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Abstract

A McKibben actuator/ Pneumatic artificial muscle(PAM) is a soft actu-
ator which has great potential in the field of bio-inspired robotics. Minia-
turized versions of PAMs or MPAMs of less than 1.5 mm diameter are ideal
actuators for developing surgical devices due to their compliance and high
power to weight ratio. Accurate mathematical models to represent the me-
chanics of PAM is an ongoing research. This paper develops a mathematical
model which relates the input pressure to end-point deformation of a fab-
ricated MPAM without external loading. The developed theoretical model
is validated against experimental data for MPAM of lengths 60 mm and 70
mm. The model predicts the deformation of MPAM with standard error of
less than 10%. The model is also able to predict the locking angle of 54.7◦

at higher pressures which is a distinct characteristic of McKibben actuators.

Keywords: Miniaturized McKibben actuators, Pneumatic muscles, Actu-
ated endoscopic instruments

1 Introduction

McKibben actuators or Pneumatic Artificial Muscles (PAM) are linear actuators
which are gaining popularity in the field of flexible robotics. The device consists of
a flexible inner tube(usually made of silicone) which is braided on the outside using
sets of inextensible fibers woven in the form of a helix [1]. One end of the tube is
sealed while compressed air is input to the tube through the other end. When the
tube is pressurized, the entire device contracts or expands along the axis of tube
depending on the geometric and material properties of the helix. Miniaturized
versions of PAM (MPAM) of diameter less than 1.5 mm as shown in references [2]
and [3] can be used for developing surgical devices since they offer high power to
weight ratio and compliance in its actuated state. In an earlier work [4], a flexible
end-effector using three MPAMs that can deflect an endoscopic catheter tip up to
15 mm within an approximately hemispherical surface is presented. The design
is similar to a tendon driven continuum robot [5] where tendons are replaced by
MPAMs to provide flexibility (see the CAD model shown in Fig. 1). Fig. 2 shows
the in-house fabricated MPAM used to develop the end-effector. In order to study
the kinematics of the end-effector developed using MPAMs and to apply model
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based control strategies, understanding the relationship between applied pressure
and deformation of MPAM is essential and this is the focus of this work.
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Figure 1: End-effector Figure 2: MPAM

Development of accurate models to predict this relationship based on the ge-
ometric and material parameters of PAM is an active topic of research. The first
model to describe the statics of PAM, developed by Schulte [6], equated the input
work done by applied pressure to the work done by an end-force to displace the
actuator tip through a particular distance. A review paper by Tondu [7] lists the
major improvements made by researchers on this basic model in subsequent years.
However, with the inclusion of details such as nonlinear material modeling, friction
modeling as well as the variation of MPAM profile at the ends, these models be-
come complex, computationally expensive to simulate or vary considerably when
applied on miniaturized PAMs. Hence, most of these models are not suitable for
real-time control of the developed end-effector.

In this paper, a new model describing the pressure-deformation relationship of
MPAM is developed. Section 2 details the proposed mathematical model starting
from the equilibrium equations of a thick cylinder under inflation. In section 3,
the theoretical model is compared against experimental results for validation. It is
also shown that the model is able to predict the locking angle of 54.7◦. Conclusions
are presented in section 4.

2 Mathematical Model of MPAM

In this section, we present the developed mathematical model of an MPAM. We
start by mentioning the two main assumptions on use of linear elasticity and
ignoring the hysteresis present in a PAM. In reference [8], the authors describe
two derivations using energy method as well as force balance method to model
the statics of PAM. It is shown that the force balance method which considers the
bladder as linear elastic material gives better accuracy and is simpler to implement
compared to energy method which considers the inner bladder as a non-linear
Mooney-Rivlin material. Hence, in the derivations presented in this work, we
assume linear elastic thick cylinder model for the silicone bladder in MPAM. It
may also be noted that as in the case of PAMs in general, the developed MPAM also
shows hysteresis. In reference [7], it is shown that the major reason for hysteresis in
a PAM are the static friction between braid strands as well as the friction between
the braid strands and the bladder. Though hysteresis effects are prominent in
PAMs, in the case of MPAM used in this work, the hysteresis width between the
inflation and deflation phase is of same order of magnitude as the measurement
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Figure 3: MPAM nomenclature
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Figure 4: Braid kinematics

error band (shown in later plots). Also, since accurate friction modeling of PAM
is particularly hard [7], we neglect the same in subsequent formulation.

Fig. 3 and Fig. 4 show the schematic of MPAM as well as the nomenclature
which will be followed in this paper. The silicone tube has initial length l0, outer
radius ro and inner radius ri. The symbols δl0 and δro denote the changes in length
and outer radius, respectively, after applying the input pressure Pi . The initial
angle of winding of MPAM, α, changes to β upon pressurization, b represents the
length of a single strand of braid and N represents the number of turns in the
helix.

