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Abstract
This paper deals with the design, development, modeling and
experimental validation of a prototype endoscopic attach-
ment that can be actuated independently by soft actuators
to position an endoscopic catheter tip to a desired location.
The soft actuators are miniaturized pneumatic artificial mus-
cles (MPAMs) and by applying 137 kPa–827 kPa pressure
to one or more MPAMs, the tip of the endoscopic catheter
can be positioned in an approximately hemispherical region
of 45 mm radius. An optimization-based forward kinematic
model to predict the profile of the actuated end-effector is
developed. Experiments conducted on the prototype show
that the kinematics model can predict the deformation pro-
file of the end-effector with a maximum error of 2 mm. An
inverse kinematics model to estimate the pressure required in
the MPAMs to position the tip of the catheter at a specified
point is also developed. The pressures in the MPAMs are
controlled using an ATmel ATMega 2560 micro-controller
with the inputs generated with a thumb-stick to show that
real-time actuation is possible. Finally, ex-vivo experiments
were conducted to show that the developed prototype end-
effector can be successfully used to independently actuate
endoscopic catheters.

1 Introduction
An endoscope is a flexible tube which is inserted into a

patient’s gastrointestinal (GI) tract from the mouth with the
primary objective of real-time inspection and diagnosis. The
typical endoscope is approximately 1.5 m long and about 12
mm in diameter and once in the desired region of the GI tract,
the distal end which is inside the body can be rotated by the
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clinician/surgeon about two axis (using two rotary knobs) to
image the region of the GI tract. To image the region, at
the distal end there is a camera with an illumination system.
There are also openings for pumping air and water to remove
obstacles such as food during the motion of the endoscope
along the GI tract. Most of the modern endoscopes are also
equipped with one or two channels through which medical
instruments (catheters) can be pushed by a surgeon, from the
holding (proximal) end, till its tool tip protrudes from the
distal end of the endoscope. Although the endoscope and the
camera optics can be moved in two directions, endoscopes
in general do not have a provision to actuate the catheter in-
dependent of the camera. A few automated endoscopic plat-
forms have the ability to actuate the inserted catheter with
end-effector (such as a gripper) for performing surgery [1,2].
Positioning of the end-effector is typically achieved using a
cable driven continuum robot [3, 4]. Though it is possible to
achieve precise control using cable actuation ( [4, 5]), tissue
damages or perforation could occur, if the end-effector is not
properly manipulated. This is because the device becomes
a stiff structure in the actuation plane when deployed [6].
Hence, there has been considerable focus in developing de-
vices which are soft and flexible for applications involving
human interactions [7–9].

Soft actuators such as pneumatic artificial muscles
(PAMs), also called McKibben actuators, are more suit-
able for such applications since the actuators are compli-
ant/flexible even in its actuated state and the perforation of
tissues due to incorrect actuation could be avoided [10]. The
first PAM was invented by Gaylord [11] and consisted of an
inflatable bladder braided on the lateral outer surface with
a mesh of flexible but inextensible fibers. One end of the
PAM is sealed and air is pumped into the bladder from the
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other end. If the braiding angle is less than 54.7◦, the blad-
der contracts along its length [12] and can also apply a force.
This contraction behavior is similar to muscles thus giving
rise to the term “artificial muscles”. For a while PAMs and
miniaturized versions of PAMs (MPAMs) were not used ex-
tensively in robotics possibly due to their inherent nonlinear
force-displacement characteristics and the resultant difficulty
in control and, more likely, due to easy availability of very
good electric motors. In the recent past, PAMs and MPAMs
are being suggested for medical robotics since they have high
load carrying capacity, their stiffness can be controlled by
the internal pressure, have low weight, and are less expen-
sive to manufacture (see also [13–18]). Due to these rea-
sons, they also perform better when compared to other soft
actuators such as shape memory alloys(SMA), electro-active
polymers, dielectric elastomers etc. [19–21]. The advance-
ment in control strategies have made these actuators popular
in bio-inspired and medical robotics (see [19, 22–28]).

In this work, we present the design and analysis of an
MPAM actuated end-effector, which can independently de-
flect an endoscopic catheter up to 25 mm in different di-
rections upon application of pressurized air ranging from
137 kPa–827 kPa. The proposed design of the end-effector
is detailed in section 2. A prototype about 50 mm long
and 8 mm in diameter has been fabricated. The MPAMs
used in the design is characterized in section 3 where we
also present an improved mathematical model for predict-
ing pressure-deformation relationship in MPAMs. In sec-
tion 4, an optimization-based forward kinematics model of
the end-effector, to predict the profile of the actuated end-
effector, is derived. An inverse-kinematics model to estimate
the pressure required to position the catheter at a particular
point in the end-effector workspace is detailed in section 5.
A method to actuate the end-effector in real-time by inte-
grating the same with a thumb-stick is also discussed in this
section. In section 5.3, results from experiments conducted
using end-effector are presented and discussed. Finally, con-
clusions of the work are presented in section 6.

2 Design of end-effector

Fig. 1: End-effector prototype and MPAM assembly

As mentioned earlier, at the free end of an actual en-
doscope, there would be a camera together with a lighting
system, openings for spraying water and air and a channel
through which an end-effector can be pushed by the surgeon.
In this work, we focus on the end-effector assembly with en-
doscopic tool/catheter attached to the tip which can be de-
flected independent of the camera assembly. The conceptual
design of the end-effector assembly was originally presented
in [29].

