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Abstract

In this work, we use the Monte Carlo method in conjunction with gradient based optimiza-
tion algorithms to optimally design multi-degree-of-freedom parallel manipulators and closed-
loop mechanisms. The design procedure takes into account practical constraints such as joint
limits and guarantees well-conditioning of the desired workspace. As a first step, an appropriate
bounding box representing the wanted workspace is obtained by using the Monte Carlo method
and then the geometrical dimensions of the manipulator are obtained through a gradient based
optimization method by accounting for the joint and other constraints. The computational
advantages of the Monte Carlo technique over other search based methods in evaluating the
objective function for the optimization problem is illustrated. The constraint Lagrange multi-
pliers are obtained and sensitivity of the workspace dimensions to the constraints on joint limits
and conditioning have been demonstrated. The approach is illustrated with the design of a
two-degree-of-freedom planar 5-bar closed-loop mechanism and a spatial, six-degree-of-freedom
Stewart platform manipulator.

Keywords: Monte Carlo method, workspace, condition number, joint limits, gradient based opti-

mization, constraint sensitivity analysis.

Nomenclature and list of symbols
B
A [R] Rotation matrix of frame {B} with respect to frame {A}
ℜ Set of real numbers

SO(3) Special orthogonal group of order 3

ui ith Element of a vector U

Pr(X) Probability of a random variable X

E(X) Expectation of a variable X taking a probabilistic value

Sn Average of n quantities (x1, x2, . . . , xn)

V (X) Variance of a variable X taking a probabilistic value

X̂ Estimate of the quantity X

J Jacobian matrix

κ Condition number of a matrix

tr(A) Trace of a matrix A

O The ’Big O’ notation denoting computational complexity

W Workspace of a manipulator

Si, Ui Centers of spherical and universal joints respectively
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1 Introduction

Parallel manipulators are widely used for a variety of tasks where increased accuracy and large load

carrying capacities are required. The most well-known spatial in-parallel manipulator, the Stewart

platform has been used extensively for tire testing, aircraft simulators, machine tools and many

other applications. Other platform type in-parallel manipulators, with three degrees-of-freedom

such as the 3-UPU and 3-RPS manipulators have been proposed as a parallel wrist [1] for orienting

an object and for tracking the sun for concentrated solar plants [2]. Hybrid parallel manipulators

have been proposed as a model of multi-fingered hands (see, for example, the Stanford-JPL hand

by Salisbury and Craig [3] and the Utah-MIT hand by Jacobsen et al. [4] and the 3 fingered

hand by Borras and Dollar [5]). Planar multi-degree-of-freedom, closed-loop mechanisms such as

the 3-RRR or a 5-bar mechanism have been used for precision manipulation in a plane, haptic

devices (see Phantom range of haptic devices by Sensable [6] etc.). In most of these instances,

the stress has been to obtain the solutions to the direct and inverse kinematics problems (see, for

example, the pioneering works by Wen and Liang [7] and Raghavan and Roth [8] and the references

contained therein), perform singularity analysis (see, for example, Bandyopadhyay and Ghosal[9,

10, 11] and the references contained therein), derive and numerically solve the dynamic equations

of motion (see, for example, the comprehensive review by Dasgupta and Mruthyunjaya [12] and the

references contained therein) and for control (see, for example, the works by Hatip and Ozgoren [13],

Narasimhan [14], Wang et al. [15], Wen et al. [7] etc. and the references contained therein). Unlike

the extensively studied planar four-bar and other one-degree-of-freedom planar mechanisms, there is

relatively less literature on the design of parallel manipulators and multi-degree-of-freedom planar

or spatial closed-loop mechanisms for a given set of objectives. In this work, we focus on the

problem of optimal dimensional synthesis of a parallel manipulator or a closed-loop mechanism for a

specified workspace, subject to joint rotation limits and obtaining a well-conditioned workspace. In

the review paper on Stewart platform manipulators [16], the authors have also recognized the above

as an open area of research. Optimization of parallel manipulators and closed-loop mechanisms

in terms of dimensional synthesis for the largest specified workspace and (or) highest end-effector

accuracy is a continuing area of research. In the following we present a brief summary of the current

state-of-the-art in this topic.

In a body of literature (see, for example, the work by Boudreau and Gosselin [17] and the

book by Davidor [18] and the references contained therein), the authors have recognized the non-

convex nature and difficulties in optimizing a parallel manipulator for desired characteristics and

have thus not suggested the use of gradient based optimization, involving closed form kinematic

equations of parallel manipulators. Genetic algorithm or other evolutionary algorithms have been

chosen frequently by researchers (see, for example, the work by Grefenstette [19] and the references

contained therein) for optimization problems including but not limited to dimensional synthesis.

A different approach to the optimization problem (see, for example, Masory and Wang [20] and

Tsai and Soni [21]) is by evaluating and maximizing the boundary curves of the feasible workspace

of the manipulator at a particular plane with one of the Cartesian variables as fixed. Pittens

and Podhorodeski [22] and Han et al. [23] have used gradient based optimization to obtain the
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dimensions of a manipulator for highest accuracy by reducing the condition number over the feasible

workspace so that the accuracy of the manipulator is good everywhere in the workspace of the

manipulator. Gosselin and Guillot [24] have worked on the optimization problem of planar parallel

manipulators in Cartesian space. The method used by them obtains the geometric description of

the intersection of the available workspace and obtained the workspace of the manipulator and

subsequently minimizes the exclusion zone of the intersected workspace, thereby reaching at the

optimum configuration. An avenue of research started with the pioneering works of Merlet (see e.g.

[25]-[28] and [29] and the references contained therein) describe the use of interval analysis as a

technique to determine the upper and lower bounds of a function and has proposes its use it for the

optimal design of parallel mechanisms by maximizing a particular cost function. Methods based

on numerical constraint programming exist, which represent and quantify non-singular workspaces

of parallel manipulators. A recent work by Caro et al. [30] uses this technique in conjunction with

branch and prune algorithms to compute general aspects of parallel manipulators like non-singular

self-collision free workspaces. Borras and Dollar [5] have considered two versions of the same

parallel manipulator – one as an under-actuated (or hybrid parallel) manipulator and another as a

fully actuated version and have generated optimum dimensions of both for the maximal precision

workspaces. In the work they have also computed the actual number of configurations (reported to

be of the order of 107 for the worst case) to be searched through and have suggested random search

technique to quickly go through the search space. Lou et al. ([31, 32, 33]) have used the controlled

random search (CRS) method to optimize robots for regular workspaces with good dexterity. The

works by Stamper et al. [34], Tsai and Joshi [35] use Monte Carlo search based methods to optimize

manipulators for the largest well-conditioned workspace. The objective function is generally a

representative of the quantity of the actual workspace. The works by Lou et al. and Tsai et

al. ([31], [32] – [35] ) are closest to the current work and in this paper, we extend some of the ideas

presented in these works.

The configuration space for a 6 degree-of-freedom (DOF) parallel manipulator is large and the

joint space (both actuated and un-actuated) is even larger – in the Stewart platform manipulator,

the number of actuated joints is 6 and total number of joint variables, active and passive, is 18.

For posing the problem in the joint space, an efficient closed-form solution of the direct kinematics

problem for the manipulator should be at hand and this is often difficult – the direct kinematics of

the most general Stewart platform requires the solution of a 40th degree polynomial [8]. Therefore

posing and solving the optimization problem with constraints (both geometric and joint limit) in

either of the spaces is difficult. Additionally, most of the above works do not consider the measure

of the well-conditioning in both of the configuration and orientation workspaces. In this paper, we

show the Monte Carlo method, as described in the work by Tsai and Soni [21], can be used very

successfully in design of parallel manipulators and closed-loop mechanisms. We show that a) the

solution to the direct kinematics problem is not required and the simpler inverse kinematics solution

is enough, b) joint and other constraints can be easily incorporated, c) the design gives the largest

well-conditioned workspace, and d) in compared to other existing approaches, it is computationally

efficient. We also show that a gradient based optimization method can also be used in conjunction
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to the Monte Carlo based search and this provides insights on the dependence of the workspace of

the manipulator on the constraints.

