates are given by

X = l11 cosψ1 cos θ1 + l12 cos(φ1 + θ1) cosψ1

+ l12 cos(γi + φ1 + θ1) cosψ1 (6)

Y = l11 sin(ψ1 cos θ1 + l12 cos(θ1 + φ1) sinψ1

+ l13 cos(γi + φ1 + ψ1 + θ1) sinψ1 − d (7)

Z = − sin(φ1 + γi + θ1)l13 − sin(θ1 + φ1)l12

− l11 sin θ1 + h (8)

and we can obtain an expression for E1 denoting the quantity X2 + (Y + d)2 + (Z − h)2 as

(9)E1 = (2 cos (γi) l11l13 + 2 l12l11) cos (φ1)− 2 l13 sin (γi) sin (φ1) l11 + 2 l13 cos (γi) l12 + l11
2 + l12

2 + l13
2

From the expressions for E1 and Z, noting that γi is constant, using the Sylvester’s dialytic method, we can
obtain the eliminant for θ1, using standard tangent half angle substitution, as a quartic function of the angular
variable. We note that a significant simplification may be obtained by noting that (2 cos(γi)l12l13+l212+l213) is
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a common factor to either sides of the while obtaining the eliminant from equations 8 and 9, using Sylvester’s
dialytic method. The value of φ1 can be obtained symbolically from the dialytic method (see Ghosal [37])
and the value of ψ1 is obtained symbolically by using terms from the expressions of X and Y as

ψ1 = cos−1[sin(π/4)(X − Y − d)/(cos(θ1 + φ1)(l12 + l13 cos γi)

− sin(θ1 + φ1) sin γil13 + cos θ1l11)]− π/4 (10)

The inverse kinematics problem for the middle finger can be solved in a way similar to index finger
shown above and the inverse kinematic problem for the thumb is simpler as it can be reduced to a quadratic
polynomial. It maybe noted that we have 4 solutions for θ1 and the choice of the solutions should take into
account the joint limits in table 2. Of the four solutions of θ1 obtained from the eliminant, we admit only
those which correspond to permissible joint motions (as shown in table 2). Each of the permissible values of
θ1 are then used to obtain φ1 and only a pair of {θ1, φ1} are admitted, if both correspond to permissible joint
motions and finally, the admitted values of θ1 and φ1 are used to find ψ1. If and only if θi, φi, ψi, ∀ i = 1, 2, 3
correspond to permissible joint motions, the solution set is accepted and any violations at any step leads to
the rejection of the entire set and also randomly chosen position and orientation of the object. It may also
be noted that this check also prevents change in working modes of the manipulator– i.e. flipping of the end
effector (S1S2S3) with respect to the palm (B0

1B
0
2B

0
3) as shown in figure 3.

3.3 Jacobian matrices and well-conditioning

The position vector of the center of the object in figure 3 is given by,

OPObj =
1

3

3∑

i=1

OSi (11)

and the orientation of the top platform with respect to the base is given by

O[R]Obj =

[
OS1 −O S2

|OS1 −O S2|
Ŷ

(OS1 −O S1)× (OS1 −O S3)

|(OS1 −O S1)× (OS1 −O S3)|

]
(12)

where Ŷ is obtained by the cross product of the third and first column of the matrix in equation (12).
Differentiating equations (11) and (12) with respect to time we obtain the expressions for the linear and
angular velocities of the manipulator.

The 3 constraint equations ensuring that the distance ||Si − Sj ||, {i, j} ∈ [1, 2, 3], i 6= j, are always
constant, may be differentiated to obtain

[K]{θ̇, φ̇}+ [K∗]ψ̇ = 0 (13)

where {θi, φi, i = 1, 2, 3} are assumed to be actuated and ψ, i = 1, 2, 3 are assumed to be passive. It is
easily seen that [K∗] is a square matrix of dimension 3 × 3 and equation (13) can be solved for ψ̇, given
det(K∗) 6= 06, and we can obtain

ψ̇ = −[K∗]−1[K]{θ̇, φ̇} (14)

By differentiating the expressions for the linear and angular velocities of the end-effector and partitioning
the expression for {θ̇, φ̇} and ψ̇, we have,

0VObj = [JV ]{θ̇, φ̇}+ [J∗V ]ψ̇ (15)

0ωObj = [Jω]{θ̇, φ̇}+ [J∗ω]ψ̇ (16)

6In the simulation, it was ensured that det(K∗) 6= 0 and the condition number of K∗ was ≤ 104 at all points inside the
obtained workspace.
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Following [38] and using equations (13), (15) and (16) we define the equivalent Jacobian matrices for both
linear and angular velocity parts as