Fig. 1 shows the fabricated end-effector, together with
the arrangement of the three MPAMs and the fabricated
MPAM. Considering the size of an endoscope, the end-
effector length is chosen to be 50 mm and the outer diameter
as 8 mm – to accommodate other accessories at the tip of the
endoscope. As shown in the bottom left inset, the fabricated
MPAM is about 45 mm long and 1.2 mm outer diameter. The
inner tube is made of platinum cured silicone used in medi-
cal applications. We used 30 strands of nylon fibers to braid
the outer surface of the tube with each strand 50 micrometers
in diameter. As shown in the inset CAD model, it consists of
two concentric helical springs of 8 mm and 3 mm diameter
with 0.5 mm thickness. The three MPAMs are placed paral-
lel to the axis of the springs in the space between the inner
and outer springs. The three MPAMs are placed approxi-
mately 120 degrees apart and are capped at the ends along
with the springs using holders – the outer springs need to be
covered with a bio-compatible flexible layer so that insides
will not be exposed to GI tract fluids in an actual device.
The MPAMs can be energized using pressurized air applied
through tubes connected to a reservoir. The inner spring acts
as a channel for passing the catheter. It may be noted that
most of the commonly used catheters have a design where
the tool at the tip is actuated by a set of cables which run
through a closely wound coil and protective sheath. If the
working end of the catheter/instrument is fixed at the tip of
end-effector, leaving the inner spring of end-effector to act
as a conduit for actuation cables, the diameter of the inner
spring, and consequently the end-effector diameter can be
reduced to about 6 mm. Both the springs have low axial as
well as transverse stiffness with the axial stiffness of inner
spring slightly higher compared to the outer spring. This en-
ables the tip of inner spring to act as a fulcrum whenever the
MPAM contracts, facilitating its deflection. Due to the ar-
rangement and contraction in the MPAMs, by actuating two
MPAMs at a time, the tip of end-effector can be positioned
in a section of a hemisphere of radius 45 mm.

Fig. 2 shows the hardware components used to actu-
ate an MPAM. A pneumatic compressor of maximum output
pressure 1034 kPa (150 psi) is connected to a 1 liter air reser-
voir which is used to deliver high pressure air to the MPAM.
A pressure regulating circuit operates the compressor when
the value of pressure in reservoir falls below certain threshold
thereby maintaining availability of 827 kPa (120 psi) pres-
sure at all times. The volume of air in the MPAM is about
30 mm3 and this small volume is not expected to result in
safety issue in case of leakage. In addition, the flow con-
trol valve limits the volume flow rate of air into the MPAM
to avoid sudden bleeding of compressed air from the reser-

JMR-19-1015 Ghosal 2



Fig. 2: Experimental set-up for applying pressure to
MPAMs. Six solenoid valves are used to control pressure
in three MPAMs

voir to the MPAM. Two proportional valves are used to con-
trol pressure inside an air muscle – one for pressurizing the
MPAM and the other for bleeding. A Honeywell pressure
transducer (with range of 0 to 1034 kPa) is connected in se-
ries with MPAM to measure the inner pressure. An ATmel
ATMega2560 micro-controller board interfaced with MAT-
LAB [30] controls the proportional valves through a current
driver circuit to maintain desired value of pressure inside the
MPAM. We used a simple PID controller (see [14] for de-
tails) to control the pressure inside MPAMs. To measure the
tip displacement of a single MPAM and for the entire end-
effector, high resolution cameras and image processing were
used. The maximum error due to the image processing was
found to be about 0.2 mm.

3 Mathematical modeling of MPAM
In a recent work [20], the authors have presented a de-

tailed review of existing mathematical models for MPAMs
which itself is an update on the well-known work of
Tondu [31]. They have also presented a new mathematical
model where the error between the experimental data and the
model prediction is less than 7% and the model can handle
changes in physical parameters of the actuator with reliable
consistency. In this section, for the sake of completeness,
we present some of the main mathematical models existing
in literature and the improved model presented in [20]. We
start with some experimental results obtained with the fabri-
cated MPAM.

Figure 3 shows the end-point deflection versus pressure
for a single MPAM. The data is obtained from at least 5 ex-
periments and the mean and the error bars are as shown. We
can observe that the tube initially elongates instead of con-
tracting with application of pressure. From detailed observa-
tion, it was found that this was due to the initial gap between
the braid and the tube in the fabrication process and as a re-
sult, the tube expands till it comes in contact with the sheath
radially. Once the tube is in contact with the sheath, increase
of pressure results in contraction and the maximum contrac-
tion was about 20% of the length of the MPAM. Although
not shown in the figure, hysteresis was observed. However,
the amount of hysteresis was within the error bar and hence

we use the mean value between the loading and unloading
curves.