The inflation problem of the silicone tube is solved using linear elastic equilib-
rium equations for thick cylinder [9] which are given as
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where λ, µ are Lame’s parameters, and the radial and axial displacements ur,
uz are assumed to be functions of both r and z. The displacement in tangential
direction is assumed to be zero. The boundary conditions on the radial and axial
stresses, τrr and τzz, as well as the displacements on boundaries are given as

τrr|r=ri = −Pi, τrr|r=ro = −Po, τzz|z=l0 = Ps (2)

uz(r, 0) = 0, ur(r, 0) = ur(r, l0) = 0 (3)

where Po, Ps are the radial pressure on the outer surface and pressure on the axial
end, respectively. The above differential equations and boundary conditions do
not have analytical solutions and can only be solved using numerical techniques.
However, since the length of tube is much larger compared to the radial dimensions
(length to radius ratio is > 70), the variation in curvature is apparent only at far
ends of MPAM. Ignoring the curvature effects1 and assuming that ur and uz are

1The curvature effect at the end of the silicone tube is considered separately and discussed
later.
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only functions of r and z, respectively, Eq. (1) can be simplified to

∂
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)
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= 0 (4)

Equation (4) refer to a standard problem of thick cylinder subjected to internal
pressure and can be analytically solved to obtain the displacements as

ur = c1r +
c2
r
, uz = c3z + c4

where ci, i = 1, 2, 3, 4 are constants whose values can be calculated using the
boundary conditions given by Eq. (2) and Eq. (3). We next consider the effect of
the nylon braids and include the effect of braid with the thick cylinder model.

The expression relating axial tension on the actuator and applied pressure
required to maintain equilibrium of the actuator can be found in [10]

Pi =
F

πr2o

sin2 α

(3 cos2 β − 1)
(5)

where F is the axial end-load. In the case of free contraction of MPAM, the

term
F

πr2o
is essentially the pressure applied on the side wall of silicone tube, P b

a .

Rearranging the above equation, we can write

P b
a = Pi

(
3 cos2 β − 1

)
sin2 α

(6)

The total pressure acting on the axial end of silicone tube can be written as

Ps = P b
a + PPi

a (7)

where PPi
a = Pi

r2o
r2o − r2i

is the component due to internal pressure.

A common modeling strategy for braid kinematics is to consider the helix as an
array of pantographs [11]. From the pantograph model, the kinematics of single
strand of braid can be described by

l0 = b cosα, l0 + δl0 = b cosβ (8)

2πroN = b sinα, 2π(ro + δr0)N = b sinβ (9)

The above expressions assume that the MPAM remains cylindrical even after pres-
surizing. However, once pressurized, the ends of the MPAM will not be perfectly
cylindrical since the diameter of middle section of MPAM and the diameter of
ends will be different. In reference [3], this curvature effect at ends is accounted
for by modifying the second expression of Eq. (8) as

l0 + δl0 = b cosβk1 + k2 (10)

where k1 and k2 are constants which are experimentally determined. From Eqns. (8),
(9) and (10), we get

δr0 = ro

(
sinβ

sinα
− 1

)
, δl0 = l0

(
k1

cosβ

cosα
− 1

)
+ k2 (11)
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Since the braid and sleeve are in contact during contraction of MPAM, we can
write the constraint equations ur|ro = δro and uz|l0 = δl0. Then

c1ro +
c2
ro

= ro

(
sinβ

sinα
− 1

)
(12)

c3l0 + c4 = l0

(
k1

cosβ

cosα
− 1

)
+ k2 (13)

Eq. (12) and Eq. (13) give two equations in two unknowns β and Po which are
solved numerically. Then using the second expression of Eq. (11), we can find the
displacement at the free end of MPAM.

It may be noted that contraction of MPAM does not start until a particular
value of pressure. This is due to a small gap between the braided sleeve and silicone
tube resulting from fabrication. Hence, at the initial stage of pressurization, the
silicone tube expands till a contact between tube and sleeve is established. In this
stage, the pressure on the side wall, Ps, in only PPi

a and the pressure on the radial
surface Po is zero. Hence, only the Eq. (13) is to be solved to obtain the value of
deformed angle β and subsequently, the end-point displacement.

3 Model validation

In order to validate the proposed mathematical model for MPAM, results from
theoretical model is compared with experimental data. Fig. 5 shows the exper-
imental set-up which is used to validate the model characteristics. The set-up
consists of an air reservoir of 1 liter capacity which supplies compressed air to the
MPAM at a maximum of 1.03 Mpa (150 psi) pressure. The MPAM is connected
to two pressure lines, one for pressurizing and the other for bleeding the air from
MPAM; each controlled by individual proportional solenoid valves. An ATmel
ATMEGA2560 controller board reads the pressure inside MPAM using a Honey-
well pressure transducer and controls the opening or closing of the solenoid valves.
The controller board is interfaced with MATLAB so that user can specify the re-
quired pressure inside the MPAM. Another controller circuit is used to sense the
pressure inside reservoir and run the compressor to maintain compressed air inside
reservoir at 1 MPa at all times. A high resolution camera is used to take images of
contracted MPAM and the changes in length is measured using image processing.
The maximum error due to measurement is approximately 0.1 mm. The experi-
mental plots show error bars obtained from at least 5 sets of experiments. In these
plots, hysteresis is not shown, and the mean value between inflation and deflation
is used.

