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Abstract. Cable-driven continuum robots find applications in bio-inspired
robotics and medical robotics. Kinematics of cable-driven continuum
robots, also called elephant-trunk robots, with straight cable routing
is well studied in the literature. However, there are very few studies on
the kinematics of continuum robots with general cable routing, despite
its certain advantages. In this paper, an optimization based strategy is
proposed to estimate the forward kinematics of a continuum robot with
arbitrary and general cable routing. For a given displacement of the ca-
bles and cable routing, the pose of a continuum robot is obtained. Using
experiments conducted on a cable driven robot, it is demonstrated that
the optimization based model provides a good estimate of the forward
kinematics with maximum error less than 5% of maximum tip deflection.
The developed model is particularly useful since it may be possible to
synthesize robots that can be deformed to desired shapes using the same
theoretical framework.
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1 Introduction

Continuum robots consist of a set of flexible links whose movement is character-
ized by bending the links as opposed to rigid linked robots where the links are
actuated at the joints. These robots deform and take shapes of smooth curves
during actuation and mimic many biological systems [1]. This feature, along
with the capacity to make them miniature and lightweight, has made continuum
robots a topic of popular interest in robotics research (see [2] and [3]). One of
the earliest continuum robots available in literature is the cable-driven elephant
trunk robot (Rice/Clemson robot) shown in [4] (refer Fig. 1). The main part of
the robot is a flexible backbone connected by a series of universal joints. On this
backbone, a series of spacers is attached with equal spacing between them. The
spacer consists of holes through which cables(tendons) can be routed from the
base of the robot to the tip of the robot. The cables are fastened only to the
topmost spacer of the robot so that when they are pulled from the base-end,
the entire robot deforms and can take different shapes. An analysis of workspace
of the robot can be found in [5]. A serial alignment of such robots will form a
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multi-segmented continuum robot with each robot forming a segment that can
be independently actuated.

Fig. 1: Elephant trunk robot [4] Fig. 2: Elephant trunk robot configuration

In most robots, four cables are routed parallel to the backbone, with two
opposing pairs of cables along the periphery of backbone, equispaced from each
other (see Fig. 2). A detailed analytical expression for the kinematics of such
robot is derived based on differential geometry by Gravagne and Walker [4].
The pose of actuated robot can be theoretically calculated by knowing the fi-
nal lengths of the actuated cables, and this constitutes the forward kinematics
of the robot. In reference [7], the authors have shown a formal proof that the
forward kinematics can also be solved by posing the kinematics problem as a
minimization problem, applied on a series of discretized segments of the robot
– each discretised segment being a four-bar mechanism. The method is partic-
ularly interesting since it can be shown that the forward kinematics of a robot
with general cable routing can also be estimated using the same optimization
framework and this is the content of this paper. The advantages in using a gen-
erally routed cable driven robot can be seen from the example of helically routed
robot discussed in [6]. As opposed to the mathematical framework used in [8],
this approach is simpler to implement and is not restricted to routings that can
be expressed analytically.

In section 2, the discretization strategy and minimization procedure is ex-
plained. Section 3 details the specifications of the robot used and the experiment
set-up. The section also compares the theoretically obtained forward kinematic
solutions to the experimental results which demonstrates that the theoretical
model forms a good estimate for the forward kinematics. Conclusions are pre-
sented in section 4.
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2 Forward kinematics of generally routed cable-driven
continuum robot

For cables routed parallel to the backbone, it is theoretically proven in [4] that
the shape of an actuated robot will be that of an arc of a circle. For the case
of general cable routing, we use one cable (as mentioned in [8]) which is routed
through holes in the spacer disks that are not aligned directly above (or below)
each other so that the initial profile of the cable will not be same as that of the
backbone (see Fig. 3). In this section, we discuss the discretization strategy as
well as the application of minimization method to such a system.

Fig. 3: Continuum robot with cable routed in an unorthodox path

In this formulation, we assume the robot as a set of serially connected four-
bar linkages. Fig. 4 shows the actuated profile of a robot which has straight
cable routing and five sets of four-bar linkages super-imposed on the profile.
Fig. 5 shows one such linkage in the undeformed and deformed position. For one
segment of the robot, the vertices of linkage are defined as follows:

1. The point where the ith spacer disk is connected to the backbone. This
co-ordinate is termed Xi

0

2. The centre of the hole in the ith spacer disk where the cable is routed. This
co-ordinate is termed Xi

a.
3. The centre of the hole in the subsequent spacer disk where the cable is

routed. This co-ordinate is termed Xi+1
a .

4. The point where the subsequent spacer disk is connected to the backbone.
This co-ordinate is termed Xi+1

0 .

With reference to Fig. 5, for the four-bar linkage, the line segments a) Xi
0 Xi

a

forms the fixed link, b)Xi
a Xi+1

a forms the first crank, c) Xi+1
a i Xi+1

0 forms the

coupler link and d) Xi+1
0 Xi

0 forms the second crank. The distances ‖Xi
0 −Xi

a‖
and ‖Xi+1

0 −Xi+1
a ‖ are fixed and are the distances between backbone and holes.