JVeqv = (JV − J∗V [K∗]−1[K]) (17)

Jωeqv = (Jω − J∗ω[K∗]−1[K]) (18)

The equivalent, dimensionless condition number of Jacobian for the manipulator, undergoing both linear
and angular motions are given as κV and κω for JVeqv and Jωeqv, respectively where we find the 2-Norm

condition number of a matrix A as κA =‖ A ‖2‖ A−1 ‖2. To ensure that a given configuration of the end
effector is well conditioned we ensure that both the condition numbers are

max{κV , κω} ≤ κ∗ (19)

In our simulations, we ensure that κ∗ ≤ 1000. This gives a conservative workspace and a higher value of κ∗

can be shown to give a larger well conditioned workspace.

3.4 Point contact with rolling without slipping

(a) Human hand manipulating a ball
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(b) Snapshot of the computer simulation of the scenario
shown in figure 4a

Figure 4: Dexterous manipulation in practice and simulation snapshot

Majority of dexterous manipulation tasks undertaken by our hands involve rolling and sliding type of
contact between the hand and object (see [15] for more details). The rolling type of contacts between
the fingertips and the object during dexterous manipulation has been widely studied (see for example the
pioneering works by [15], [17] and [16] and the references contained therein) and most of these approaches
are based around the definition of a quantity called the grasp Jacobian or the grasp map. In this work, we
assume that the grasped object can roll without slipping and we use the contact equations developed by [15]
(see appendix A for the equations modeling the contact between the finger and the grasped object). In this
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case too, it can be shown that the contact instantaneously allows three relative degrees of freedom. The
main difference with the spherical joint model is that the constraints are non-holonomic, i.e., they restricts
the space of velocities and not the translation and orientation of the grasped object. In order to model the
rolling without slip contact, we need a surface model of the finger and the grasped object. The grasped
object is assumed to be a sphere and the well-known parametric equations of a sphere is used. For the finger,
we model the finger tips as super-ellipsoids and this is discussed next.

3.4.1 Fitting super-ellipsoids to cloud of points in <3

Super ellipsoids are an extension of ellipsoids and have been used for solid modeling in diverse fields such as
for modeling and representation of medical data ([39]), high fidelity representation of scanned objects ([40])
and as objects for developing obstacle avoidance algorithms ([41]). The main reason behind it’s widespread
use is the availability of precise closed form expressions for almost all geometrical properties like moments
of inertia about arbitrary axes, mass and surface properties like tangents and normals (see [42] for a more
complete description). In this work, we use an efficient method based on the works by [40] and further
improvements on it by [39] to fit super-ellipsoids to a cloud of points in <3. The goal is to obtain a more
accurate approximation of the geometry of human fingertips over normal ellipsoids used by previous re-
searchers (see e.g. [35] and similar works for more details).

Equations (20) to (22) are the parametric expressions that map an arbitrary surface with parameters A, B
and C having dimensions of length and dimensionless exponents e and n from {u, v} ∈ <2 → {x, y, z} ∈ <3.
The sign function is abbreviated as ”sgn” in equations (20) to (22).

x(u, v) = A sgn (cos (v)) (|cos (v)|)n sgn (cos (u)) (|cos (u)|)e (20)

y(u, v) = B sgn (cos (v)) (|cos (v)|)n sgn (sin (u)) (|sin (u)|)e (21)

z(u, v) = C sgn (cos (v)) (|cos (v)|)n (22)

The expression in equation (23) classifies whether a point is in, on or outside the surface expressed by
equations (20) to (22) by assuming negative, zero and a positive values respectively.

F(x, y, z) =



(( x

A

)2 e−1

+
( y
B

)2 e−1) e
n

+
( z
C

)2n−1




n

2

(23)

For fitting a superquadric to a cloud of n points contained in the matrix P, P ∈ <n×3 we formulate the
following optimization problem given in equation (24). In equation (24), the elements of x̄ are the coordinates

for the center of the super ellipsoid, the elements ~Θ are the Euler angles specifying the orientation of the
fitted ellipsoid, a = {A,B,C} and p = {e, n}.

Min
x̄,~Θ,a,p

N∑

i=1

√
ABC(F(Xr, ~Θ,a,p)− 1)2 (24)

In equation (24), the in-out function F from equation (23) is used with the cloud of points P transformed to
the original coordinate about which equations (20) to (22) are defined. An initial guess about the position
and orientation of the cloud of points may be given as follows. The value of x̄ in equation (25) may be given

as the average of the respective coordinates of the points in P, i.e., x̄ =

{
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi,
1

n

n∑
i=1

zi

}
.