Fig. 3: Deformation phases of MPAM (inset – elongation
part zoomed)

One of the earliest attempts in modeling McKibben ac-
tuators was made by Schulte [12]. This model was improved
upon by considering other physical effects such as friction,
material properties, non-uniform shape of cylinder, thermal
expansion effect as well as various energy losses [32–34].
When comparing the characteristics of the fabricated MPAM
with the deformation profile obtained from models available
in the literature, it has been found that most of the models
are inaccurate in predicting the deformation of the MPAM.
A few models which give good correlation between exper-
imental and theoretical results for one set of initial param-
eters often generate large errors with changes in one of the
parameters (such as initial length or angle of winding) while
keeping all the other parameters constant. This is because
the models available in the literature are primarily for regu-
lar sized PAMs (of diameters up to a few centimeters) and
some of the assumptions made in the models may not be ap-
plicable to miniaturized PAMs.

3.1 Improved mathematical model for MPAM
Fig. 4 shows the schematic of MPAM with the nomen-

clature used in modeling the MPAM in this work. The sym-
bols ro, ri and lo denote the outer radius, inner radius and
length of inner silicone tube, respectively. The symbols θ0
and θ denote the angle of winding of MPAM before and af-
ter deformation, ûz and ûr represent axial and radial displace-
ments of braided sleeve while uz and ur represent axial and
radial displacements of silicone tube. The constant b repre-
sents the length of a single braid strand, N denotes the num-
ber of windings of braid and Pi is the input pressure. The
applied axial load is denoted by F and since the end-effector
is assumed to be operating in slow speeds, only static analy-
sis is considered.
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Fig. 4: MPAM nomenclature

As discussed in detail in [20], the model assumes the
inner bladder as a linear thick elastic cylinder subjected to
inflation and the displacement can be written as

ur = c1r+
c2

r
, uz = c3z+ c4 (1)

where ur and uz are the radial and axial displacements, re-
spectively [35]. The constants ci, i = 1,2,3,4 are given by

c1 =
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[
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]
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− Pir2

i

r2
o− r2

i
+

Por2
o

r2
o− r2

i
+Ps

Λ1 +Λ2

Λ1

]
c4 = 0 (2)

where the quantities Pi, Po, and Ps are the pressure applied
on the inner surface, outer surface and the axial surface of
the cylinder, respectively and Λ1 and Λ2 are the Lame’s con-
stants. Upon applying pressure, the cylinder expands in the
axial as well as radial direction. However, for the MPAM,
this deformation is restricted by the constraints imposed by
the braided sheath. The basic modeling problem is to iden-
tify the pressure acting on the outer surface of the tube by the
braided sleeve.

As seen in experiments, the tube initially expands due to
the gap between the tube and the braid. The critical pressure
up to which the tube elongates can be calculated by equating
the radius of the braided sheath to the radius of the tube at
the contact point:

ro +ur|ro= ro +δ+ ûr (3)

where δ is the initial gap and ûr is the radial displacement
of the sheath – which can be expressed in terms of the braid
parameters b, N and θ0. Also, considering that the axial dis-
placement of the tube and the sheath are always same, we
can expand the above equation to the form:

c1ro+
c2

ro
= δ+(ro +δ)

{
1

sinθ0

√
1− cos2 θ0 (1+ c3)

2−1
}

(4)
which is a function of the input pressure Pi. Equa-
tion (4) can be solved numerically to get the crit-
ical pressure Pcritical

i below which the MPAM expands(
Po = 0,Ps = Pi

r2
i

r2
o− r2

i
+

F
πr2

i

)
. Above this critical pres-

sure, the tube comes in contact with the sheath and both com-
ponents displace radially as well as axially by equal amounts,
i.e.,

c1 +
c2

r2
o
=

(
sinθ

sinθ0
−1
)
, c3 =

(
cosθ

cosθ0
−1
)

(5)

where the expressions on the right hand side of the equations
come from the kinematics of the braid [12].

For the contraction phase, the pressure applied on the
outer surface of tube can be calculated by considering the
static characteristics of the braided sheath. From the braid
statics, we can derive the radial force acting on the outer sur-
face of the tube as [20]

Fr =

(
FemÂnylEnyl

mÂnylEnyl + cosθ0AsilEsil

)
l0

ro +δ
tanθ tanθ0 (6)

Here, Fe = F + FPi + Fu where FPi is the force component
due to the applied pressure acting on the side walls and Fu
are the unaccounted forces such as static friction and axial
force component from conical ends etc., which are necessary
to maintain the static equilibrium of MPAM. In the above
equation Esil and Enyl are the elasticity moduli of silicone
and nylon, respectively, Asil and Ânyl are the cross-sectional
area of silicone tube and a single strand of braid, respectively
and m is the number of strands of nylon threads used in the
braided sheath.

The quantity Fr is divided by the surface area of contact
between the braid and the tube so as to get the outer surface
pressure on the cylinder. However, the contact surface area
between the sheath and the tube is difficult to measure or
to estimate analytically [33, 36] because of the small surface
area. We assume that the contact area of braid on surface of
tube is same as the contact area between the braid strands at
braid cross-over points (refer Fig. 5) and the contact area, in
terms of deformed braid angle, is as derived in [36]. It is also
observed that at the either ends of the MPAM, the actuator
deforms in the form of a conical frustum instead of a perfect
cylinder. Based on experimental observations, a full contact
is assumed at the surface of the frustums. Considering these
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Fig. 5: Contact surface area – assumed to be same as area at
the cross-over points

two assumptions, we can write the contact surface area as

Scontact =
sin2

θmin cos2 θmin

sin2
θcos2 θ

[2πr (l0−2φ)(1+ c3)]

+2π(ro +δ+ r)φ(1+ c3) (7)

where θmin =
1
2

sin−1
(

rnm
πr0

)
, rn denoting the half the di-

ameter of a single strand of braid, and φ is the length of the
conical frustum which is measured experimentally.

