
Efficient simulation and rendering of realistic motion of

one-dimensional flexible objects

Midhun S. Menon∗, B. Gurumoorthy† and Ashitava Ghosal‡

Dept. of Mechanical Engineering
Indian Institute of Science
Bangalore 560 012, India

Abstract

In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons
and hair, the assumption of constant length is realistic and reasonable. The motion of the object
also appears more natural if the motion or disturbance given at one end attenuates along the
length of the object. In an earlier work, variational calculus was used to derive natural and
length-preserving transformation of planar and spatial curves and implemented for flexible 1D
objects discretized with a large number of straight segments. This paper proposes a novel idea
to reduce computational effort and enable real-time and realistic simulation of the motion of
flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the
underlying control polygon with much smaller number of segments. To preserve the length of
the curve to within a prescribed tolerance as the control polygon is moved, the control polygon
is adaptively modified by subdivision and merging. New theoretical results relating the length
of the curve and the angle between the adjacent segments of the control polygon are derived
for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the
theoretical results are used to obtain threshold angles for subdivision and merging. Simulation
results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic
input motions are provided to illustrate the approach.

Keywords: One-dimensional flexible body, Natural motion, Control polygon, Approximate length
preservation, Subdivision, Merging

1 Introduction

Motion simulation and rendering of one-dimensional (1D) flexible objects and development of al-
gorithms for real time and realistic or natural motion have been active areas of research in the
geometric modeling, CAD and robotics community. The original motivation was the requirement
of realism in simulation and display of the motion of cables, ropes, chains, hair, snakes etc. in
computer graphics and animation industry. In one of the earlier works, Barzel [1] uses mode shapes
of a constrained string model to fake the dynamics of a string. Hergenröether and Däehne [2]
discretize the flexible 1D object into a large number of small (linear) rigid objects, each endowed
with mass and connected by different kinds of springs and dampers. With appropriate choice of

∗Graduate Student. Email: midhun.sreekumar@gmail.com
†Email: bgm@mecheng.iisc.ernet.in
‡Corresponding author. E-mail: asitava@mecheng.iisc.ernet.in, Tel. +91 80 2293 2956

1

parameter values of mass, spring and damping constant, a physics-based realistic simulation was
obtained. Taskıran and Güdükbay [3] have also employed spring-mass system for simulating hair
dynamics. In an extension to these works, Güdükbay et al.[4] propose spring mass systems for
simulation of elastically deformable models. The main issue in these techniques is to choose or
obtain appropriate spring and damping constants for which Natsupakpong and Çavuşoğlu [5] have
devised an algorithm for estimating these based on error minimization between FEM and lumped
element models. However, the algorithm is not feasible for real-time implementation. Moll and
Kavaraki [6] present path planning for flexible 1D objects using minimal energy curves and prob-
abilistic root maps. Ward et al. [7] survey the field of hair modeling, approaching the majority
of the existing methods. Grégoire and Schömer [8] and, Spillman and Tescner [9] use Cosserat
model for rod-like solids to model bending and torsion for real-time realistic simulation of flexible
parts. Lenoir et al.[10] use Lagrangian formulation posing lumped masses on the control polygon
vertices and springs along the curve(resisting bending and stretching) combined with spline refine-
ment techniques, namely sub-division/merging to simulate the motion of flexible objects. In an
exntension to this work, Theetten et al. [11] generate geometrically exact expressions for deforma-
tions of flexible 1D objects by concurrently using beams and spline theory. Goldenthal et al. [12]
use a constrained Lagrangian mechanics based approach to handle inextensible cloth simulation –
the length constraint (in-extensibility) is explicitly enforced on the cloth mesh thereby increasing
computational effort especially when the resolution in the cloth model is increased. To overcome
the stiff nature of the differential equation in cloth simulation (due to the high compliance along
cloth surface normal vector as compared to almost zero compliance for the in-plane extension),
Baraff and Witkin [13] use an implicit solver to simulate cloth motion. This is however an iterative
procedure and convergence is an issue. Wang et al. [14] use strain limiting algorithms to overcome
the stiffness issue. In another work, Mikchevitch et al. [15] use free-form surfaces and flexible beams
to model a real time simulator for assembly-disassembly operations. The review paper by Nealen et
al. [16] discuss the existing physically deformable models in computer graphics in detail and gives
a very good overview. In all the above mentioned works, dynamics is incorporated and a large
amount of effort is towards speeding up the computation or improving the accuracy by adjusting
the algorithms. However, all of these methods suffer from one or more issues like stability, con-
vergence, computational errors due to mathematical stiffness of the system, dependence on many
arbitrary parameters, phantom forces from high residuals, excessive damping/numerical losses or
lack of feasibility for real-time implementation.