This paper is organized as follows: In section 2, we briefly describe the Monte Carlo search based

approach and how it can be applied to obtain a cloud of points which satisfies inverse kinematics

and specified joint limits. We discuss error, choice of sample size, representation of the workspace

and compare the workspace obtained using direct kinematics and the Monte Carlo method for an

example. The representation of the workspace volume is then used in section 3 and a gradient based

optimization problem is formulated for obtaining the dimensions of closed-loop mechanisms and

parallel manipulators. The gradient based optimization allows us to perform a sensitivity analysis

which gives more insight into the optimization. In section 4 we present two examples, namely a

two-degree-of-freedom planar 5R closed-loop mechanism and the well-known six-degree-of-freedom

semi-regular Stewart platform manipulator. In section 5. the paper is summarized and scope for

future work is presented.

2 The Monte Carlo method

The Monte Carlo method can be used to evaluate integrals of arbitrary functions (vector or scalar

function of smooth or non-smooth type) over an arbitrary domain [36]. The integral

I =

∫
[0,1]d

f (x) dx

where f(·) is a bounded real valued function, can be obtained as E(f(U)) where E(· ) is the

expectation of a variable taking a particular probabilistic value, and U = [u1, u2, ..., ud]
T a 1 × d

vector taking random values of ui ∈ [0, 1] ∀i = 1, 2, ..., d. From the strong law of large numbers1

the average,

SN =
1

n

n∑
i=1

f (ui) (1)

almost surely 2 converges to E(f(U)) as n −→ ∞. The volume (area) of a manipulator workspace

is an integration problem in ℜ3 (ℜ2) and we use the Monte Carlo method to evaluate the volume (or

area) of the workspace of a closed-loop mechanism or a parallel manipulator. It maybe mentioned

that there are existing deterministic approaches to determine the volume of the workspace of a

closed-loop mechanism or a parallel manipulator (see, for example, Masory and Wang [20] and

Merlet [29]).

In the following section we show that in the probabilistic approach of using the Monte Carlo

method, the error bound can be made smaller than in the deterministic approach with less compu-

tational effort and less complexity. This is discussed in brief next - for more details, the reader is

referred to Chapter 2 of the book by Fishman [37] and relevant sections of the book by Hammersley

and Handscomb [38].

1For a sequence of independent, identically distributed real random variables X = {x1, x2, x3, ..., xn} such that
E(f(Xi)) < +∞ then lim

n→∞
1
n

∑n
i=1 xi = E(X) with probability 1.

2It can be proved that the probability of this convergence is 1.
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2.1 Obtaining volume of a hyper-solid in n-D space by using Monte Carlo
method

Let R denote the region of unknown volume λ(R) in the m-D hypercube denoted by I = [0, 1]m.

Assume that the region R is arbitrary and given by a known series of inequalities and implicit

functions of several variables in a way that the computation of the exact volume of R, i.e., λ(R) is

not possible or computationally prohibitive. We further assume that a systematic procedure exists3

for generating a sequence Hm,n of n points in m-D hypercube

Hm,n = {Xj = (x
(j)
1 , x

(j)
2 , x

(j)
3 , ...x(j)m )}. (2)

The numerical accuracy of obtaining λ̂(R), an estimate the volume, depends on how Hm,n is

populated4 . The Algorithm 1 given below can be used to obtain λ̂(R) by populating the vector

X in equation (2) by generating m random numbers for xsi between [0, 1]. From Algorithm 1, a

point estimate of the quantity λ̂(R) is obtained as S
n (where S is the accumulated value of ϕ(X(j))

in each case a randomly generated point is accepted because of its inclusion in the domain of R.

The variance V (λ̂(R)) can be obtained as

V (λ̂(R)) =
S

n
(1− S

n
)(

1

n− 1
) (3)

Purpose : To obtain an estimate of λ(R)
Input: R and sample size ’n’

Output: λ̂(R)

1: Initialize j=0, S=0;
2: Allocate memory for Hm,n

3: while j 6 n do
4: Initialize i=1;
5: while i 6 m do
6: Populate Xj using H such that xsi between [0, 1];
7: end while
8: Initialize a counter ϕ(X(j)) = 0;
9: if Xj ϵ R then

10: Assign ϕ(X(j)) = 1;
11: S = S + ϕ(X(j));
12: j = j + 1;
13: end if
14: end while

15: Compute λ̂(R) =
S

n
Algorithm 1: Algorithm for evaluating volume of a hyper-solid using Monte Carlo Method

In maybe mentioned that in line ♯6 of Algorithm 1, if we use an unbiased random number

generator for H then it is a Monte Carlo method. In the Monte Carlo method, the bounds on

the error is probabilistically determined and can be reduced by proper choice of number of samples

3Chebyshev intervals xk = cos
(
2k−1
2n

)
π, k = 1, 2, ..., n ∀xϵ[0, 1] or any other non-repeating, monotonic sequence,

see [37], may be used.
4Chebyshev intervals, quadrature or an ad-hoc interval generator or probabilistic methods like drawing random

numbers can be used.
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and other parameters.

The worst-case error in estimating the volume, by using deterministic samples, is given by [37]

as:

∥ λ̂(R)− λ(R) ∥6 s(R)

n1/m
(4)

where s(R) is the surface area of the hyper-surface bounding the region R. 5 Therefore to have

an absolute error no larger than ϵ, the number of evaluation points required is,

n(ϵ) = ⌈[s(R)

ϵ
]m⌉ (5)

where, ⌈x⌉ is the nearest integer greater or equal to (x). From equation (5) it is clear that the

required sample size n(ϵ) is exponentially related to the dimensionality of the problem. Therefore,

for deterministic methods, for a change in the order of the allowable absolute error or an increase

in dimension of R, there is an exponential and unbounded6 increase in the number of points at

which the step #9 in Algorithm 1 has to be evaluated. In the subsequent section, we show that for

lesser computation effort, we can achieve more accuracy by using the Monte Carlo method. It may

also be noted that the evaluation of the while loop in line # 3 through line # 14 and the inner if

loop (line # 9 through line # 13) can be executed in parallel while the program is being used to

evaluate ϕ(X(j)). This possibility of parallelization is one of the biggest advantages of the Monte

Carlo method.

2.2 Errors and sample size considerations

From equation (3) it can be seen that with increasing number of evaluation points n, the variance

of the estimate λ̂(R) decreases. It can be proved that

Pr( lim
n→∞

λ̂(R) = λ(R)) = 1(a.s.). (6)

which implies that we can get an error free estimate as the number of evaluation points tend to

infinity. Furthermore by using the Chebyshev inequality7, we can prove (for more details see [37],

chapter 2),

lim
n→∞

Pr(| λ̂(R)− λ(R)) |> ϵ) = 0, (7)

which also provides us with a basis to obtain the sample size requirements. However, unlike the

deterministic methods we cannot obtain the required sample size from the information about error

tolerance alone – a confidence level (1−δ) is required to account for the randomness of the samples.

Using Chebyshev’s inequality, we can write,

η(ϵ, δ, λ) = ⌈λ× (1− λ)

δϵ2
⌉, λ = λ(R) (8)

5The expressions in equation (4) are unit less because they have been derived from a counting argument.
6 With finer error tolerances it can be shown that n tends to ∞.
7Chebyshev’s inequality: For a random variable Z with a probability density function (PDF) f defined on (−∞,∞),

with E(Z) = 0 and σ2 = V (Z) = E(Z2), and β > 0, then Pr(Z
σ
≥ β) ≤ 1

β2 .
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From Algorithm 1, we know that λ(1−λ) 6 1
4 . Since S given by

∑n
i=1 ϕ

(
X(j)

)
follows a binomial

distribution, V (λ̂(R)) = V (S)
n2 = λ(1− λ)/n, and hence the worst case sample size is

ηc(ϵ, δ) = ⌈ 1

4δϵ2
⌉ (9)

By comparing equations equation (9) and equation (5) and from Algorithm 1 we can state the

following:

• The worst case sample size in case of the Monte Carlo method given by equation (9) is

independent of the dimension m of the hyperspace I m and this is one of the most desirable

features of the Monte Carlo method.

• In step ♯6 of Algorithm 1 the time required for calculation of Xj is O(m) for random sampling,

whereas, for the deterministic method, the same step requires O(mβ), where, β > 1 and is

dependent on the method used for generating sample points. For quadrature methods or

Chebyshev intervals due to the presence of non-linear terms like radical signs or trigonometric

functions, β > 1.

• The complexity of Algorithm 1 (while using the Monte Carlo method) is O(m) for a certain

preset (ϵ, δ) error tolerance as obtained from equation (9). For deterministic sampling, it can

be proved (see [37]) that the complexity is exponential O

(
mβ

4δϵ

)
for the same preset tolerance.