From the contact surface area and the radial force, we
get the contact pressure Po = Fr/Scontact. The six equations in
(2) and (5) have six unknown quantities viz., c1, c2, c3, c4,θ
and Fu and the unknowns can be solved numerically so as to
find the final deformation of the MPAM.

3.2 Comparison of numerical and experimental results
Free contractions of MPAM are calculated numerically

using fsolve routine in MATLAB and plotted alongside
measured values for a pressure range from 0 to 827 kPa (120
psi). Initial model by Schulte [12] as well as the model by
Hocking [37] are also plotted for comparison (see [20] for
comparison with other models). Fig. 6 shows the plot for
deflection of 40 mm long MPAM where it can be seen that
theoretical results match experimental values very well. The
Young’s modulus of the material is obtained as 0.35 MPa by
fitting the deformation data on models by Kothera and Hock-
ing. The computation time was approximately 0.04 seconds
on an Intel Pentium PC at 2.0 GHz.

For an MPAM of length 60 mm, keeping all the other
parameters same, the experimental and computed results are
shown in Fig. 7. For both the lengths, the deformation curve
is well within the error bounds of measured values. The
RMS errors calculated from mean values are 4.6% and 2% of
maximum contraction for 40 mm and 60 mm MPAM respec-
tively. The applied force vs axial displacement for a 45 mm
MPAM from fully contracted position at 758 kPa (110 psi)
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Fig. 6: Comparison for 40 mm MPAM. α = 36◦, ri = 0.25
mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E =
0.35 MPa, ν = 0.499.
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Fig. 7: Comparison for 60 mm MPAM. α = 36◦, ri = 0.25
mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E =
0.35 MPa, ν = 0.499.

is plotted in Fig. 8. The stiffness of actuated MPAM pre-
dicted by the model (0.94 N/mm) is higher than the actual
stiffness (0.63 N/mm) by about 49%. This is because when
the applied end load increases, it is experimentally observed
that the value of φ increases due to the extra stretching of the
MPAM. An increase in length of the frustum proportional to
the applied end-load (φ̂ = F/κ where κ is a constant) shows
that the the force characteristics can be better predicted by
the model. It may be mentioned that even though Hock-
ing’s model shows consistency in change in initial lengths,
the model under-predicts the stiffness of the MPAM by more
than a factor of 10 since the material properties of the braid
is not considered in their formulation.

Through these characterization experiments, we have
seen that the developed model is robust, and it can predict
the deformation of MPAMs consistently for any value of ini-
tial length. After successfully characterizing the MPAMs,
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Fig. 9: Tendon driven robot analogy – dotted and filled cir-
cles are initial and final position

we employ three of them to actuate the end-effector. The
pressure-deformation characteristics shown in this section
are utilized in developing the kinematics model of the end-
effector.

4 Forward kinematics of end-effector
In the developed end-effector, shown in Fig. 1, there

are no guiding disks as in a tendon driven continuum robot.
Hence the kinematic analysis procedure used for tendon
driven robots (see, for example, [3, 38–40]) cannot be used
for the end-effector actuated with MPAMs. Due to the ab-
sence of the guiding disks, the MPAMs can drift sideways
once the end-effector is deflected as shown in Fig. 9 and, ad-
ditionally, the radial extension of the tube is not restricted.

To develop a forward kinematic model in the absence
of guiding disks, we assume that when the end-effector
is deflected, the 3 MPAMs move minimum distance so
as to achieve an equilibrium position. Fig. 10 shows the
backbone-actuator assembly along an axial section of end-
effector (section AA from Fig. 9). The entire length of end-
effector is discretized into n segments similar to the pseudo-
rigid body models given in [41, 42]. Each segment is a
quadrilateral corresponding to a 4-bar linkage, with the fol-
lowing vertices in the unactuated state: 1) the point of contact
between one loop of the outer spring and the MPAM 2) the
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b

actuator

inner spring

a

δl0

δla

outer spring

Fig. 10: Backbone-actuator profile

point of contact between the adjacent loop of the outer spring
and the MPAM 3) the point in the backbone(axis of the end-
effector) closest to vertex (2) and parallel to the ground and
3) the point in the backbone closest to vertex (1) and paral-
lel to the ground. Vertices 1 and 2 form the ends of the first
crank of the 4-bar linkage. Vertices 2-3 as well as the ver-
tices 1-4 generate the coupler as well as the fixed links of the
linkage respectively. Vertices 3-4 forms the second crank.
The lengths of second crank, coupler and the fixed link are
always constant while the length of the first coupler changes
with respect to the change in length of MPAM during pres-
surization. An axial force will cause change in length in in-
ner spring. However, since we are only considering trans-
verse loading on the end-effector due to the moment applied
by the MPAM, the axial length of the spring (backbone) is
assumed to be of constant length throughout the actuation.
The length of a backbone in a segment is given as δl0 = l0/n
and the length of actuator in a segment is δla = la/n where
la is the final length of MPAM after pressurizing. In un-
actuated state, the segment forms a quadrilateral with co-
ordinates Xi

b,X
i+1
b ,Xi+1

a ,Xi
a as shown in the figure where the

subscripts b and a represent backbone and MPAM, respec-
tively and i = 1 for segment at the base of end-effector and
i= n at the tip. The natural undeformed initial positions Xi+1

b
and Xi+1

a are found out as

Xi+1
b = Xi

b +δl0v̂i and Xi+1
a = Xi

a +δlav̂i (8)

where,v̂i =
Xi

b−Xi−1
b

‖Xi
b−Xi−1

b ‖
(9)