{
Xr

1

}
= [T ]PO





xi
yi
zi
1





=

[
[R]PO x̄

0 1

]




xi
yi
zi
1





(25)
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In equation (25), [R]PO may be represented as the matrix which diagonalizes the total moment matrix M of
the cloud of points P (see equation (26)) to M0 in the operation M0 = R−1MR = RTMR. In equation (26)
x̃i = (xi − x̄), ỹi = (yi − ȳ) and z̃i = (zi − z̄).

M =
1

n

n∑

i=1



ỹ2
i + z̃2

i −x̃iỹi −z̃ix̃i
−x̃iỹi x̃2

i + z̃2
i −ỹiz̃i

−z̃ix̃i −ỹiz̃i x̃2
i + ỹ2

i


 (26)

The goodness of the fit, according to [43], may be measured by total value of the first order approximation
of the distances of the points in P from the fitted surface S as given in equation (27).

dS =

n∑

i=1

( |F(xi, yi, zi,a,p)− 1|
||∇F||{xi,yi,zi}

)2

(27)

For the hand model shown in figure 1a, from 296,358 vertexes and 98,786 triangular facets available in
the raw data (see figure 1a) we pick 40 points from each of the middle finger, index finger and the thumb
tips. The unconstrained optimization problem given in equation (24) is quadratic in nature and can be
solved using the Levenberg-Marquardt method (see [44] for more details). The numerical results for the fit
are given in table 3. The plotted results of the same are shown in figure 5.

Table 3: Parameters of the super-ellipsoids fitted to the finger-tips in figure 5a.

Finger S = {A,B,C, e, n} dS
Index {14.98, 9.83, 8.33, 1.14, 0.67} 36.23

Middle {14.99, 7.94, 9.80, 0.72, 0.5} 52.65
Thumb {11.78, 9.12, 15.0, 0.58, 0.62} 42.8

(a) Superellipsoid approximation of a male subject’s
hand

(b) Superellipsoid approximation of a female subject’s
hand

Figure 5: Superellipsoid approximations of human finger-tips. The approximations for the female subject
are better due to the higher resolution of the available 3D scan.
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3.4.2 Collision detection of two super-ellipsoids in SE(3)

In the model with the S joints, it is reasonable not to consider the collision between the figures. In the
super-ellipsoid model, the fingers have finite size and to obtain realistic workspace of the multi-fingered
hand, it is essential to model the collision and intersection between the the super-ellipsoids as this reduces
the total workspace. Collision detection and interaction between moving rigid bodies is a generic problem
frequently encountered in various fields like robotics (see e.g. [45]), computer aided design(CAD), computer
vision (see e.g. [46]) and discrete element method (DEM) simulations (see e.g. [47]). In this work, we use
a Monte Carlo based probabilistic algorithm to obtain the intersection volume of two arbitrarily oriented
super-ellipsoids in the 3D space. The intersection volume I(S1,S2) of the two closed solids S1 and S2 can
be obtained using the algorithm 2 given below.

Purpose : To obtain an estimate of I(S1,S2)
Input: S1, S2, [T ]1O and [T ]2O
Output: ̂I(S1,S2)

1: Using inputs, obtain a box B1 (B1 ∈ <3) enveloping S1 ∪ S2 in <3;
2: Populate H1, (H1 ∈ B1), an array of Nn uniformly distributed random triplets in <3 (given by
fU (xi), i = 1, 2, 3);

3: Use naive MC search to check if H1(j, :) ∈ S1 ∩ S2 by using equation (23);
4: Save successful trials, Mn(i, :)←− H1(j, :) ;

5: Obtain box B2 from the ranges of columns of Mn ;
6: µ←− center of B2

7: Xb ←− B2
x, Yb ←− B2

y, Zb ←− B2
z ;

8: ~s = 0.25[Xb, Yb, Zb];
9: Σ←− S3

10: Populate H2, an array of Nv normally distributed random triplets in <3 using µ and Σ from a
multi-variate normal PDF (given by fN (xi), i = 1, 2, 3);

11: Use importance sampling MC to check H2(j, :) ∈ S1 ∩ S2 also, F(H2(j, :))→ 1;
12: Save successful trials, Mvr(i, :)←− H2(j, :) for representation;