From the above three observations, we can conclude that obtaining the workspace volume of

a closed-loop mechanism or a parallel manipulator can be obtained more efficiently by using a

probabilistic method than with a deterministic method. For more details on sample size and error

estimates one can refer to Kleijen et al. [39] and references [37, 38]. In this work, we have use the

Monte Carlo method to obtain the volume of the workspace of the closed-loop mechanism and the

parallel manipulator. In all the simulations undertaken we have used:

• Sample size of 150, 000 or more which gives an error tolerance of less than 1 percent and a

confidence bound of approximately δ = 0.05. This is similar to Stamper et al. [34] where

200,000 samples have been used.

• Uniformly distributed random numbers (between [0, 1]) were generated by using the pseudo-

random number generator rand function of Matlab [40].

2.3 Representation of the workspace

For manipulators with uninterrupted travel between joint limits for all active and passive joints,

the workspace is bounded by continuous surfaces or by continuous level set curves (see, Merlet [29],

Masory and Wang [20] and Tsai and Soni [21]) and therefore, the analytical evaluation of the

workspace qualifies to be a problem of integration in 3D. In the Monte Carlo based approach,

we first select a search space shown schematically by the light gray cube in figure 1a and let

its volume be VSearch. Next, the well-conditioned workspace, defined in section 3 with volume

VWorkspace, is obtained and this is shown schematically by the region bounded by dark triangles in
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figure 1a. Since both of the search space and well-conditioned workspace are continuous regions

in ℜ3, the probability that a randomly selected point in the search space, will also lie inside the

well-conditioned workspace is,

P (Point inside workspace) =
VWorkspace

VSearch
=

ηTotal

ηRandom
(10)

where, ηTotal is the number of searched points inside VWorkspace and ηRandom is the total number

of points populated in the search space. The expression in equation (10) is obtained from the

simulation, and since VSearch is exactly known from the user input, we can find the volume of the

well-conditioned workspace from equation (10).

Alternately, from the cloud of points obtained from the Monte Carlo simulation, we can also

obtain almost exactly the volume of the workspace expressed as a polyhedron. This involves ob-

taining the convex hull of the cloud of points and triangulating them by well known Delaunay

triangulation algorithms [41]– we have used Matlab [40] functions. After the 3D polyhedron has

been obtained (as shown in figure 1a) we obtain the volume using a generalization of the trapezoidal

rule in 3D (see Allgower and Schmidt [42, 43]). The algorithm considers the domain D ∈ ℜ3 as a

(a) Relative representation of workspace and search
space

(b) Volume enclosed by a triangulated domain by
measuring the volume of discrete trapezoids

Figure 1: Representation and calculation of workspace volume

set of discrete trapezoids p(σ) with one of the non-parallel faces as the facet (σi), and another as

the projection of the facet on a chosen plane (the X − Y plane in figure 1b) and the other faces

parallel to an axis perpendicular to the plane (the Z axis in case of figure 1b ). According to [43],

the volume V of the trapezoid is,

V = (−1)2
∑
σ∈T

(1

2

2∑
i=1

zct
2
i

)
· 1
2!
det

 1 1 1

xt−1
i xti xt+1

i

yt−1
i yti yt+1

i

 (11)

where the outermost summation
∑

σ∈T indicates that the summation is carried over the total

triangulated domain T . According to Allgower and Schmidt [43], this method is more efficient with
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complexity O(n2) as compared to other methods such as finding the sum of the volumes of discrete

tetrahedra in which case the complexity is O(n3). It may be noted that equation (11), works only

for evaluating the volume of a simply connected domain, as opposed to Monte Carlo method which

applies for continuous as well as discontinuous domains.

2.4 Comparison between Monte Carlo, Chebyshev sampling and analytical
methods to find the volume

In this section, we use the example of a planar 5R closed-loop mechanism and obtain the workspace

of this mechanism by three approaches and compare the results obtained. A schematic description

of the 5R mechanism is given in figure 2.

Figure 2: General schematic diagram of a 5R manipulator

The 5R manipulator was chosen for the example because it is fairly well documented in literature

and the choice of the output point P in figure 2 is natural. In figure 2, the plain bounded area

represents the reachable workspace of P with two hatched exclusion zones. The joints O1 and O2

are actuated. The boundary curves of the well-conditioned workspace for the mechanism can be

analytically obtained and has been described in detail in literature (see, for example, [44],[45]).

In figure 2 the larger radius arc bounding the workspace is given by R, the radius of the smaller

bounding arc is given by r and the radii of the smaller and larger exclusion zones are given by ds

and db. The analytical expressions for R, r, ds and db in figure 2 after [45] are

R = l1 + l2, r = l3 + l4

ds = l3 − l4, db = l2 − l1

We denote the area enclosed by the arcs by A(L), where {L} = [d, l1, l2, l3, l4] is the vector of

design parameters – link lengths in our case. The area A marked as a plain bounded area is given
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by A = A1 −AO2 −A2 where the subtracted quantities are the exclusion zones marked as hatched

bounded zones. The closed-form expressions of A(L) is given as

W(L) = r2 cos−1

(
1

2

−R2 + d2 + r2

dr

)
+R2 cos−1

(
1

2

R2 + d2 − r2

dR

)
− (12)

1
2

√
(−d+R+ r) (d+ r −R) (d− r +R) (d+R+ r)− π ds

2 − db
2 cos−1

(
1
2

−R2+d2+db
2

ddb

)
−

R2 cos−1
(
1
2

R2+d2−db
2

dR

)
+ 1

2

√
(−d+R+ db) (d+ db −R) (d− db +R) (d+R+ db)

In the above general expression of the area, the reachable workspace can be partitioned into a few

topologically different cases by considering the circular arcs that bound the reachable workspace. In

this example, we confine the workspace to a zone between O1 and O2 in figure 2 which is bounded

by 2 continuous circular curves. This significantly simplifies the expression of the area A(L) as the

first three terms can be removed. For l1 = 1, l2 = 1, l3 = 1, l4 = 3 and d = 4, by using equation (12),

the area is obtained as 5.6123 unit2. We compare this computed area by the probabilistic Monte

Carlo method and deterministic Chebyshev sampling method. In the next section, we also present

a discussion on the use of interval analysis (see e.g. works by Chablat et al. [27] and Caro et al.

[30]) to obtain the area.

To compare this computed value with the area obtained using the other methods, we first

populate points in ℜ2 with bounds on X,Y as X ∈ [−6, 6] , Y ∈ [−6, 6]. The points in ℜ2 are

populated by a deterministic sampling and a random number generator. The formula for generating

N Chebyshev’s intervals is given by

x =
1

2
(b+ a) +

1

2
(b− a)

cos(2j − 1)

2k
, x ∈ [a, b], j = 1, 2, ..., N (13)

The computation time8 and the differences in the obtained areas (in unit2) from the different ap-

proaches are shown in tables 1 and 2. In the tables, BCE is the best case error in obtaining the

# Samples Area using eq. 10 CPU Time I BCE %

5000 5.58 0.12 0.575

10000 5.64 0.15 0.494

150000 5.608 0.36 0.059

Table 1: Computational performance of a fully parallel MC method

area of the workspace (across 10 trials), CPU Time I is the time required to obtain the LHS of

equation (10), and CPU Time II is the time required to obtain the LHS of equation (11). From

tables 1 and 2, we can conclude that Monte Carlo method is faster and more accurate than deter-

ministic sampling for obtaining the workspace area.