In contrast to the above mentioned approaches, many authors have focused on viewing this
problem from a pure kinematics perspective so that the issues of stability, convergence and choice
of parameters do not arise. Brown et al. [17] have presented tying of knots in a rope with a
geometric approach where the flexible 1D object is discretized into linear segments connected by
joints and the motion of a trailing segment uses a follow the leader based strategy. Su et al. [18] use
inverse kinematics and energy minimization to approximately preserve length of deformed polyline
and a 4-point subdivision scheme is used to obtain smooth C1 curve from the deformed polyline. In
another work, Sreenivasan et al. [19] use the closed-form equations of the classical tractrix curve to
iteratively compute the motion of all trailing linear segments. They show that the tractrix based
approach has the property of attenuating the motion of the segments from the input end, and this
results in a more natural motion of the flexible 1D object. In a subsequent work, Menon et al. [20]
have shown that the tractrix based solution can be derived from a constrained optimization problem
involving minimizing the velocity of points on a curve subject to preservation of the length of the
curve. In all of these works, only the kinematics of the 1D object is used to impart realism in the
simulation and rendering and since the flexible 1D object is discretized into linear rigid segments,
the length is explicitly and always preserved.

In the robotics community, motion planning and simulation of snake and other robots with
large number of rigid links connected by actuated joints have been a continuing research area (see,
for example, ([21, 22, 23, 24]) and the references therein). In a robot, if the number of actuated

2

joints is more than six for motion in 3D space and more than three for motion in a plane, then there
exist many joint angle sets (configurations) which will achieve the same position and orientation of
the end-effector of the robot. The main approach in such redundant robots is to effectively use the
extra actuated joints for selecting poses/paths which optimize a useful functional – this is called
the resolution of redundancy. One of the earliest techniques used for resolution of redundancy
involved the use of the manipulator Jacobian matrix to minimize joint rotation, velocity, torque or
to avoid obstacles and singularities in the path of the robot [21]. This approach involves obtaining
the pseudo-inverse of the manipulator Jacobian matrix and can have a complexity of O(n3) where
n is the number of joint variables. Pseudo-inverse based methods are thus not suitable for motion
planning when the numbers of links and joints are large. A second approach developed by Chirikjian
and Burdick [22] involves the use of a backbone curve to approximate the redundant robot and the
motion planning is done on the backbone curve. The complexity of their algorithm is O(n) but in
this approach the length of the curve may not be preserved. In another approach by Reznik and
Lumelsky [23], the motion planning is done in the task space (instead of in the joint space) using
the classical tractrix curve. As mentioned earlier, the use of the tractrix curve results in a more
natural motion of the robot. The tractrix based algorithm has a complexity of O(n) where n is the
number of rigid links.

In recent past, there has been an increased interest in real-time simulation and rendering of
the motion of 1D and 2D flexible objects. This is driven by the need to build simulators for
laparoscopy, endoscopy and in the general area of training of medical practitioners where motion of
blood vessels, tendons etc., motion inside the gastro-intestinal tract or intestine and actions such
as tying of knots and suturing needs to be simulated with a high degree of realism [25, 26]. This
work has been motivated by the need for developing more realistic simulators for endoscopy and
laparoscopic surgeries and is restricted to real-time, efficient and realistic simulation and rendering
of the motion of flexible 1D objects.

In this work, the flexible 1D object to be simulated is modeled as a B-spline curve as opposed
to being discretized into large number of straight segments. All manipulations are done on the
segments of the control polygon which generates the B-spline curve. The main contributions are
a) obtaining new analytic expressions of change in length of a B-spline curve from an initial con-
figuration as the angle between two adjacent segments of its control polygon is changed, b) use of
a tractrix based algorithm on the control polygon of a B-spline curve representing the flexible 1D
object, and c) the development of an adaptive algorithm to approximately preserve the length of
the flexible 1D object. The tractrix based algorithm results in a more natural and realistic motion
of the curve modeling the flexible 1D object. As the control polygon is moved, the resulting length
of the curve is not preserved and the adaptive algorithm is used to sub-divide and merge sides of
the control polygon so that a prescribed error tolerance on the length of the curve is maintained at
all times during the motion of the curve. Since the angle between the adjacent segments is related
to the length of the B-spline curve, monitoring the angle is enough to decide on the subdivision
and merging.