Variation of displacement according to applied pressure is determined exper-
imentally for a MPAM of length 60 mm and is compared with the numerical
simulation results obtained by solving Eq. (12) and (13) using MATLAB. The
parameters used are E = 0.9 MPa, ν = 0.4999, δ = 0.015 mm, α = 36◦, ri = 0.25
mm and rb = 0.55 mm. The values of k1 and k2 for the MPAM are determined
by linearly interpolating the values mentioned in reference [3] for the length of
MPAM used in this study. From Fig. 6, we can see that the theoretical results
match with experimental values with good accuracy (standard error of maximum
2%). Using the same parameter values, theoretical results obtained for a 70 mm
MPAM in comparison with experimental values give a standard error of 8%. This
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shows that the model is consistent with changes in initial length of the MPAM
(refer Fig. 7). It may be noted that the error bars in the range of 100 to 400 kPa
is larger than the rest of the curve due to the averaging of inflation and deflation
data. The discrepancy between the theoretical and actual plots in the onset of
contraction may be attributed to the fact that the developed model does not take
into account the energy losses due to friction and hence predicts only the inflation
characteristics.

Figure 5: Experimental set-up
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Figure 6: End-point contraction for
60 mm MPAM
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Figure 7: End-point contraction for
70 mm MPAM

From the literature, we know that the actuator contracts when the initial angle
of winding is less than 54.7◦ while it elongates when the winding angle is more
than 54.7◦ [10]. Additionally, as the pressure increases, the final angle of winding
approaches these limiting values. The results of the theoretical model for a MPAM
with a winding angle of 35◦, when subjected to higher pressure, is shown in Fig. 8.
It can be seen that the angle approaches 54.7◦ at higher pressure. It may also be
noted that the pressure required to reach the locking angle with initial α > 54.7◦

is much higher than when the initial starting angle is less than 54.7◦ (Refer Fig. 9,
α = 70◦). This result may be explained by considering the rate of change of
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volume of MPAM. The volumetric strain for a volume V = πr2ol0 is

δV

V
= 2

δro
ro

+
δl0
l0

(14)

For the linear elastic material used in the formulation,

δro
ro

= C1 +
C2

r2o
and

δl0
l0

= C3 (15)
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Figure 8: β vs Pi for α = 35◦
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Figure 9: β vs Pi for α = 70◦

For a given pressure, the radial strain given by the first term increases by a
magnitude of three orders higher than the magnitude of axial strain which is the
second term. It means that the compliance of tube in radial direction is much
higher compared to the axial direction. Hence, the silicone tube tends to expand
radially at a faster rate when subjected to pressurization. For the case of MPAM
with α > 54.7◦, the tube has to contract radially due to the kinematics of braided
sleeve which is achieved only by working against the applied pressure. Hence,
locking angle is reached only at larger pressures for elongation of the MPAM while
it is achieved easily in the case of contraction. This observation is further verified
from the experimental data mentioned in references [12] and [13] where the limiting
angle is not achieved even for high pressure values.

The response to change in thickness of silicone tube is plotted in Fig. 10. We
see that as the thickness increases, the initial slope of curve decreases so that the
limiting value of β is reached only at high pressure. This is because the applied
pressure now works against the increased elastic force due to added material. This
observation is also consistent with other models available in literature.
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Figure 10: Variation of β w.r.t change in thickness, ro = 0.55 mm

4 Conclusions

A mathematical model representing the relationship between applied pressure and
deformation of Miniaturized Pneumatic Artificial Muscles is successfully devel-
oped. Unlike the existing models in literature for PAM, the developed model is
considerably simple even after taking into account material properties of the tube
as well as the curvature effects at the ends, making it ideal for implementing model
based control strategies in real time. The numerically simulated results show very
good agreement with experimental results for a 60 mm as well as 70 mm long
MPAM. The model shows increase in the value of braid angle when the initial
angle of winding is less than 54.7◦ and decrease in braid angle when the initial
angle is more than 54.7◦. In both cases, for higher value of applied pressure, the
braid angle reaches the locking angle which further confirms the consistency of
the model with the observations reported in the literature. From the developed
theoretical model for the pressure-deformation relationship of MPAM, kinemat-
ics of the flexible end-effector corresponding to the values of pressure applied on
MPAMs can be developed. The authors are presently working towards achieving
this goal.
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