13: Obtain an estimate ̂I(S1,S2) of the intersection volume as 〈I〉 =
1

Nv

Nv∑
i=1

F(H2(i, :))
fU (H2(i, :))

fN (H2(i, :))
;

Algorithm 2: Pseudo-code for evaluating intersection volume of two arbitrarily oriented super-ellipsoids
in SE(3)

In algorithm 2, B(i, :) and B(:, i) mean the ith row and column of the matrix B respectively, S3 is the 3×3
diagonal matrix with the diagonal elements from the vector ~s in order, and Bx is the range of the box B in X
Cartesian direction. The above algorithm was used on super-ellipsoid models of index finger and the thumb
as given in table 3. To obtain the intersection volume numerically using the algorithm given above, we need
to set a cut-off volume above which the thumb and index finger is considered to be collision. This is assumed
to correspond to a penetration depth of 0.9 mm – references [48] and [49] report that for human finger, a
normal force of 0.5N is obtained at the finger tips for a penetration depth of approximately 0.9mm. It is
assumed that this force does not hinder the assembly of the manipulator at the certain given configuration
and therefore the solution of the inverse kinematics problem exists at the said configuration. Considering
this, the approximate cutoff volume is set as 15 mm3. Figures 6a and 6c shows the intersection of two super-
ellipsoids in space. The blue box in figures 6b and 6d contains the intersection volume and is aligned along
the principal components of the cloud of points Mn as obtained in algorithm 2. The intersection volume is
detected as 1041.5 mm3 for the first case (in figure 6a), thus the chosen orientation of the super-ellipsoids is
impossible. However, for the second case (figure 6c) the intersection volume is obtained as 12.4 mm3, thus
indicating the chosen orientation of the super-ellipsoids is possible.
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Figure 6: Representation of 2 cases of interaction between super ellipsoids and their intersection volumes

3.5 Dexterous manipulation of objects using rolling contacts

To obtain the workspace when rolling without slipping is permitted at the contact between the fingers
and the grasped object, we propose an approach based on the existence of the solution of the inverse
kinematics problem of the human hand posed as a hybrid parallel manipulator, condition number of the
equivalent Jacobian, experimental information about common three fingered dexterous manipulation tasks
(see section 4.1) and equations of rolling (see appendix A). Figure 7a describes the finger and the object
both modeled as super-ellipsoids in contact at the point C. Axes with suffixes f and o are contiguous to
the finger and the object, respectively, OG is the origin of global coordinate frame in <3 and GPC is the
vector joining the point of contact C with OG. Sf and So are the functions that map the 2 dimensional
parameter-space {ui, vi} to smooth and closed super-ellipsoids in <3 using equations (20) to (22). We define
quantity ψ, as the heading angle, which gives the angle by which the finger frame has to be rotated about

the common normal (
−−−→
ZfZ0 in figure 7a) to align Xo and Xf . Due to the contact at C, no motion is possible

along the common normal
−−−→
ZfZ0, therefore, the five other possible motions are solved with respect to the

4 parameters describing the contact point on Sf and So and the heading angle. A brief formulation of the
problem of obtaining the evolution of the contact points and heading angle i.e., {uf , vf , uo, vo, ψ}T as the
object rolls on the fingertips is given in appendix A.

OG

XGYG

ZG

GPC

C

{Finger}

{Object}

uf

vf

vo

uo

Sf

So

Zo
XoYo

Zf
Xf Yf

(a) Contact between the finger and the object
(b) Allowable contact zone on the index finger

Figure 7: Description of two bodies in contact and permissible contact zone on fingertip

To obtain the evolution of {uf , vf , uo, vo, ψ}T , using equations (38) to (40) given in appendix A, we need
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the initial conditions for {uf , vf , uo, vo, ψ}T and the velocities of the fingertip with respect to the object in
contact, i.e., {ωx, ωy, ωz} and {vx, vy}. Using terms for Jacobian from equations (17) and (18) we can solve
for all the joint rates (both actuated and passive) for a finger from the equation





Vobj
−−−−

Ωobj



 =




Jv
−−−−

Jω



{

~̇θ

~̇φ

}
(28)

where {~̇θ, ~̇φ} denote the active and passive joints, respectively. It maybe noted that the system in equa-
tion (28) is not square, therefore, we opt for least squares solution [50].

Using the values of {Vobj Ωobj}T from section 4.1 in equation (28), we can obtain the angular and linear
velocities of each fingertip, and therefore the expressions for {ωx, ωy, ωz} and {vx, vy} for each of the three
fingers with respect to the object. The initial value for ψ may be obtained as the angle ξZ measured about
ZS in figure 2a. The initial values for {uf , vf , uo, vo} are chosen so that the motion starts when the contact
is at the center of the finger which is shown as a red disk in figure 7b. The green zone indicates the zone in
which the contact is allowed between the object and the finger.