For the initial segment i= 1, the unit vector v̂1 is perpendicu-
lar to the vector X1

b−X1
a along the initial axis of end-effector.

After deformation, the quadrilateral changes to
Xi

b,x
i+1
b ,xi+1

a ,Xi
a where vectors in lower case characters

represent deformed position (see Fig. 11).
Since the distance between backbone and MPAMs are

constrained by the outer spring to a fixed value, the length
‖xi+1

b − xi+1
a ‖= a at all times. The deformed quadrilateral

could be positioned in different configurations depending on
the angle formed by xi+1

a −Xi
a and Xi

b−Xi
a. Here, the natu-

ral configuration is assumed to be the one which minimizes
the displacement of tip xi+1

a [43]. To find the deformed con-
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Fig. 11: Nomenclature of a single segment

figuration, we formulate an optimization problem

min
xi+1

b ,xi+1
a

‖Xi+1
a −xi+1

a ‖

Subject to : ‖xi+1
b −Xi

b‖= δl0,

‖xi+1
a −Xi

a‖= δla, ‖xi+1
b −xi+1

a ‖= a (10)

The solution to the above optimization problem gives
the co-ordinates of tips xi+1

b and xi+1
a . The iterative method

starts from the base segment and proceeds towards the tip
of the end-effector to determine the final pose of the end-
effector backbone and the actuated MPAM. One can also see
that that the above minimization problem also translates to
finding the co-ordinates xi+1

0 and xi+1
a when the tip xi+1

a sim-
ply retracts inwards, as the MPAM compresses in its axial
direction. From this reasoning, the above equation can be
simplified by considering the corresponding geometric rela-
tions of the four-bar linkage

δl0 sinα+acosβ = a, δl0 cosα−asinβ = δla (11)

where α is the angle made by the first crank (corresponding
to the backbone) with the vertical axis, and β is the coupler
angle. The above equations are much faster to solve com-
pared to the optimization routine, and we can find the value
of α. Once α is found out, we can get the co-ordinate of the
tip as

xi+1
0 = (δl0 sinα, δl0 cosα)T (12)

and the co-ordinates of the tip of the end-effector in the plane
of bending of the end-effector is given as:

xn
0 =

[
δl0 (sinα+ sin2α+ · · ·+ sin(n−1)α)
δl0 (cosα+ cos2α+ · · ·+ cos(n−1)α)

]
(13)

The iterative scheme for solution to the forward kine-
matics of end-effector, considering the MPAM statics, can
be summarized as

1. Obtain the deformation of a single MPAM, for zero
applied axial force, from the mathematical model dis-
cussed in section 3.1. From the deformation, compute
δla.

2. Compute the coordiantes of the tips either from the op-
timization problem in (10) or using equation (13) and
obtain the pose of end-effector.

3. The displacement of tip δe from the original position is
calculated from the obtained pose of the end-effector.

4. The moment that need to be applied at the tip of end-
effector to produce the same deflection is calculated us-
ing the cantilever equation δe = ML2/3EI, where EI is
the flexural rigidity of the end effector. From the mo-
ment, using M = a×F , compute the axial force F that
should be produced by the MPAM in order to get the
same deflection.

5. Using the computed F , the deformation of single MPAM
is re-calculated and the same procedure is repeated till
the change in final deflection of end-effector is within a
specified tolerance.

From several experiments of actuating three MPAMs
individually, it is found out that the MPAMs are at
307.5◦, 219◦ and 75◦ angles from the positive î axis shown
in Fig. 14. These are named R, G and B respectively for
identification. By applying a 0.1 N transverse load at the tip
of the end-effector, a deflection of approximately 15 mm is
obtained. The flexural rigidity is then calculated using the
standard beam equation.

In case two MPAMs are actuated together, the resultant
moment due to these actuations can be written as

M = ai×Fi +a j×F j = ar×Fres (14)

where ai, j are the position vectors of the tip of ith and jth

MPAM and Fi, j are the applied forces on end-effector by the
MPAMs, ar is the position vector of a hypothetical actuator
whose resultant force Fres = F1 +F2 will provide the same
moment as due to the other two MPAMs actuated together
(see Fig. 12(a)). From mechanics, the direction of the hypo-
thetical actuator is given by

lr =
(l1F1 + l2F2)

F1 +F2
, mr =

(m1F1 +m2F2)

F1 +F2
(15)

where li,mi, i = 1,2 determine the directions of F1 and F2
and lr, mr also determine the plane of bending of the end-
effector.