Note that the tractrix based algorithm has a complexity of O(n) where n is the number of
segments used to represent the flexible 1D object. However, since the number of sides of the
underlying control polygon is much less than n, the complexity of the algorithm can be termed as
O(1). The algorithms for natural and realistic motion planning, the adaptive altering of the control
polygon and the mathematical results are illustrated using numerical examples where an arbitrary
curve is moved along a generic direction with a prescribed length error tolerance. The efficiency of
the developed algorithms are also demonstrated with the numerical examples.

The paper is organized as follows: in Section 2 we briefly present the tractrix based motion of a
flexible 1D object. New analytic expressions and results for the length of a quadratic B-spline and
cubic B-spline curve in terms of the angle between two adjacent segments of the control polygon
are presented. The notion of moving the generating control polygon and resulting change in the
length of the spline due to motion of the control polygon is also presented. In Section 3, we present

3

an algorithm to adaptively subdivide and merge edges of a control polygon to maintain the length
of a curve to within a specified length error. In Section 4, we present numerical results illustrating
our approach for efficient and realistic motion simulation and visualization of motion of flexible 1D
objects. In Section 5 we present the conclusions of this work.

2 Mathematical formulation

In this section, we present the main theoretical results used to obtain the algorithms for efficient
and realistic simulation and rendering of the motion of flexible 1D objects. We start with a brief
discussion on the tractrix based algorithm and then present new results dealing with length of
quadratic and cubic B-splines.

2.1 Tractrix based motion

The tractrix based approach for natural and realistic motion of a curve or a flexible 1D object is
dealt in details in references [19, 20]. We present the key results used in this work.

Control Polygon

Flexible

Discretized 1D
Flexible Object

1D Object

Generating

(a) (b)

Input Motion

Velocity
−→
V

P (t+∆t)
P (t)

Leading End

Trailing End

(x, y, z)p

(x, y, z)1

(x, y, z)2

(x, y, z)3

j

1
2

3

(x, y, z)nn

(n− 1)

Sequentially

Propagated

Disturbance

(c)

Figure 1: (a)One-dimensional flexible object, (b)Tractrix based motion planning and (c)Generating
control polygon

• Consider a curve of length L whose one end is given an input motion as shown in Fig. 1 (a)
subject to the constraint that the length of the curve is preserved. As shown, using calculus
of variation, the infinitesimal motion at any point on the curve is minimised when the velocity
of the point is along the tangent to the curve [20].

• For the special case of a line segment of length L, initially lying along the Y axis and an input
motion given to the leading end on the X axis along the X axis, the path (curve) traced by
the trailing end of the linear segment is given in a parametric form as

x(q) =q − L tanh
(q
L

)
and y(q) = L sech

(q
L

)
, (1)

4

where q denotes the parameter which in our case is the time t.

The above Eq. (1) is the well-known equation of a classical curve known as the tractrix [23].
It can be shown that for a infinitesimal motion, dq, of the leading end, the infinitesimal

displacement of the trailing end dr =
√

dx2 + dy2 is the minimum of all possible infinitesimal
displacements of the trailing end, if it follows a tractrix curve. It can also be shown that
dr ≤ dq. Additionally, as q → ∞ (or t → ∞), tanh(q/L) → 1 and sech(q/L) → 0 which gives

x(∞) → q − L, y(∞) → 0, (2)

implying that as time increases, the linear segment aligns with the X-axis and in this case
dr = dq.

• The tractrix based approach can be applied to arbitrary 3D motion of a flexible 1D object
discretized by n linear segments as shown in Fig. 1 (b) (see reference [19] for details). This is
due to the observation that the destination point (x, y, z)Tp , the leading end or point 1 and the
trailing end of the first segment or point 2 define a plane. For the arbitrary 3D displacement
of the leading end (point 1) to (x, y, z)Tp , the new location of the trailing end (point 2) in the
plane can be obtained from Eq. (1). The location of the trailing end in 3D space, denoted
by (x, y, z)T2 , can then be obtained by using an appropriate rotation matrix. The second

segment
−→
23 and the vector along the displacement of point 2 to (x, y, z)T2 , in general, will lie

on a different plane. However, again the new location of the trailing end (point 3) given by
(x, y, z)T3 can be computed using the tractrix equations and a different appropriate rotation
matrix. Proceeding in a similar manner, the displacement of the leading end of the (i− 1)th

segment is the displacement of the trailing end of the ith segment and one can thus iteratively
go down to the nth linear segment and obtain the new configuration of the discretized flexible
1D flexible object.