The efficiency of the Monte Carlo method is more evident if we consider a 3D spatial example

such as a SCARA robot shown in figure 3a. We consider a constraint on the joint θ2 of the form

8The programs were run in Matlab R2015a[40] on a Windows 7 PC with an quad core (3.10GHz) Intel XEON &
16 GB of RAM.
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Intervals Value of K in eq. 13 Area using eq. 11 CPU Time II Error %

317 1 5.438 0.504 3.104

400 1 5.451 0.623 2.87

500 1 5.452 1.55 2.84

Table 2: Computational performance of Chebyshev interval samples

(a) Schematic diagram of a SCARA manipulator
(b) Workspace of the SCARA robot
shown in figure 3a

Figure 3: Schematic representation and workspace of a SCARA manipulator

[10◦ ≤ θ2 ≤ 2π−10◦] to prevent interference of the last link and the base. The reachable workspace

of this manipulator is a hollow cylinder with dmax = 7 units and dmin = 4 − 3 cos(θlim) units and

the workspace volume is given by

W = π(d2max − d2min)d = π(49− (4− 3 cos(10◦))2)4 = 602.01 unit3 (14)

The inverse kinematics equations of the SCARA manipulator is given as

d = −Z

θ2 = cos−1((X2 + Y 2 − l21 − l22)/(2l1l2)) (15)

θ1 = atan2(Y,X)− atan2(l2 sin(θ2), (l2 + l2 cos(θ2)))

Next, we populate points in ℜ3 with bounds on X,Y and Z as X ∈ [−7.5, 7.5] , Y ∈ [−7.5, 7.5]

and, Z ∈ [−0.5, 5.5] Similar to the 5R closed-loop mechanism, the points in ℜ3 are populated by a

deterministic sampling and a random number generator. The computation time and the differences

in the obtained volumes (in unit3) from the different approaches are shown in tables 3 and 4. In

# Samples Volume using eq. 10 CPU Time I Volume using eq. 11 CPU Time II BCE %

10E5 597.08 0.84 576.88 2.92 0.8165

10E6 598.3 3.25 586.753 28.51 0.6146

3.375× 10E6 599.3 10.42 589.92 118.75 0.4615

Table 3: Computational performance of a fully parallel MC method

table 3 CPU Time I is the time required to obtain the left-hand side of equation (10), and CPU

Time II is the time required to obtain the left-hand side of equation (11).

11



Intervals Value of k in eq. 13 Volume using eq. 11 CPU Time II Error %

150 45 585.8236 unit3 62.73 2.68

150 50 591.3996 unit3 75.37 1.76

150 55 586.5533 unit3 92.68 2.56

Table 4: Computational performance of Chebyshev interval samples

It can be seen that Chebyshev sampling method searches through 1503 = 3375000 points for

all the cases and the best case error is 1.76 %, where as the best case Monte Carlo (MC) searching

through 3375000 points saves 86.17 % computation time and is 99.54 % accurate. For equal number

of samples, the MC sampling is better than the Chebyshev samples in finding the workspace volume

and is more than 7 times faster. If we settle for a less stringent error bound, say ∼ 0.8%, then

the Monte Carlo simulation is even more accurate than the best case Chebyshev samples and is

almost 90 times faster. This huge computational advantage is largely attributed to the possibility

of very high parallelization of the Monte Carlo method as compared to difficulty in parallelization

of deterministic search methods.

2.5 Comparison between Monte Carlo and interval analysis based methods

Caro et al.[30] have proposed a numerical constraint programming based method to generate an

approximation of the singularity free workspace of a parallel manipulator. The interval analysis (IA)

technique together with branch and prune (BPA) algorithm is used to efficiently search through the

intervals (and sub-intervals) populated during the solution of the problem. The work uses extensive

symbolic computation and the Intlab library (see Rump [46]) to pose and solve the problem,

respectively. The main differences and advantages of our approach is that our approach only

requires the explicit solution of the inverse kinematics problem for the manipulator (see section 4

for details). The approach by Caro et al. requires obtaining explicit analytical forms of the various

constraints for the manipulator and due to the resulting computational complexity, only planar

manipulators with 2 or 3 DoFs and simple geometry could be studied. We believe attempting

the same for a 6 DoF manipulator will involve a prohibitive amount of algebraic manipulations.

Additionally the approach by Caro et al. takes significant amount of computation time as shown

in a numerical experiment for obtaining the singularity free workspace of a 5R planar parallel

manipulator. They report that the computation time9 for obtaining the workspace by searching

through 69, 612 boxes with precision of 0.1 is 38 seconds. In section 2.4 we obtain a computation

time of 0.36 seconds for searching through 150,000 points in a search space and the best case error

was 0.059%.

Merlet and co-workers[25]-[29] have proposed the interval analysis approach to pose and solve

multi-objective optimization problems related to the workspace of parallel manipulators. In a

work by Hao and Merlet [26], the solution of the inverse kinematics problem for the manipulator

is used and the well-conditioning (or singularities) is checked (obtained) from the inverse of the

9The authors report using a PC with a 3.4 GHz Intel XEON processor and 16GB RAM, which is comparable to
the hardware we have used.
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manipulator Jacobian JT . The main differences and advantages of our work as compared with Hao

and Merlet[26] are:

• The use of inverse of JT only avoids gain type singularities in the task space. For a fully

in-parallel Stewart platform with six actuated prismatic joints, this is enough. However a

hybrid parallel manipulator can also loose one or more degrees-of-freedom and to overcome

this problem, in our formulation, we have used upper bounds on the condition numbers of

the manipulator Jacobians (see equation (18)).

• Hao and Merlet [26] propose the use of a threshold quantity ϵ to accommodate manufacturing

errors that might creep in and result in a non-optimal manipulator. In our approach, we use

constraint sensitivity analyses at the optimum point (see sections 4.1.5 and 4.2.4) to identify

the effects of each of the individual design parameters to the workspace of the manipulator.

• A related work (see Chablat et al. [27]) suggests box validation, which involves the calculation

of the eigenvalues of J−T for subdividing boxes (analogous to intervals in 3D). For a general

6 DoF parallel manipulator, the eigenvalue problem for J−T is almost impossible to solve

symbolically and for some parallel manipulator, with non-square J, the eigenvalue problem

may not exist in exact form. In contrast, we have explicit symbolic expressions for all the

equations and quantities used (including equation (18)), and hence the computational load is

much less.

In summary, from sections 2.4 and 2.5 we can conclude that the Monte Carlo method performs

more efficiently than existing methods for obtaining the workspace volume of a manipulator where

only the solution of the inverse kinematics problem is exactly known. We use the Monte Carlo

method for the design of closed-loop mechanisms and parallel manipulators in this work. In the next

section, we define the well-conditioned workspace of the manipulator and formulate the optimization

problem.

3 Formulation of the optimization problem

The workspace of the end-effector of a serial or a parallel 6 degree-of-freedom manipulator involves

three quantities representing translation and three quantities representing orientation of the end-

effector. It is symbolically expressed as

WT = Wp nWo, Wp ∈ ℜ3, Wo ∈ SO(3) & WT ∈ SE(3) (16)

It is difficult to visualize or define a volume of the total workspace and it is common in literature

to seek quantities like constant orientation workspace, Wp, or constant position workspace, Wo, by

independently seeking either of Wo or Wp ([49, 50]). In this work, we will loosely follow the work

by Stamper et al. [34] and define well condition workspace as the closed volume in ℜ3 which is a

subset of Wp in equation (16) where each point inside Wp can be reached by at least one known

(but randomly generated) orientation of the end-effector, satisfying all joint limit constraints and

sufficiently well-conditioned.
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Figure 4: Flowchart of the design process

The well-conditioning of the workspace is related to the condition number of the manipulator

Jacobian matrix. For a serial manipulator, the notion of a manipulator Jacobian is very well

known and it relates the linear and angular velocity of the end-effector with the joint rates. For

a parallel manipulator, with actuated and passive joints, an equivalent manipulator Jacobian can

be defined in terms of the actuated joints. As shown in Ghosal [47] and Ghosal and Ravani [48],

the loop-closure or constraint equations can be used to relate the passive and the actuated joint

angles. When the closed-loop mechanisms or the parallel manipulator is not at a gain singularity,

the passive joint rates can be solved in terms of the actuated joint rates and relations between the

linear and angular velocity of a chosen end-effector and the actuated joint rates can be obtained

(see also Appendix A and section 4.2.3).

The condition number of a matrix A is defined as

κ =∥ A ∥∥ A−1 ∥ (17)

where ∥ · ∥ is the L2 norm of a matrix.

Denoting the equivalent Jacobians by JV
eqvand Jω

eqv (see appendix A), we use these in the above

equation to define a condition number for the equivalent Jacobians and denote them by κV and

κω. To ensure well-conditioned-ness of the manipulator throughout it’s entire range of motions, we

arbitrarily assign an upper bound on the two condition numbers relating to the translational and

rotational motions of the end-effector. Denoting the chosen upper bound by κ∗, we can write

max{κV , κω} ≤ κ∗ (18)
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In the numerical examples, we have used κ∗ as 100 as this gives a conservative estimate of the

well-conditioned workspace. A larger κ∗ will give a larger well-conditioned workspace (see also

figure 12 for the increase in workspace with increasing κ∗).