If two MPAMs are pressurized simultaneously, the axial
force generated at the tip will be large enough to compress
the inner spring. Hence, MPAMs are pressurized one at a
time. From Fig. 12(b), the tip deflection from initial posi-
tion ξ0 due to individual actuation of two MPAMs (given by
curves ξ1 and ξ2) are along the direction of force vectors rep-
resented by d1 and d2, respectively. When these MPAMs
are pressurized successively, with d1 followed by d2, the
vector d2 is rotated by β1 angle. The resultant deflection
will be in the direction of vector sum of d1 and d′2 where
d′2 = R̂(q̂1,β1)d2 is the rotated vector (see Fig. 12(c)).

The following steps summarize the method in finding
the final pose of end-effector when two MPAMs (say R and
G) are actuated:
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ĵ
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F res

d1

î

ĵ

k̂

Fig. 12: Displacement vector addition

1. Pose of end-effector ξ1 when MPAM-R is pressurized
individually is found out using the above formulation;
tip deflection vector d1 is calculated. Likewise ξ2 is
found out when MPAM-G is pressurized individually
and corresponding d2 is calculated.

2. Angle of end-point vector of MPAM-R is calculated us-
ing the equation:

β1 = cos−1

(
xn

b−xn−1
b

‖xn
b−xn−1

b ‖
· k̂
)

(16)

3. Axis vector q̂1 is found out using the equation:

q̂1 =
xn−xn−1

‖xn−xn−1‖ ×
xn−2−xn−1

‖xn−2−xn−1‖ (17)

4. Rotation matrix R̂(q̂1,β1) is populated using axis-angle
method [44] and tip displacement of second MPAM
(MPAM-G), d2 is rotated to get d′2.

5. Direction cosines of ar are calculated using (15). The
plane containing the vector ar as well as the k̂ axis can
be defined by its normal vector (mr) î+(−lr) ĵ.

6. A straight line is drawn from the vector l0k̂+d1 in the
direction of d′2. The intersection of this line with the
plane defined in step 4) gives the final tip position.

7. The iteration is repeated with n→ n− 1 for the entire
length of end-effector to obtain the final pose.

In summary, from the static model of MPAM derived in
section 3.1, we obtain the deformed length correspond-
ing to an applied pressure and axial load. From the for-
ward kinematic equations derived in this section, we get the
pose of end-effector corresponding to given displacement of
MPAMs/tendons. Combining both the models, we obtain
the pose of end-effector corresponding to pressure applied
at MPAMs.

4.1 Experimental validation
In order to validate the developed model, the prototype

end-effector is subjected to different values of pressure and
the pose of end-effector after deflection is compared with the
values obtained from computations. Two cameras are used to

î

ĵ

Actual Image Reconstructed profile

Fig. 13: Profile reconstruction using image analysis

î

ĵ

75◦219◦

307.5◦

MPAM-R

MPAM-B

MPAM-G

Fig. 14: MPAM positioned in the three directions

capture images from different angles and the 3D co-ordinates
of the central (backbone) curve of end-effector is obtained
using multiple view image reconstruction techniques [45].
A thin flexible film of white colour is applied on the end
effector surface to facilitate control point identification. A
high contrast marking is made at the tip so that the marker
is easily identified in the images. To find the co-ordinates of
the tip, respective pixels in the two images corresponding to
the marker position is manually selected. The possible error
in this method is in incorrectly identifying the marker pixels
and this is not more than 4 pixels size for both the images.
For the scale and measurement set up used, the maximum
error in reconstruction is approximately 2 mm at the tip.

Fig. 13 shows the deformation of end-effector as well as
the re-constructed profile when one MPAM is pressurized.
In the figure, the reconstructed profile is shown up to 45 mm
from the base of the MPAM while due to the holder the end-
effector tip extends up to 55 mm.

As a numerical illustration, a pressure of 689.4 kPa (100
psi) is applied to the MPAM labeled R (refer Fig. 13). For
zero applied axial force, we get ∆ = 7.6 mm contraction as
per the mathematical model. The final length of MPAM will
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Table 1: R at Pi = 689.4 kPa

F (N) ∆ (mm) δe (mm) F∗ (N)

0 7.6 22.8 1.69

1.69 6.9 20.4 1.51

1.51 6.9 20.4 1.51

0

5050

0

0

50

-50

-50

-50

0

50

-50 0 50

Fig. 15: MPAM R actuated at 689.4 kPa

be la = lo − ∆ = 37.4 mm. This value is used to predict
the pose of end-effector using the kinematic model where 15
segments are used for computation – the length of one seg-
ment is equal to the pitch of the outer spring. The final pose
of end-effector gives a tip deflection of δe = 22.8 mm. The
force F which MPAM has to apply on end-effector so as to
obtain this value of deflection is calculated to be F∗ = 1.69
N. Now, the deformation of MPAM is re-calculated with
F = F∗ = 1.69 N force where the deflection is 6.9 mm for
45 mm MPAM. The procedure is repeated as shown in Ta-
ble 1 and one can see that the iterative approach converges
with the deformation of MPAM to achieve equilibrium as 6.9
mm. The pose of end-effector obtained with final length of
MPAM as 38.1 mm (45−6.9) is shown in Fig. 15 alongside
the actual deflection of end-effector. The measured pose of
the end-effector matches with the computation with a maxi-
mum error of 1 mm at the tip. The time required to solve the
forward kinematics is about 0.6 seconds on an Intel Pentium
PC at 2.0 GHz.