3.6 Algorithm to obtain the well-conditioned workspace for the human hand

Figure 8: Flowchart of the proposed algorithm to obtain workspace. [θl, θh] is the permissible range for the
spherical joints.

Figure 8 shows the algorithm we have used to obtain the volume and representation of the workspace
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of the under two types of contacts. For a given object size, and grip positions (see figure 4b) and given
hand dimensions (see, for example, table 1) and finger tip models (see table 3), we define a search space
Vs in <3. Then we generate Nn random configurations X ∈ SE(3) where, the Cartesian variables are
uniformly distributed in Vs and the Euler angles are uniformly distributed in [−π/2, π/2]. At each of these
configurations, the algorithm in figure 8 is executed. Each of the blocks of the algorithm have either true
or false as output, depending on the success and failure of the check undertaken by the block. Success in
the check prompts a movement to the next block, in case of a failure, the configuration is rejected and a
new configuration is generated and the check starts afresh. If a configuration passes through all the checks a
counter value (Ns or Nr depending upon the type of workspace required) is increased and the configuration
is saved for representation. However the arrangement of the different checks suggested in figure 8 is not
unique and the particular arrangement has been chosen for better computational performance7.

The blocks, as shown in figure 8, are coded to perform different checks independent of each other, with the
inputs being hand dimensions and joint angles obtained from supplied data and solution of the IK problem.
Therefore, the IK problem has to be solved for all Nn points for the three fingers and each evaluation of
the IK problem for the fingers takes a time of the order of 3 × 10−4 seconds which is quite fast because of
the symbolic implementation used. Next, we check if the chosen configuration is well conditioned or not by
evaluating the condition number of the equivalent Jacobians (see equation (19)) and ensuring that they are
less than 1000 at all times. This takes about 28.63 × 10−3 seconds due to the symbolic implementation of
the total process. Simultaneously, we also obtain the S joint values, which takes 1.58× 10−4 seconds. Next
we check for fingertip collisions, which takes about 0.73 secs. Finally, we check for the possibility of rolling
the given object on the fingertips, which takes about 1.95 secs per iteration. A fully parallel implementation
of the algorithm to obtain the workspaces of a parallel manipulator by checking through 150,000 random
configurations of the end effector takes about 624 seconds.

4 Numerical experiments and results

In this section we will discuss a few numerical experiments using the methodology developed so far, to
get some insight into the design of the human hand and kinematics of dexterous manipulation using a
parallel manipulator framework as described in section 3.1. We will start by discussing some physical
insights obtained through experiments on dexterous manipulation and use those to design our numerical
experiments. Following which we will discuss the numerical experiments and results obtained from the same.

4.1 Experimental insights into dexterous manipulation

In this section we discuss some experiments on human dexterous manipulation, to gain some insights on the
range of motion and the speeds attainable during an in-hand manipulation task attainable by an individual.
For recording the motion of the object we have used a [52] electromagnetic position tracker, which can log
the position and orientation of an object in real time. The configuration of the object are obtained by rigidly
fixing a sensor to it and logging the values of the 6 channels per sensor, 3 for absolute position and 3 for
absolute orientation of the sensor with respect to the source of the magnetic field. We briefly describe our
experimental procedure below.

Experiment: At first the wrist of a healthy adult subject is immobilized by splints and bandages to
restrict all the 4 motions of the wrist viz. radial and ulnar deviations, palmar extension and flexion. Next,
a tracking sensor is fixed approximately at the base of the trapezium bone (point B3

0 in figures 1b and 3) on
the dorsal side of the hand, and another tracking sensor is fixed approximately at the center of a spherical
object to be used for the manipulation task. Figure 9a shows the location of the tracking sensors on the
hand and the object during a manipulation task. We have used a standard ping-pong ball (∼ 40mm dia.)
and a standard tennis ball (∼ 65mm dia.) for our manipulation tasks. The subject is asked to manipulate

7Computational performances are measured as CPU times are for Matlab R© 2015a[51] run in a 64bit Windows 7 PC with a
Intel XEON processor (4 cores @ 3.10 GHz) and 16GB RAM

15



(a) Location of sensors in the experiment

(b) Frequently encountered ill conditioned pose

Figure 9: Location of sensors on the hand and a known ill conditioned pose

the object at normal speed while taking notice all three fingers are contacting the object at all times and the
point of contacts are within the permissible zone as indicated in figure 7b. The manipulation task is usually
about 60 to 100 seconds long and configuration data is logged for both the sensors at 120 Hz throughout the
duration of the experiment.