We observe that the Monte Carlo algorithm proposed in algorithm 1 classifies a given set of

n-tuples (line # 5-7) into two sets depending on whether or not they satisfy a given function. In

line with this observation, we assume that the well-conditioned workspace W, (W ∈ SE(3)), of

a parallel manipulator is a collection of a finite number (say n) of closed sets in SE(3) bounded

by surfaces Si
w, ∀i = 1, 2..., n . To classify a given position and orientation of the end-effector of

the manipulator (denoted by X ∈ SE(3) ) we formulate an in-out function F(X) which takes

input of the position and orientation of the end-effector of the manipulator and classifies the given

input according to its existence inside or outside the well-conditioned workspace of the parallel

manipulator. The function can be symbolically written as

F(X) =

{
1 if X ∈ W
0 if X /∈ W

}
(19)

A ratio of the cumulative value of F(X) obtained by using equation (19) (given as ηin in equa-

tion (20)) to the total number of points (given as ηTotal in equation (20)) simulated in the search

space (VSearch space in equation (20)) gives an estimate to the probability of a randomly gener-

ated position and orientation of the end-effector of the manipulator to be in the well-conditioned

workspace of the manipulator. Since the values of the vector X are sampled from an uniform

distribution in VSearch space, the total volume of the well-conditioned workspace can be calculated

by equation (20) below

WT =
ηin
ηTotal

× VSearch space (20)

Using equation (20) we formulate the optimization problem as

Maximize W ( P) (21)

Subject to, θ⃗min ≤ θ⃗ ≤ θ⃗max

ϕ⃗min ≤ ϕ⃗ ≤ ϕ⃗max

Other geometric equality and inequality constraints

where θ⃗ is the vector containing the actuated joint variables and ϕ⃗ is the vector containing the

un-actuated joint variables, and P⃗ is the set of parameters uniquely representing the geometry of

the manipulator. The optimization procedure is outlined in figure 4.

In summary, we note that the well-conditioned and reachable workspace of a parallel manipulator

is an integration problem in task space of the parallel manipulator. However, formulating the

function F as shown in equation (19) directly in the task space is a very difficult notion for parallel

manipulators with redundant joints and higher degrees of freedom because it involves exactly

solving the direct kinematics problem. Therefore, to overcome this problem, we formulate the

in-out classifier F in the joint space. We do this, by first solving the inverse kinematics problem

of the parallel manipulator IK(X) = {θ, ϕ}T , where θi, ∀i = 1, 2, ..., n are the ′n′ actuated joint

variables and ϕj , ∀j = 1, 2, ...,m are the ′m′ passive joint variables. Next, we check the active and

15



passive joint limits to ensure that they are within the prescribed limits, following which we ensure

that, for the given position and orientation of the manipulator, the Jacobians are sufficiently well-

conditioned10. The Monte Carlo simulation as discussed in this section and the algorithm in figure 4

classifies a set of given position and orientation of the end-effector of a manipulator according to

their occurrence in the well-conditioned workspace and thus we get a set of points in ℜ3 and SO(3).

4 Illustrative examples

In this section we will use the methodology developed above to perform dimensional synthesis

for two parallel manipulators. In the first example, we choose the earlier described planar 5 bar

closed-loop mechanism with two degrees-of-freedom and obtain the dimensions for the largest well-

conditioned workspace. In the second example, we perform dimensional synthesis for the well-known

semi-regular Stewart platform manipulator. In the first example, the direct kinematics is easily

solved and hence the optimization using the direct kinematics equations can be compared with

the Monte Carlo based method. In the second example the direct kinematics problem is fairly

difficult to solve and we use the Monte Carlo method which does not use the solution of the direct

kinematics problem.

4.1 Example 1: 5 bar planar closed-loop mechanism

The workspace of a 5R two-degree-freedom closed-loop mechanism can be thought of as intersection

of the workspace of two planar 2R manipulators. The workspace of a planar 2R manipulator, in

general, is a a hollow circular disk with an inner and outer radius. Depending on the inner and

outer radius for each of the two disks, the shape of the workspace of the 5R mechanism can be

of four generic types with bounding circular arcs whose equations can be easily obtained from the

equations given in section 2.4 (see also the works by Macho et al. [45], Cerventes-Sanchez et al. [44],

and Liu et al. [49]). To make the optimization problem realistic, we impose generic constraints on

the rotations at the joints and the link lengths. The generic constraints are as given in table 5. The

Total length of links Constraints on joint rotations Constraints on link lengths

10 units θj = [0, 2π] ∀j = 1, ..., 5 li ≥ 1 ∀j = 1, ..., 5 unit

Table 5: Generic constraints for the manipulator

constraint on the last column has been used so that all the link lengths are of the same order and

some special optimum cases with one link length equal to zero can be avoided. This special case

of a symmetrical manipulator with d = 0, was considered by Liu et al. [49], where a considerably

large annular workspace was obtained. In this example, we perform dimensional synthesis for a

general planar 5R manipulator for four generic workspace shapes with the above mentioned con-

straints. We use equation (12) along with geometric constraints to form the objective function and

use a gradient based optimization method to analyze the four different workspace configurations

10We have used a definition of the condition number, which encompasses both linear and angular motion of the
manipulator at the said position and orientation, as given in appendix A. The well-conditioned-ness is ensured by
restricting the condition numbers to be less than a chosen κ∗ at all times.
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of the 5R planar manipulator. It was observed that the optimization problem is non-convex, and

a probable reason for its non-convexity is given in appendix B.

From Algorithm 1, the equivalent definition of workspace is W =
ηPosibleA

ηTotal
. For a unit rectangle

completely enveloping the possible workspace denoted by the plain zone and excluded workspace

as the hatched zone. In figure 2, since the numbers generated by the rand command is uniformly

distributed on the envelope area the probability that a point generated lies inside the feasible zone

is tends to A.

4.1.1 Case I: Workspace bounded by 2 continuous circular arcs

In this case, the workspace is bounded by two continuous circular arcs placed between the two

centers O1 & O2, as shown in the figure 5a. For this case, the constraints are,

l1 + l2 − d < 0
l3 + l4 − d < 0
ds < d− (l1 + l2)
db < d− (l3 + l4)

(22)

(a) Generic workspace shape in Case I (b) Maximum workspace in Case I

Figure 5: Workspace bounded by two continuous circular arcs

The result of the optimization problem with the constraints listed in table 5 and in equation (22)

yielded the results given in table 6. The maximum workspace is shown in figure 5b.

Initial guess for {L} Optimum value for {L} Workspace area in unit2

[4,1,3,3,1] [4,3,1,1,1] 5.6123

[4,3,3,3,3] [4,1,1,1,3] 5.4612

Table 6: Optimal solutions for Case I

In this case we observe the following:

• Both the solutions given in table 6 are the same, i.e., one is the reflection of the other about

the perpendicular line form P to O1O2 in figure 5a.
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• Both the cases yield about the same workspace area but for the second case the workspace is

the reflection of the plain bounded zone in (figure 5b) about the line x = 4.

This case has been analytically solved in section 2.3.

4.1.2 Case II: Workspace bounded by 2 circular arcs outside and 2 circular arcs inside

The shape of the workspace is as shown in figure 6a. For this case, the general constraints are

l1 + l2 − d > 0
l3 + l4 − d > 0
ds < d− (l1 + l2)
db < d− (l3 + l4)

(23)

Another constraint on db and ds can be added to the problem to have two disjoint circles

centered at O1 and O2.

l1 − l2 + l4 − l3 − d < 0 (24)

The result of the optimization problem attempted with general constraints from table 5, the

constraints from equation (23) and the additional constraint form equation (24) yielded the results

given in table 7.

Initial guesses for {L} Optimum values for {L} Workspace area in unit2 Constraints

[3, 3, 2, 2, 3] [1.00, 1.00, 4.31, 2.68, 1.00 ] 25.04 Eq. 23

[3, 3, 2, 2, 3] [1.25, 3.74, 1.05, 1.26, 2.68] 24.95 Eqs. 23 & 24

Table 7: Optimal solutions for Case II

The maximum closed and bounded workspace obtained by using the proposed optimization

algorithm is shown in figure 6b. In this case, we can see that as we increase the number of

constraints, the usable workspace decreases.

(a) Generic workspace shape in Case II (b) Maximum workspace in Case II

Figure 6: Workspace bounded by 2 circular arcs outside and 2 circular arcs inside
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4.1.3 Case III: Workspace bounded by 4 circular arcs

In this case the shape of the workspace is as shown in figure 7b. For this case, the general constraints

are

l1 + l2 < ds + d
l3 + l4 < db + d
l1 + l2 > d− ds
l3 + l4 > d− db

(25)

Initial Guesses for {L} Optimal values for {L} Workspace area in unit2

[2.85, 2.63, 0.93, 0.93, 2.63] [2.33, 2.87, 1.00, 1.12, 2.67] 12.74

[2, 2.5, 1.5, 1.5, 2.5] [1.75, 2.14, 1.37, 1.37, 3.34] 22.94

Table 8: Optimal solutions for Case III

The maximum workspace obtained after optimization is shown in figure 7b and obtained link

lengths are given in table 8. It maybe mentioned that the initial guesses used are from the work

by Cerventes-Sanchez et al. [44], where this case has been analyzed.