Mostly, the holes for routing cables are equidistant from the backbone and hence,
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Fig. 4: Discretization of robot(Red
line segments show links of four-
bar mechanisms)
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Fig. 5: Nomenclature for four-bar linkage

l1 = l3 = a, a constant. The distance ‖Xi+1
0 − Xi

0‖ is denoted by l0, which is
the total length of backbone L0 divided by the total number of segments n in
the robot. The distance ‖Xi+1

a − Xi
a‖ is the length of cable in each segment,

l2 = la, which could be different for each segments depending on the choice of
cable routing. After actuation, the quantities Xi

(·) change to xi
(·) as shown in

Fig. 5.

For straight cable routing with two cables actuated together, there will be
two four-bar linkages for each segment, where both the linkages share the same
second crank (see Fig. 6 and Fig. 7). It has been proved in [7] that the resulting
profile of the robot (backbone) upon actuation of the cables is the one which
simultaneously minimizes the difference in coupler angles of the adjoined four-bar
linkages from its original position. The same can be expressed mathematically
as follows:

Fig. 6: Discretization of robot in
3D
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Fig. 7: Nomenclature of segment in 3D
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arg min
xi+1
b ,xi+1

a ,xi+1
0

[
arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))]2
+ (1)

[
arccos

((
Xi

0 −Xi
b

‖Xi
0 −Xi

b‖

)
·

(
xi+1
0 − xi+1

b

‖xi+1
0 − xi+1

b ‖

))]2
Subject to:

‖xi+1
0 −Xi

0‖ = l0 (2)

‖xi+1
a −Xi

a‖ = la

‖xi+1
b −Xi

b‖ = lb

‖xi+1
0 − xi+1

a ‖ = a

‖xi+1
0 − xi+1

b ‖ = a

arccos
((

xi
0−x

i
a

‖xi
0−xi

a‖

)
·
(

xi
0−x

i
b

‖xi
0−xi

b‖

))
− arccos

((
Xi

0−X
i
a

‖Xi
0−Xi

a‖

)
·
(

Xi
0−X

i
b

‖Xi
0−Xi

b‖

))
= 0

Given data: Xi
0,X

i+1
0 ,Xi

a,X
i+1
a ,Xi

b,X
i+1
b , l0, la, lb, a

where the subscript ‘b’ represents the quantities for the second four-bar linkage.
The first five equality constraints ensures that the given dimensions are main-

tained, while the last constraint ensures that the space between the cables is
maintained on the spacer disk. The solution procedure consists of solving the
pose of the base segment and progressively moving till the free end of the robot.
The resulting profile of the robot is a curve in 3D space.

For the case where single cable is routed through a non-linear path, a 3D
profile is obtained without the use of an additional cable. This is because now
the four-bar linkage in a discretized segment is not a planar mechanism unlike
in a straight routed case. Hence, we assume the adjoining linkage b from the
above formulation as a virtual linkage shown in Fig. 8. With reference to equa-
tion (1), we assume that the 3-dimensional deformation of robot is characterized
by the minimization of coupler angles of those couplers which are mutually per-
pendicular to each other–as is the case for straightly-routed robots. Taking this
reasoning into account, we modify the above equations as follows:

arg min
xi+1
0 ,xi+1

a

[
arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))]2
+ (3)

[
arccos

((
Xi

0 − X̄i
b

‖Xi
0 − X̄i

b‖

)
·

(
xi+1
0 − xi+1

b

‖xi+1
0 − xi+1

b ‖

))]2
Subject to:

‖xi+1
0 −Xi

0‖ = l0 (4)

‖xi+1
a −Xi

a‖ = la

‖xi+1
0 − xi+1

a ‖ = a
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Fig. 8: Discretization of gener-
ally routed robot(Four-bar linkage
shown in red)
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Fig. 9: Cable progresses at φi angles
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where the co-ordinate Xi+1
b is chosen to be that point in the spacer disk which

is perpendicular to the coupler link Xi+1
a Xi+1

0 ,

X̄i
b = a

(
Xi

a −Xi
0

)
×
(
Xi+1

0 −Xi
0

)
‖
(
Xi

a −Xi
0

)
×
(
Xi+1

0 −Xi
0

)
‖

(5)

It may be noted that the same formulation is valid for a robot with linear routing
as well.

The algorithm to obtain the profile of the cable and the backbone is as follows:

1. A co-ordinate system O0 is defined at the centre of the base of the robot
with origin as the centre of the first(base) spacer disk. Z-axis is chosen along
the axis of the robot. X-axis in the direction of the hole in the base disk
where the cable is routed and a Y -axis is that which forms a right-handed
co-ordinate system.