Data collection and post-processing: The data collected from the sensors are quite noisy with typical
values of signal-to-noise ratios of 1.5 to 2 dB. The poor quality of the signals is chiefly attributed to interfering
magnetic fields from various sources nearby to the channel. The channel noises for a sensor are found to be
normally distributed with zero mean and standard deviations ranging between 0.003 to 0.03. To de-noise the
channel signals we have used the method of non-local means (see e.g. [53] and the Matlab implementation
of the same by [54]). The de-noised signal is then used to obtain configuration of the manipulated object
with respect to the frame attached to the hand. Subsequently the gradients of the relative position and
orientation of the object are represented as the linear and angular velocities of the manipulated object.

Results: From the analysis of the data from experiments with 5 male subjects we have obtained the
following results:

• The manipulation area was bounded by the positive Cartesian octant, with slight deviations of the
order of 2-3 mm along the Y direction.

• The orientations possible for the object was at most ±90◦ about an axis, with actual in-task motions
ranging between ±10◦ (see figure 11b).

• Figure 10 shows the velocities attained by the ball in 3 separate experiments. The black lines show
the velocities obtained by a subject (M30) manipulating a table tennis ball, the orange line shows the
velocities obtained by a different subject (M24) manipulating the same ball and the green line shown
the second subject manipulating a tennis ball. From the experiment we can conclude that there is not
much variation in the velocities achieved by different subjects across two different manipulation tasks.

• Therefore, from figure 10 we obtain Vx = Vy = Vz = 0.1m/s and ωx = ωy = ωz = 0.1rad/s, which are
used in equation (28) to obtain the joint rates of the manipulator for achieving the target velocities at
the end effector.
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Figure 11: Experimental results on human hand workspaces

Figure 11 shows the position and orientation data obtained from experiments. The position workspace
(figure 11a) obtained from the experiments, when compensated for the sensor dimensions and wrist thick-
ness almost entirely fits into the theoretically obtained workspace, barring a few points obtained due to
un-modeled motion of the fingers like like possible motion of the joint B1

3 beyond 90◦, possible slipping
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Figure 12: Convergence of the algorithm and variation of
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and temporary detachment of the index finger during the motion and some ill conditioned poses attained
frequently during the manipulation task (see e.g. figure 9b where κV → ∞). The inclusion of the exper-
imentally obtained workspace in the theoretically obtained workspace, and the fact that the theoretically
obtained workspace puts a reasonably conservative bound on the experimentally workspace (see figure 11a)
may demonstrate the correctness of our modeling approach. However, it may also be noted that the experi-
mentally obtained may never supersede the theoretically obtained one by large amounts because though we
are using practically possible joint limits (see table 2), actual motions possible during a dexterous manipu-
lation task are somewhat less than obtained maximal joint limits of each individual finger. We also do not
consider the motion of the wrist and the orientations obtained by moving the wrist in the simulations.

4.2 Modeling the human hand kinematics and obtaining the workspaces

In this section we discuss the results we have obtained with our modeling. Through our algorithm as described
in figure 8 we seek WR, the available well conditioned workspace considering rolling type of contact at the
fingertips and WS , the available well conditioned workspace considering S joint type of contact between the
object and the fingertips. In each case, we start by defining the initial contact points as the vertexes of an
equilateral triangle inscribed by the object modeled as a sphere. The search space V ∈ <3 is a box bounded
by the planes X = (0, 100), Y = (0, 100) and Z = (50, 150) (in mm), and the orientation search space in
SO(3) is bounded by {θ, φ, ψ} ∈ [−90◦, 90◦]. Figure 4b shows the snapshot of the simulation for obtaining
WR for a particular configuration of the object.

In figure 12a we show that our algorithm converges across 4 different trials for a particular set of hand
dimensions. We have evaluated the algorithm for 60 object sizes ranging from 1mm diameter to 40mm

diameter. We also observe from figure 12b that the ratio rRS =
WR

Ws
also converges across different subjects

and trials. Figure 13 shows the possible positional and orientation workspaces of the manipulator. We note
from figure 13a that WS is smaller then WR and is inscribed in the same and the maximum orientation
workspace shown in figure 13b is not very significant for a dexterous manipulation task with a spherical
object due to it’s symmetry. We have included figure 13b to demonstrate that the entire workspace W,
W ∈ SE(3), can be obtained and represented by our algorithm.