(a) Generic workspace shape in Case III (b) Maximum workspace in Case III

Figure 7: Workspace bounded by 4 circular arcs

4.1.4 Case IV: Workspace bounded by 3 circular arcs with a circular exclusion zone

In this section, the schematic diagram of the workspace is shown in figure 2. The constraints for

the case are as follows:
l1 + l2 > d+ ds
l3 + l4 < d+ db
ds < l1 + l2 − d
db > l3 + l4 − d

(26)

The results of the optimization problem, after using the constraints form equation (26) are given

in table 9. The two optimum workspaces for the manipulator are given in figure 8.
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Initial Guesses for {L} Optimal values for {L} Workspace area in unit2

[2.85, 2.63, 0.93, 0.93, 2.63] [1.00, 4.00, 1.00, 1.82, 2.17] 28.63

[2, 2.5, 1.5, 1.5, 2.5] [3.26, 1.73, 1.63, 1.63, 1.73] 13.56

Table 9: Optimal solutions for Case IV

(a) Generic workspace shape for Case IV (b) Maximum workspace for result # 2 in
(table 9)

Figure 8: Workspace bounded by 3 circular arcs with a complete circular exclusion zone.

4.1.5 Conclusions and sensitivity analysis

For this particular problem, we found that the largest workspace was obtained for Case IV with

constraints in equation (26). However, there may be other special case with other particular

geometric constraints which may increase the area further. Given the non-convex nature of the

problem, we cannot exactly say which constraints we should choose. However if we perform a

sensitivity analysis we can get some insight on the problem. The Lagrange multipliers for the

constraints were extracted as the optimization algorithm converged to the result given in the first

column of table 7. It is known (see chapter 4 of Arora [53]) that any positive perturbations to the

constraints associated with the negative Lagrange multipliers will increase the value of the objective

function from the value obtained at an optimum. Therefore, we can conclude the following:

1. The Lagrange multiplier for the equality constraint l1+l2+l3+l4+d−LTotal = 0 was obtained

to be −3.877 × 103. The non-zero value of the multiplier indicates that this constraint was

active and the large value with a negative sign indicates that the workspace area is very

sensitive to this constraint and with increasing the value of LTotal the workspace would

increase by a factor of 3.877× 103 with other parameters remaining same.

2. The only negative Lagrange multiplier is the one associated with the equality constraint. All

other Lagrange multipliers are positive, and hence perturbations of those constraints might

decrease the workspace area.
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3. All the constraints in equation (23) remained inactive and hence the optimum value was not

influenced by these constraints. Therefore the dependence of the problem on the geometry

of the 5R mechanism is less and these constraints would serve as a good choice for a further

complicated optimization problem with joint limit constraints.

4. The Lagrange multipliers for the constraints given in the last column of table 5 were large

positive numbers. Therefore, the constraints preventing any difference in magnitude between

the values of the link lengths were active. The largest positive Lagrange multiplier was

associated with d > 1, l1 > 1 and l4 > 1.

4.1.6 Dimensional synthesis of a 5R mechanism for a required workspace

In all the cases studied above, the coordinates of O1 in figures 2, 5a, 6a and 7a, has been chosen

to be the origin and O2 was fixed to lie on the X axis. As a result the workspaces obtained in

figures 5b, 6b, 7b, 8a and 8b are all symmetric about the horizontal axis. It may be noted that

to cross the symmetry axis, the 5R mechanism will have to go through a singular configuration.

To avoid singularity, the desired workspace is chosen on one side of the X axis and for a required

workspace, we can obtain the link lengths using the algorithm developed in this work. For the cases

discussed, the search-space was assumed to be bounded by X ∈ [−6, 6], Y ∈ [−6, 6] and having an

area of 144 unit2.

Example 1: Required workspace: Xd ∈ [2, 4], Yd ∈ [2, 4].

From the figures showing obtained workspaces, it is clearly seen that figure 8a includes most of the

area of the area of the design space. The optimum link lengths for this example are found to be

[1.00, 4.00, 1.00, 1.82, 2.17] length units.

Example 2: Required workspace: Xd ∈ [−4, 4], Yd ∈ [2, 4]

For this we undertook the optimization procedure once more with a relaxed boundary of Xs ∈
[−4.5, 4.5], Ys ∈ [1.5, 4.5]. The following results given in table 10 were obtained with the binding

constraints in table 5. It may be noticed that wanted workspace is symmetric about the Y axis

therefore, the choice of the coordinates for O1 at the origin is obvious. In case, required workspace

is not symmetric the coordinate of O1 can be set to the middle of range of X.

Case Design parameters Area

I [1, 1, 4.31, 2.68, 1] 8.55

II [2.24, 3.75, 1.04, 1.25, 2.70] 9.08

III [1, 3, 1, 1, 4] 7.85

IV [1, 4, 1, 1.82, 2.17] 10.62

Table 10: Results of the design problem

4.2 Example 2: Semi-regular Stewart platform manipulator

The Stewart platform manipulator is a six degrees-of-freedom platform type parallel manipulator

extensively studied by several researchers (see the review paper by Dasgupta and Mruthyunjaya [16]
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(a) SRSPM in the normal configuration (b) SRSPM in the crossed configuration

Figure 9: Two configurations of the SRSPM

and the references contained therein ). In this section, we attempt the optimization of a Stewart

platform in a special configuration known as the Semi Regular Stewart Platform Manipulator or

SRSPM, first proposed, analyzed and constructed by Fichter [51]. The design of the SRSPM for

a desired workspace was attempted by Chatterjee and Ghosal [52], where the authors have used a

predefined search path to search through the parameter space and attain an optimal result. Lou

et al. [33] attempted the optimization of an SRSPM by using fewer parameters and a controlled

random search (CRS) method to obtain the global optimum solution. We use the method presented

in this work to address the following questions:

• What are the optimum design parameters for a SRSPM for the largest workspace in a given

design space with joint constraints?

• How can one design SRSPM for a desired workspace?

• Which of the two configurations of SRSPM shown in figure 9 gives a larger workspace with

joint limits? Or, in other words, which of the two configurations is better in terms of kine-

matics and workspace?

4.2.1 Description of the manipulator

As shown in figure 10a, in a SRSPM the top and bottom platforms are described by two equilat-

eral triangles with the sides truncated before the vertices and forming an angle of α for the base

triangle and β for the top triangle. The ratio of the side lengths of the manipulator platform and

base triangles are given as Rab =
b

a
, where a is the side of the platform triangle and b is the side

of the base triangle. All 6 actuators for the manipulators are considered to be identical and have

unextended length of l0 and maximum possible extension of δl units. The SRSPM can be uniquely
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described the geometric parameters α, β, a, b, l0 and δl. In the optimization, we have used Rab

since normalization, by considering a = 1, does not change the geometry of the SRSPM and reduces

the number of variables by 1.

(a) Geometric description of the SRSPM (b) Schematic diagram of a leg of the SRSPM

Figure 10: Geometric description and schematic diagram of the SRSPM

In figure 10b, the base frame is denoted by {B0} and the top platform frame is denoted by

{P0}. From a given distance B0t of the platform center P from the base center B, the vector from

{B0} to any point Pi on the platform can be given as,

B0pi =
B0
P0

[R] P0pi +
B0 t (27)

From equation (27), the location of the ith spherical joint from the base can be given as:

B0Si =
B0 pi −B0 bi

4.2.2 Inverse kinematics of the SRSPM

The solution to the inverse kinematics problem of the manipulator is well known and can solved in

the following steps.

• Obtain input B0t and B0
P0

[R] from the random configuration generating subroutine.

• From the known geometry of the manipulator and figures 10a and 10b, obtain expressions

for P0pi,
B0bi and [R(Ẑ, αi)], or the orientation of the ith universal joint Ui with respect to

{B0}.