Fig. 16 shows the comparison between the computed
and measured pose for MPAM-G actuated at 551.6 kPa (80
psi). The maximum error in tip deflection in this case is also
found to be about 1 mm. Fig. 17 shows the final deforma-
tion of end-effector when two MPAMs are actuated by the
same pressure of 689.4 kPa (100 psi). The experimental re-
sults, in this case too, agree with the iterative approach with
approximately 1 mm error at the tip.

When the two MPAMs are applied different pressures,
the same iterative approach can be used. As an example, the
deformation and axial force for a 413 kPa (60 psi) pressure
input are 15.8 mm and 1.17 N, respectively. The direction
cosines of ar calculated using F1 = 1.51 N (corresponding
to 689 kPa pressure) and F2 = 1.17 N (corresponding to 413
kPa pressure) are lr = −0.17 and mr = −0.7, respectively–

Actual de�ection

0

50

−50 0 50
−50

0

−50 0 50
−50

0

0

50

−50

0

50

−50

0

F ront view Isometric view

R econstructed profile

Fig. 16: MPAM G actuated at 551.6 kPa
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0
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0

−50 0 50
−50

0

0

50

−50

0

50

−50

0

F ront view

Isometric view

R econstructed profile

Fig. 17: MPAMs R,G actuated at 689.4 kPa

i.e., the plane forms an angle 13.3◦ with the ĵ axis. When
413 kPa is applied on MPAM-R and 689 kPa on MPAM-G,
the reconstructed profile and the computed results are shown
in Fig. 18.

5 Inverse kinematics of end-effector
The inverse kinematics problem of the end-effector cor-

responds to finding the pressure required in different MPAMs
so as to position the tip at a given point in the workspace of
the end-effector. The endoscopist can only specify a point in
the workspace as a point on the images from the endoscopic
camera feed. Hence, we use a 2-D projection of the end-
effector workspace to specify the point to be achieved by the
tip.
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Fig. 18: MPAM G at 689.4 kPa and R at 413 kPa

5.1 Inverse kinematics model
In Fig. 19, the front view of an end-effector is shown,

with a commercially available forceps catheter inserted
through the inner spring. Fig. 20 shows the pressure vs de-
flection profile for the catheter tip and a cubic curve is fit-
ted to the data to visualize the deflection profile. The end-
effector generates a maximum deflection of about 25 mm
from the axis at 827 kPa pressure.

For inverse kinematics analysis, we first project the
workspace to the front view of the end-effector – front view
is chosen for better visualization of results, any other projec-
tion can also be used – which takes the shape of a hexagon
as shown in Fig. 21. By applying maximum pressure

Fig. 19: Front view of end-effector

in three MPAMs individually, we get the end-effector tip-
deflections in three different directions as shown in Fig. 19.
If we consider position of the un-actuated end-effector tip
as the origin, we get three displacement vectors in the di-
rections e1,e2, and e3 corresponding to the MPAMs R, G

Fig. 20: Increase in the deflection of tip of catheter from the
initial position with applied pressure
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Fig. 21: Workspace of end-effector

and B. Then the entire workspace is spanned by the com-
bination of vectors A1e1, A2e2, and A3e3 which correspond
to the maximum displacement in the respective directions.
The vectors divide the projected workspace into three sec-
tors Si, i = 1,2,3 which is spanned by the vectors Aiei and
A je j, where i = 1,2,3 and j = 2,3,1 in that order.

In order to achieve a particular point in the projected
workspace of the end-effector, say v = (vx,vy)

T , the MPAMs
i and j should be pressurized so as to get the deflections ai
and a j as shown in Fig. 22. Given the co-ordinates of the
vector in Cartesian space, it can be resolved in to the direc-
tions ei and e j as

vx î+ vy ĵ =
[

vx sinα j−vy cosα j

sin(α j−αi)

]
ei +

[
−vx sinαi+vy cosαi

sin(α j−αi)

]
e j(18)
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Fig. 22: Vector in workspace

where the angles αi and α j are measured from the positive î
axis.

Once the required deflections ai and a j are found, the
pressure required to achieve these tip deflections can be ob-
tained from the forward kinematics model. We know the
number of segments ‘n’ from the design specifications. The
deflection ai in the projected plane is the second compo-
nent of the vector xn

0 given in equation (13). However,
the information about the first component is usually lost in
the projection and we use a look-up table, containing the
pressure-deflection profile obtained from the forward kine-
matics model explained in section 4, for easy implementa-
tion.

5.2 Experimental validation and real-time implementa-
tion

For a chosen point in the projected end-effector
workspace, Fig. 23 and Fig. 24 show the expected and ac-
tual position of the end-effector tip. MPAM-R is applied a
pressure of 689 kPa and MPAM-G is applied 827 kPa (max-
imum pressure). The predicted deflection and the actual de-
flection shows a maximum error of 9◦ at the farthest reach of
the end-effector. It may be noted that the aforementioned
inverse kinematics model is an open-loop control. A model-
based control strategy, using the forward kinematics model
could reduce the error significantly.