From observations in daily life, the experiments in section 4.1 and results obtained so far we observe
that the values of WR and WS vary widely with change in object size. Therefore, using the developments
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so far, we try to obtain a relationship between the best cross sectional area of a spherical object (Aobject)
for dexterous manipulation and the human hand dimensions. For this we chose the palm area, area of the
4B0

1B
0
2B

0
3 in figure 3 denoted by Apalm = d × h, as a characteristic dimension of the human hand and

obtain the values ofWR andWR with varying palm area-object area ratios rpo =
Apalm
Aobject

. We choose 8 data

sets designated as {M32,M24,M26,M28,M30,M39, F24, Sh} denoting the hand dimensions of 6 adult male
subjects, 1 female subject and the Shadow hand (see [9]) respectively f with suffixes in the figure represent
the quartic polynomials fitted to the obtained data sets as given in figures 14a and 14b. The models for
the fingertips for the male subjects were scaled up/down from the model developed in section 3.4.1 and a
separate model was obtained for the female subject’s hand by the technique discussed in section 3.4.1. The
finger models and hand dimensions for the Shadow hand were obtained from specifications laid down by the
[9]. For each of the subjects values of WR and WS were obtained for 60 object sizes across 4 separate trials,
their convergence was ensured and the combined data is plotted in figure 14. A summary of the results is
given in table 4. From the table we can conclude that the human hand can attain the highest workspace for
a spherical object when the object cross section area is approximately equal to the palm area. Figure 14c
shows that the results in table 4 is independent of the bounds on the condition number imposed by us in
equation (19).

Table 4: Means and standard deviations of rpo for the maximum workspace

Type of contact ¯rpo σ(rpo)
Rolling type ¯rpo = 1.004 σ(rpo) = 0.0443
S joint type ¯rpo = 1.016 σ(rpo) = 0.0761
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Figure 14: Comparison of workspaces of hand considering two different models of contact across different
hands

4.3 Effect of human hand dimensions on the hand workspace

From figure 14 we observe that the available workspaces for hands of different sizes vary widely and for
manipulating the same object a larger hand has a larger workspace. Therefore, to analyze the dependence
of the human hand workspace volume on individual hand dimensions like finger lengths and palm area etc.
we pose the following problem:

Problem To obtain the dimensions of the 95th percentile male human hand with the largest well condi-
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tioned workspace area while manipulating a spherical object of a given size.
Solution To solve the problem, we parametrize the hand (as shown in figure 3) with the dimensions as

shown in equation (29).

P = {d, h, l11, l12, l13, rm =

3∑

i=1

l2i/

3∑

i=1

l1i, rt =

3∑

i=1

l3i/

3∑

i=1

l1i} (29)

Next, we formulate the following optimization problem as shown in equation (30).

Maximize
P

WS(P) (30)

Subject to h× d ≤ 1000,

3∑

i=1

l1i = 80

rm < 2, rt < 2, l1i ≥ 20, ∀i = 1, 2, 3

d > 0, h > 0 , d ≤ 20, h ≤ 80 & d ≤ 0.3h

The constraints as well as their numerical values have been obtained for the 95th percentile male according
to the studies by [55] and [56]. The constrained optimization problem is solved and the optimum value of

P = ~P is obtained. The Lagrange multipliers for the equality and inequality constraints are also obtained
at the optimum. A scaled plot containing the constraint Lagrange multipliers is given in figure 15. At an
optimum point ~P, the Lagrange multipliers give the effect of the perturbation on the constraints. Any
positive perturbations to the constraints associated with the negative Lagrange multipliers will increase the
value of the objective function from the value obtained at an optimum [57]. Therefore, from figures 3 and 15,
we can conclude the following:

• The constraints limiting the hand size i.e., palm area and index finger length given by l × d < 1000

and
3∑
i=1

l1i = 80, have negative Lagrange multipliers associated with them, which signifies the obvious

result that a larger hand has a larger workspace.

• From the value of the Lagrange multipliers for the constraints we observe that the workspace is more
sensitive to a change in palm area than a change in finger length.

• The workspace is not very sensitive to the upper limits on rm and rt. Also, at an optimum we obtain
rm = 1.1 and rt = 1.35 which are quite close to the values suggested by [56] and [55].

• The workspace is quite sensitive to lower bounds on the fingers segments, however, the workspace is
not sensitive to the lower limits on d and h.