• The inverse kinematics equation are obtained as

[R(Ẑ, αi)]
T [(x, y, z)T −B0 bi] = li

 sin(ϕi) cos(ψi)
− sin(ψi)

cos(ϕi) cos(ψi)

 (28)
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Using equation (28), we can obtain the actuated joint values, i.e., li. The U joint variables, ϕi

and ψi, can also be solved from twelve constraints, 6 for the 6 S joints and 6 which ensures the

planarity of the top platform points (see also Appendix A). At this point, it may be noted that the

expressions for the quantities P0pi,
B0bi and [R(Ẑ, αi)] will be different for the normal and crossed

configurations of the manipulators and hence the constraints will also be different.

4.2.3 Formulation and results of the optimization problem

The non-convex nature of the optimization problem of a SRSPM for the maximum well-conditioned

workspace is known from literature (for example see the work by Chatterjee and Ghosal [52] and

Lou et al. [33]) and hence, we attempt to find a local optimum by starting from a reasonable

guess. The optimization problem for this case can be formulated as,

Minimize W (α, β,Rab, l0, δl) (29)

Subject to, a = 1

li + δli = 1.8 , ∀i = 1, 2, ...6
π
12 < α < π

4 & π
12 < β < π

4

0.5 < Rab < 1.0 & li > 0 & δli > 0

Out of the three angles (θi, ζi, ηi) in a S joint, the range of ηi, measured about the vector
−−→
UiSi in

figure 10b is typically 0 to 2π. We restrict the ranges of the other two angles for a more practical

design and the ranges are given in table 11. It may be noted that S joint values (θi and ξi) for

the crossed configuration of the SRSPM are generally higher than that of the normal configuration

because of the skewed arrangement of the legs. This was also noted by Fichter et al. [51] where the S

joints were replaced by gimbals which provide significantly higher range of motion than conventional

S joints.

Configuration ϕi ψi θi ζi

Normal
[
−π
3
,
π

3

] [
−π
3
,
π

3

] [
−π
4
,
π

4

] [
−π
4
,
π

4

]
Crossed

[
−π
3
,
π

3

] [
−π
3
,
π

3

] [
−π
4
,
π

4

] [
−π
4
,
π

4

]
Table 11: Un-actuated joint limits for SRSPM

In this example the starting guesses are the vectors given in equations (30) and (31) and the

search space was chosen as X ∈ [−2.5, 2.5], Y ∈ [−2.5, 2.5] and Z ∈ [1, 3] to capture the entire

workspace of the SRSPM with normalized dimensions.

(α, β,Rab, l0, δl) = {1.2, 0.8, 0.3, 1, 0.8} for normal configuration (30)

(α, β,Rab, l0, δl) = {0.8, 0.8, 0.36, 1.4, 0.4} for crossed configuration (31)

The results of the optimization problem (equation (29)) is shown in table 12 below.

Figure 11 shows the available workspaces for the SRSPM. In figure 11b a comparison of the

available workspaces of the SRSPM in normal configuration (indicated in gray) and crossed config-

uration (in yellow) is given. As shown in table 12, the workspace of the manipulator is significantly
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(a) Available workspace for the normal configuration
– outer box indicates search space

(b) Comparison between the available
workspaces for normal and crossed configura-
tions

(c) Workspace of the SRSPM in crossed con-
figuration is not continuous (Top view)

(d) Workspace of the SRSPM in normal con-
figuration is continuous

Figure 11: Workspaces of the optimum SRSPMs obtained for a given search space

Configuration Optimum design parameters Workspace volume (unit3)

Normal {0.60, 0.5, 0.75, 1.44, 0.35} 2.030

Crossed {0.76, 0.74, 0.726, 1.48 0.32 } 1.843

Table 12: Optimum design parameters for the SRSPM

less in crossed configuration than in the normal configuration. Additionally, from figure 11c one

can observe that the workspace of the SRSPM is not continuous and there are ‘holes’ inside the

well-conditioned workspace.

In equation (18) we have used an upper bound on the condition numbers, κ∗ to be 100. Though

the value 100 was arbitrarily chosen, similar results can be obtained for any chosen upper bound

κ∗. Figure 12 shows the obtained workspace as the upper bound is increased. It can be seen that

the chosen upper bound of 100 gives a conservative estimate and if the upper bound is increased

we get a larger workspace.

4.2.4 Sensitivity analysis and observations

The SRSPM has many more parameters when compared to the 5R example and the effect of

the geometric constraints on the workspace volume is more difficult to obtain. The values of the
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Figure 12: Dependence of well-conditioned workspace on chosen κ∗ for the SRSPM in normal
configuration

(a) Lagrange multipliers for the normal configuration at an optimum

(b) Lagrange multipliers for the crossed configuration at an optimum

Figure 13: Lagrange multipliers for the optimization problem at an optimum

Lagrange multipliers for the problem have been extracted and plotted in figure 13 and we can make

the following general observations.

• The values of Lagrange multipliers for the normal case are lesser than the crossed case by 4
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orders of magnitude. This indicates that the optimization problem for the normal case was

not much affected by the chosen constraints. However, the common theme is that the nature

of the Lagrange multipliers for each case are the same, i.e., the equality constraints have

negative Lagrange multipliers and the inequality constraints have positive valued multipliers.

• In each case the equality constraints, i.e., a = 1 and li+δli = 1.8 ∀i = 1, 2, ..., 6 bear a negative

valued Lagrange multiplier. This indicates the obvious result that the larger manipulator with

a larger actuator range will have a larger workspace.

• The Lagrange multiplier associated with the constraint Rab > 0.5 remained positive for both

the cases indicating that the constraint reduced the workspace volume value at the optimum.

This constraint was used to ensure that the top platform is not smaller than half of the base.

• The constraints li > 0 remained inactive for both of the problems. This is consistent with

the intuition that linear actuator should have a positive length. The constraint δli > 0

remained inactive for the normal configuration but had a high positive value for the crossed

configuration. We recall that the equality constraint on the extension of the linear actuator

is at most 80 % of the original length. Since at most of the feasible configurations of the

crossed manipulators, the linear actuator is slanted, the points at the lower level (about the

Z direction) of the search space were omitted since δli > 0 and used the particular un-actuated

length of the linear actuators. The high positive value of the δli > 0 constraint for the crossed

configuration of the manipulator is due to this reason.

• The constraints on the upper limits of α and β were inactive but the constraints α >
π

12
and β >

π

12
both had positive valued Lagrange multiplier. This finding suggests that a

triangular top platform (also known as the 6-3 configurations) gives a larger workspace for

both manipulator configurations. As documented in [51], Fichter has used a triangular top

platform to analyze the SRSPM.

4.2.5 Dimensional synthesis of a SRSPM for a desired workspace

In this section, we attempt the problem of designing an optimal Stewart platform manipulator for a

desired workspace by using the optimal dimensions we obtained (see table 12) in section 4.2.3. For

a arbitrarily desired well-conditioned workspace of 1.5 units along X, 2 units along Y and 0.4 units

along Z and a volume of 1.2 unit3, the search space is chosen as X ∈ [−2.5, 2.5], Y ∈ [−2.5, 2.5]

and Z ∈ [1, 3] to capture the entire workspace of the SRSPM. The parameters giving the maximum

workspace for both configurations are given in table 12. The histogram obtained for the optimal

SRPSM, using a Monte Carlo simulation, is shown in figure 14c. The histograms show that the

ranges in the normal configuration can be chosen as X ∈ [−0.5, 1], Y ∈ [−1, 1] and Z ∈ [1.8, 2.2].

Using the ranges, we run a separate Monte Carlo simulation and obtain the volume of the workspace

as 0.87 unit3 which is somewhat less than the desired workspace volume.

To obtain the desired larger volume, we observe from figure 14a that the workspace of the

synthesized Stewart platform manipulator is almost equally distributed around the Z axis (also
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observed by Masory and Wang [20]). To increase the volume, we can modify the equality constraints

involving a l0 + δl. From the sensitivity analysis in section 4.2.4, we recollect that the equality

constraints a = 1 and l0+ δli = 1.8, are associated with a negative Lagrange multiplier. Therefore,

by introducing a as a design variable with a suitable upper and lower bound (to ensure that the

optimization problem is bounded), a larger workspace may be obtained. To obtain the value of

a which gives the desired volume of 1.2 unit3, we relax the constraints a and l0 + δli to a = 1.5

and l0 + δli = 2.5 and perform the optimization again with the values obtained above as initial

guess. It was found that the desired workspace volume 1.2 unit3 can be achieved from a new

histogram where the ranges chosen are X ∈ [−0.5, 1], Y ∈ [−1, 1] and Z ∈ [2.0, 2.4]. This is shown

in figure 14a. The parameters of the Stewart platform manipulator, (α, β,Rab, l0, δl, a), to obtain

the desired workspace are (0.713, 0.708, 0.802, 1.72, 0.78, 1.5), respectively.