In order to prove the viability of application in a real-
time setting, the end-effector is coupled with a thumb-stick
for actuation so that moving the thumb-stick may generate
equivalent motion of the tip of the end-effector. In order to
achieve this, the projected workspace of the end-effector is
superimposed on the workspace of the thumb-stick–which
is a square surface. From the thumb-stick, we get ana-
log signals ranging from -512 to +512 in left-right and top-
bottom directions. One unit of thumb-stick motion equals

to
max

{
Ai,‖Aiei +A je j‖

}
512

mm, with i, j = 1,2,3. Using
this conversion scale, a particular position of the thumb-stick
chosen by the user will give the corresponding (vx,vy) co-
ordinate. A sector in the workspace, Si may be calculated
using the condition θvi + θv j = α j −αi; θvi and θv j being
the angle made by vector v with the unit vectors ei and e j,
respectively as shown in Fig. 22. Once the sector is deter-
mined, the corresponding deflections and thus, the required
pressure values are found out as described in section 5.1.

Since the projected workspace of the end-effector is a
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Fig. 23: Experimental vs Theoretical comparison of deflec-
tion in random direction

Fig. 24: Deflection in resultant direction

hexagon and the thumb-stick workspace is a square, some
co-ordinates chosen in the thumbstick may lie outside the
workspace of the end-effector. Those outliers are approxi-
mated to the nearest point in the workspace, along the line
connecting the point and the origin, as shown in Fig. 25.

=

Fig. 25: Vector outside workspace
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5.3 Results and discussion
A number of experiments were conducted on the end-

effector and it is found to be possible to position the tip
of a catheter at a particular chosen point in the projected
workspace of the end-effector. Representative points are
shown in Fig. 26, where the tip of the end-effector is made
to trace a line. The pressure applied on different MPAMs
R, G and B are also shown in the figure. Red crosses repre-
sent the points when single muscle is actuated and the blue
crosses show the points where two MPAMs are used for ac-
tuation. Fig. 27 shows the points tracked by the end-effector
when the thumb-stick is moved in a circle. The correspond-
ing pressure values are also shown in the figure.
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Fig. 26: End-effector tip tracing line in workspace. Shown
in brackets are the pressure applied on MPAM-R,G and B in
that order.

From experiments, the maximum lateral force generated
at the tip of the end-effector is found to be 0.2 N. While it
is shown that the force is enough to manipulate a catheter,
it is not sufficient to generate the puncture forces required
to perforate the tissues [46]. Unlike rigid mechanisms, the
developed end-effector uses pressure control instead of po-
sition control. Hence, even if the endoscopist accidentally
specifies a point under the tissue walls, the inherent compli-
ance of the device ensures that tissue damages will not occur
(refer Fig. 28). From our preliminary ex-vivo experiments
conducted on pig tissue [47], we have observed that the pro-
totype end-effector does not cause perforation even at high
values of applied pressure of 827 kPa1.

6 Conclusions
This paper deals with the modeling, analysis and exper-

imental validation of a novel independently actuated flexible
endoscopic end-effector. The end-effector presented in this

1Experiments were conducted on tissue samples taken from different
sections of a porcine GI tract such as stomach, intestine and upper GI tract.
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Fig. 27: End-effector tip tracing circle in workspace. Shown
in in brackets are the pressure applied on MPAM-R,G and B
in that order.

Fig. 28: End-effector does not perforate the tissue at highest
actuation pressure

work is actuated by three miniaturized pneumatic artificial
muscles (MPAM) and it does not have guiding discs used
in other cable driven system. The kinematics of the actu-
ated end-effector, taking into account the absence of guiding
discs, is formulated as a constrained optimization problem.
Using a derived mathematical pressure-deformation relation-
ship for an MPAM, first the change in length in one or more
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of the pressurized MPAMs is obtained and then the position
and orientation of the end-effector is obtained using an iter-
ative scheme. Experiments performed on the developed pro-
totype show that the end-effector tip can be positioned in an
approximate hemispherical section of 45 mm radius. Using
3D profile reconstruction of the images obtained during ex-
perimentation, it is shown that the maximum position error at
the tip of the end-effector between numerical predictions and
the experiments is 2 mm. The developed forward kinemat-
ics formulation thus shows promise for use in model based
control strategies.

In this work, we also presented an inverse kinematics al-
gorithm where for a chosen point on the projected workspace
of the end-effector, the pressure required to reach that point
can be computed. The results from the computational model
and the experimental results deviate by approximately 9◦ at
the farthest reach of the end-effector. The end-effector is then
integrated with a thumb-stick to demonstrate the possibility
of real-time actuation. Ex-vivo experiments conducted on
a pig tissue shows that the end-effector does not cause any
perforation of the tissue during actuation.

At present, we are working towards reducing the over-
all diameter of the end-effector. Additionally, we are mak-
ing attempts to reduce the error by developing model-based
control strategies. Currently, the computation time for the
forward kinematics is of the order of 0.6 seconds on a desk-
top PC and this is due to the iterative solution of the con-
strained optimization problem. Attempts are being made to
reduce this time for efficient real-time control. While the
developed proof of concept shows that MPAM based end-
effector has definite advantages in endoscopic catheter actu-
ation, significantly more work is required before the same
can be employed in a clinical setting and we are working to-
wards achieving this goal.
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