• Values of the Lagrange multipliers associated with constraints on the upper limits on d and h suggest
that the workspace is equally sensitive to these constraints.

5 Conclusion

In this work, the focus has been on understanding dexterous manipulation of a multi-fingered human hand
grasping an object. In section 1, a comprehensive review of the current state-of-the-art in the topic is
presented and in section 2, we have presented an overview of a Monte Carlo based probabilistic technique
used to obtain the workspace of object grasped by a multi-fingered hand. The human hand grasping an
object has been modeled in two ways, namely point contact with friction and a contact allowing rolling
without slipping. In both these situations, we model the three-fingered hand grasping a sphere as a hybrid
parallel manipulator with six degrees of freedom and present an algorithm to obtain the well conditioned
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Figure 15: Scaled plot showing effects of constraints on hand workspace

workspaces of the hybrid parallel manipulators. The main results are presented in section 4 and we show
that the maximum workspace of the grasped object is obtained when the palm size is same as the grasped
object size. We also show that the maximum workspace could be as much 1.5 times when rolling without
slipping is allowed. In section 4.1, experimental results on dexterous manipulation are presented to set a
perspective for the numerical experiments and to make them more realistic are described. It is shown that
the experimental results agree reasonably well with numerical simulation results. The numerical results
also show the sensitivity of the obtained workspace due to changes in it’s geometry. In this paper, we
have attempted to comprehensively addressed the issues in kinematics of dexterous manipulation. However,
several aspects such as dynamics, control and path planning problems related to dexterous manipulation
remain unexplored and are future avenues of research.
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A Appendix I: Equations of rolling after Montana[15]

The common normal n, to the surfaces Sf and So (in figure 7a) is given in equation (31) according to [42].





nx
ny
nz



 =





sgn (cos (v)) (|cos (v)|)2−n
sgn (cos (u)) (|cos (u)|)2−e

A
sgn (cos (v)) (|cos (v)|)2−n

sgn (sin (u)) (|sin (u)|)2−e

B
sgn (sin (v)) (|sin (v)|)2−n

C





(31)
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Using equations (20) to (22) we can obtain a parametric expression for the surface as f(u, v) =





x(u, v)
y(u, v)
z(u, v)



.

At a point P0 on the surface we define a orthogonal frame H as

H =





fu
|fu|
fv∗

n





(32)

In equation (32), fv∗ =
n

|n| ×
fu
|fu|

8 and k(·) =
∂k

∂(·) and the value of the contact normal n is obtained

from equation (31). Based on H in equation (32) we can define the following metric [M], curvature form
[K] and torsion form [T] for each of the surfaces Sf and So as:

[M] =

[
|fu| 0
0 |fv∗ |

]
(33)

[K] =




fu.nu
|fu|2

fu.nv∗

|fu||fv∗ |

fv∗ .nu
|fu||fv∗ |

fv∗ .nv∗

|fv∗ |2


 (34)

[T] =

[
fv∗ .fuu
|fu|2|fv∗ |

fv∗ .fuv∗

|fv∗ |2|fu|

]
(35)

In equation (35), fuv∗ = fv∗u =
∂

∂u
(
n

|n| ×
fu
|fu|

).

Also in equation (34), nv∗ = nuuv∗ + nvvv∗ , where, a least squares estimate values of uv∗ and vv∗

can be obtained by comparing the components of both left and right sides of equation (36).

fv∗ =
n

|n| ×
fu
|fu|

= fu
∂u

∂v∗
+ fv

∂v

∂v∗
(36)

Again,

[Rψ] =

(
cosψ − sinψ
− sinψ − cosψ

)
, [K∗f ] = [Rψ][Kf ][Rψ]T (37)

Using equations (33) to (35) and (37) we can write the equations of motion of two bodies in contact undergoing
rolling after [15] as,

(u̇o, v̇o) = [Mo]
−1([Ko] + [K∗f ])−1[{−ωy, ωx}T − [K∗f ]{vx, vy}T ] (38)

(u̇f , v̇f ) = [Mf ]−1[Rψ]([Ko] + [K∗f ])−1[{−ωy, ωx}T + [Ko]{vx, vy}T ] (39)

ψ̇ = ωz + [To][Mo](u̇o, v̇o)
T + [Tf ][Mf ](u̇f , v̇f )T (40)

Equations (38) to (40) along with vz = 0 can be solved simultaneously to obtain the evolution of the
contact points on the object and the finger.

8This re-parametrization is required for the general super ellipse as the vectors {fu/|fu|, fv/|fv |, n̂}T do not constitute an
orthogonal frame
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