Figure 14b shows the orientation workspace of the optimal manipulator at the center of the

well-conditioned workspace shown in figure 14a. As shown in figure 10a, θ, ϕ and ψ are the Euler

angles about X,Y and Z axes indicating the orientation of the top platform P with respect to the

base B.

5 Conclusion

In this work we show that the Monte Carlo method is an efficient tool for finding the volume of the

workspace of a manipulator and it is computationally more efficient than other deterministic search

methods used in literature. In this work we have used a definition of the well-conditioned workspace

for the translational and angular motion of the end-effector of the manipulator. Through section 2

we have shown that Monte Carlo method is an efficient method to solve for the well-conditioned

workspace area and volumes of manipulators. In section 3, we have shown that we can use the

Monte Carlo method in conjunction with a traditional gradient based optimization method to

formulate the optimization problem for a parallel manipulator. In section 4 we have presented

demonstrative examples of optimization of parallel manipulators. The first example in section 4.1

compares analytical and numerical approach for the optimization of the 5R planar mechanism and

provided some mathematical insights into the dependence of the objective function on constraints.

In section 4.2 we have attempted a general optimal design problem of the well known semi-regular

Stewart platform manipulator (SRSPM). In both examples, we have attempted a design problem

with realistic constraints and demonstrated that the approach presented in this work can be used

by a designer to efficiently design an optimum parallel manipulator.

A Appendix A: Constraints for an SRSPM and definition of equiv-
alent Jacobian

The SRSPM is a six degree-of-freedom parallel manipulator. The six actuated joints are the pris-

matic joints in each leg and the six universal (U) and six spherical (S) joints are passive. As shown

in Ghosal [47], we can derive 12 constraint equations which can be used to solve the angles ϕi and

ψi (i = 1, ..., 6) in the U joints. The first six constraint equations are derived from the fact that
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(a) Total workspace of the SRSPM
(b) Orientation workspace of the SRSPM (de-
grees)

(c) Histogram of the total workspace of the SRSPM

Figure 14: Workspaces and histogram of the SRSPM in normal configuration

the distance between two consecutive S joint is fixed. We get

|B0pi −B0 pi+1|2 = |Si − Si+1|2 (32)

where Si and Si+1 are the position vector of the two consecutive spherical (S) joints from the chosen

origin. The second set of constraints ensure that a) the distance between two non-consecutive points

on the platform, for example S1 & S3, are also fixed, and b) the diagonal lines connecting two pair

of non-consecutive vertices, for example (S1 & S3) and (S1 & S4) are on the same plane, namely
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the plane of the top platform. These six constraints are given by

|B0p1 −B0 p3|2 = |S1 − S3|2
|B0p1 −B0 p4|2 = |S1 − S4|2
|B0p1 −B0 p5|2 = |S1 − S5|2

 (33)

(B0p1 −B0 p3)× (B0p1 −B0 p4) · (B0p1 −B0 p2) = 0
(B0p1 −B0 p4)× (B0p1 −B0 p5) · (B0p1 −B0 p3) = 0
(B0p1 −B0 p5)× (B0p1 −B0 p6) · (B0p1 −B0 p4) = 0

 (34)

In may be noted that all the above 12 equations are only functions of the translation at the six

actuated prismatic (P) joints variables denoted by l and the twelve (2 × 6) rotations at the passive

U joints denoted by γ.

The twelve constraints equations can be differentiated and partitioned according to terms as-

sociated with actuated and passive variables, l and γ, to obtain

[K(l, γ)]l̇+ [K∗(l, γ)]γ̇ = 0 (35)

It is easily seen that [K∗] is a square matrix of dimension 12× 12. Equation (35) can be solved for

γ̇, given det(K∗) ̸= 011, and we can obtain

γ̇ = −[K∗]−1[K]l̇ (36)

The position vector of the center of the platform in figure 10a is given by,

OAPOB
=

1

6

3∑
i=1

OABi (37)

and the orientation of the top platform with respect to the base can be written as

B0
P0

[R] =

[
OAB1 −OA B3

|OAB1 −OA B3|
Ŷ

(OAB1 −OA B5)× (OAB1 −OA B3)

|(OAB1 −OA B5)× (OAB1 −OA B3)|

]
(38)

where Ŷ is obtained by the cross product of the third and first column of the matrix in equation (38).

By differentiating the expressions for the position and orientation of the end-effector obtained

from equations (37) and (38) and partitioning the expression for actuated and passive joints, we

have,
B0VP0 = [JV ]l̇+ [J∗

V ]γ̇ (39)

B0ωP0 = [Jω]l̇+ [J∗
ω]γ̇ (40)

Using equation (36) in equations (39) and (40) we obtain

B0VP0 = ([JV ]− [J∗
V ][K

∗]−1[K])l̇ (41)

B0ωP0 = ([Jω]− [J∗
ω][K

∗]−1[K])l̇ (42)

The matrices multiplying l̇ are the equivalent Jacobian matrices for the linear and angular velocity

parts. These are given as

JV
eqv = (JV − J∗

V [K
∗]−1[K]) (43)

Jω
eqv = (Jω − J∗

ω[K
∗]−1[K]) (44)

The equivalent Jacobian matrices are used to obtain the κV and κω in section 3.

11In the simulation, it was ensured that det(K∗) ̸= 0 and the condition number of K∗ was ≤ 104 at all points
inside the obtained workspace.
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B Appendix B: Proof of non-convexity of the optimization prob-
lem for 5R mechanism

The general statement for the constrained optimization problem of 5 R manipulator may be given

as :

Min
{L}

A (L) (45)

Subject to, E1 : d+ l1 + l2 + l3 + l4 − LTotal = 0

Ie1 : l3 + l4 − d+ db < 0

where LTotal is the total length of all the links combined. The inequality constraint Ie1 was

chosen so that the point P is always on the right side or near O2 in figure 2 and the formula for

workspace in (equation (12)) is always valid. The problem is known to be feasible because it has

been successfully attempted numerically (see for example Huang [54]). In this appendix we show

that it is a non-convex problem.

The Lagrangian formulation of the problem with the constraints is given as,

L = A(L) + λE1 + µIe1 (46)

Following Boyd and Vandenberghe [55], we use the second-order condition for testing non convex-

ity. The condition states that the function L in equation (46) is strictly convex if the Hessian

[H (L )]i,j =
∂2L

∂Li∂Lj
of the function L is positive definite. For our case, the Hessian matrix

H (L ) turns out to be rank deficient and hence is not positive definite but at best positive semi-

definite. This is further validated by the negative determinant value for the second principal sub

matrix, or the first 2 × 2 sub matrix on top left in our case. For a simpler choice of objective

function as stated before, the matrix is still rank deficient. We present the findings in table 13.

The data for the design variable {L} has been used from [44] for the first two cases and from [54]

for the last case. The cause of rank deficiency is equivalent dependence of the objective function

{L} = [d, l1, l2, l3, l4] Cause of rank deficiency Form of A from eq. 12

{12, 13, 4.5, 4.5, 13} H (4, i)=H (5, i) Full

{12, 13, 4.5, 4.5, 13} H (2, i)=H (3, i) & H (4, i)=H (5, i) 1st 3 terms

{1.16, 1, 1, 1, 1} H (4, i)=H (5, i) Full

Table 13: Reason for rank deficiency of H

on two design variables, i.e., at a point P = {dP , lP1 , lP2 , lP3 , lP4 } in parametric space the gradient of

the objective function in equation (46) does not have unique components in each of the parameter

space directions. We have

∇L =
∂L

∂d
|
P
êd +

∂L

∂l1
|
P
êl1 +

∂L

∂l2
|
P
êl2 +

∂L

∂l3
|
P
(êl3 + êl4) (47)

From equation (47) it is clear that the 4th & the 5th columns of the Hessian will be the same and

hence the Hessian will be of lower rank.
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It was also seen that the objective function in equation (45) given by equation (12) is dependent

of the constraints in equation (45), which is not common for general optimization problems. How-

ever it is easy to see the dependence of the objective function with the constraints in this problem

because of the planar nature and simple geometry of the manipulator. The constraint-objective

function relationship is much difficult to visualize for a parallel manipulator with multi degree of

freedom, principally because the geometry is complex and the direct kinematics problem is hard to

solve.
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