2. Solve the equation (3) for the ith segment (i = 1 for the first segment) and
obtain the values of xi+1

a and xi+1
0

3. Find î =
xi+1
a − xi+1

0

‖xi+1
a − xi+1

0 ‖
, k̂ =

xi+1
0 −Xi

0

‖xi+1
0 −Xi

0‖
, ĵ = k̂ × î and the transforma-

tion to the co-ordinate system Oi using the matrix

T =

[
î ĵ k̂ xi+1

0

0 0 0 1

]
4. Assign xi+1

0 → Xi
0,x

i+1
a → Xi

a,
[(

Xi+1
0

)T
, 1
]T

= T [0, 0, l0, 1]
T

and[(
Xi+1

a

)T
, 1
]T

= T [a cosφi, a sinφi, l0, 1]
T

, where φi is the angle at which

the cable is progressed in each segment (see Fig. 9).
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5. Repeat steps 2 to 4 till i = 1, 2, . . . , n

In the following section, we present numerical and experimental results with
prototype robots which show that the above numerical solutions are a good
estimate for the profile of a physically actuated continuum robot.

3 Numerical and experimental results

Unlike the theory for straight cable routing, there has not been many studies
regarding the kinematics of robot with general cable routing. In [8], the authors
used Cosserat rod theory and solved the statics of a generally routed cable
driven robot. Since their procedure is intended mainly to study the statics of
the robot, the formulation depends heavily on the material properties of the
constituent components as well as the applied forces. Due to the unavailability
of a kinematics formulation for generally routed robot, a formal comparison is
not possible at present and, in this paper, we compare the theoretical results
with the results obtained from experiments conducted on a robot prototype.

To this end, we used a 3D printed robot prototype made of Verowhite resin.
The robot is 182 mm long with 10 spacer disks of 2 mm each attached at equal
spacing on a backbone of diameter 1.5 mm. This fixes the length l0 as 20 mm.
The disks have 12 holes of 1.3 mm diameter arranged in a the periphery of a circle
with 8 mm radius. Hence, we have a = 8 mm for this robot. For the cable, we
used nylon cords of diameter 0.5 mm and is attached to the topmost spacer. The
deformation of the robot is captured using a camera, and the profile obtained
from theoretical formulation is super-imposed on the images for comparison. For
all the experiments, we pull the cable by a certain amount, and assume that the
reduction of lengths of each cable segment is proportional. i.e., if the cable is
pulled by δ mm, we assume that the length lia for the ith segment changes as

lia → lia

(
1− δ

La

)
where La is the initial length of the cable in the robot.

The optimization problem was solved using fmincon routine in MATLAB R©

and takes about 15 seconds in an Intel processor at 2.00 GHz and 8 GB RAM.
For validation, we used three cable routings: a) φi = 30◦, i = 1, 2, . . . , n, b)
φi = 60◦, i = 1, 2, . . . , n and φ = {30◦, 30◦, 30◦, 30◦, 0◦,−30◦,−30◦,−30◦,−30◦}.
Figures 10, 11 and 12 show the initial configurations as well as the profiles after
actuation of the robot. The green markers in the figures point to the co-ordinates
x0 and the red markers depict xa where x0 and xa denote the co-ordinates of
the points on the backbone and the cables, respectively. The cable profile (dark
solid line), the backbone and the disks for the three cases are also shown in
figures 10, 11 and 12. It can be seen that the numerically computed points
(green and red markers) are very close to the experimental results obtained with
the hardware.

It may be noted that the theoretical formulation is subject to errors due to
factors such as:

1. Assumption that the lengths of cable are proportionally scaled during actu-
ation,
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Fig. 10: Initial and actuated configurations of a continuum robot with φi = 30◦, i =
1, 2, .., 9

Fig. 11: Initial and actuated configurations of a continuum robot with φi = 60◦, i =
1, 2, .., 9
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Fig. 12: Initial and actuated configurations of a continuum robot with φ =
{30◦, 30◦, 30◦, 30◦, 0◦,−30◦,−30◦,−30◦,−30◦}

2. Bending/deflection of backbone, and
3. Clearance between the cable and the walls of hole.

We can see that in spite of these errors, the optimization based approach
gives a very good estimate of the profile of the actuated robot with a maximum
error of 4 mm in all cases – this is less than 5% of maximum deflection at the
tip.

4 Conclusions

In this paper, we have demonstrated that the profile of a cable-driven continuum
robot with the cable routed in a general, not necessarily straight, path can be
estimated using an optimization based method. In this method, the robot is
first assumed to be a series of connected four-bar linkages, and the pose of a
segment of the actuated robot is assumed to be the final configuration of the
four-bar mechanism. The key idea is that minimization of the change of angle
made by the coupler link from its initial value gives the pose of actuated segment.
By iteratively proceeding from the base segment to the segment at the tip of
the robot, the complete profile is obtained. From experiments conducted on a
continuum robot with flexible backbone and equally spaced disks, it is shown
that the proposed method gives a good estimate of the forward kinematics of a
generally-routed cable driven continuum robot.

From the formulation, we can see that the inverse kinematics problem– find-
ing the route of the cable given a desired final profile – may be achieved from the
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same formulation only by changing the optimization variables. The inverse prob-
lem will be particularly interesting since it may help to synthesize mechanisms
capable of deforming to a desired shape. This work is continuing.
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