• The algorithm described above has a complexity of O(n) where n is the number of line
segments used to discretize the flexible 1D object. Since the line segments are considered as
rigid, the sum of the length of the segments is automatically preserved during motion. If n
is chosen appropriately to ensure that the curve length is approximately equal to the sum of
the length of the line segments, the length of the curve is approximately preserved during the
motion.

• When the input end is displaced, the displacements of all the trailing segments obey the
inequality dr0 ≥ dr1 ≥ ... ≥ drn−1 ≥ drn, with the equality dri = dri−1 reached only when all
the segments align with the input displacement direction. A consequence of this observation
is that the motion of the segments progressively gets smaller and appears to ‘die’ out away
from the input end. If the input motion vector is constant in one direction, from Eq. (2) it can
be concluded that all the segments eventually align with the direction of the input motion.

The ‘dying’ out and eventual alignment with the input motion features give the tractrix based
approach a more ‘natural’ and physically realistic motion of the motion of a flexible 1D object.
The complexity of O(n) makes it amenable for efficient simulation and realistic visualization of the
motion. The complexity O(n) can be further reduced if instead of discretizing the flexible object
with a large number of rigid linear segments, we approximate the flexible 1D object with a B-spline
and we apply the tractrix based motion strategy to the line segments in the control polygon. Fig. 1
(b) shows a flexible 1D object discretized by several line segments and in Fig. 1 (c), the same
flexible 1D object is represented by a spline curve, its control polygon and an open uniform knot
vector [27] – this ensures that the spline is end point interpolating and ends of the spline match the
ends of the flexible 1D object. The number of segments in the control polygon is typically much
less than the number of linear segments used to realistically discretize the flexible 1D object– in
the illustration the flexible 1D object is discretized by 16 linear segments but the control polygon
shown in Fig. 1 (c) has only 7 segments.

5

2.2 Splines and control polygon

As mentioned earlier, one of the key ideas of this paper is to move the segments of the control
polygon instead of the elements of the discretized curve (polyline) to reduce computation and
enable real-time simulation and visualization. However, it is well-known that as the control polygon
changes, the spline curve and its length changes [27]. This is illustrated in Fig. 2: the left most
spline curve of length LC1 is generated by the control polygon CP 1 and as the sides of the control
polygon is moved to CP 2 keeping LCP 1 = LCP 2 , one can clearly see that the length of the spline
curve changes. It can be observed from Fig. 2 that as the angle between the adjacent segments

LC1

LC2

LC1
> LC2

Spline lengthsControl Polygon Lengths

LCP1
= LCP2

LCP1

LCP2

Figure 2: Spline length with length preserving transformations of control polygon

decrease the length of the spline decreases and the upper bound of curve length is the length of
the control polygon. We provide mathematical proofs of these two observations next, first for a
quadratic B-spline and then for a cubic B-spline. Finally, arguments for any higher degree 3D
splines are provided.

2.2.1 Quadratic spline

For a quadratic spline shown in Fig. 3, the three consecutive points P1, P2 and P3 always lie on a
plane. It may be noted that the analysis is not restricted to planar quadratic splines as the next three
points can lie on a different plane and the entire curve can be spatial. Without loss of generality,
the coordinates of the three points can be assumed to be [L1, 0]

T , [0, 0]T and [L2 cos θ, L2 sin θ]
T ,

respectively, where L1, L2 are the lengths of the two sides of the control polygon and θ is the angle
between the adjacent sides of the control polygon. The set of control points (P1, P2, P3) generate
the part of the spline shown in Fig. 3 for the parameter interval u ∈ (ui, ui+1). The length of the
spline curve for u ∈ (ui, ui+1), is given by

l(θ) =

∫ ui+1

ui

(3∑
i=1

dNi,p(u)

du
Xi

)2

+

(
3∑

i=1

dNi,p(u)

du
Yi

)2
 1

2

du, (3)

where l(θ) means that the spline curve length depends on the included angle θ.
In an open-uniform knot vector of the form [u1 u1 u1 u2 u3 . . . um−1 um um um] with u1 ≤

u2 ≤ u3 ≤ · · · ≤ um, without loss of generality, an intermediate knot interval (ui, ui+1)(i ̸=
1, 2,m− 2,m− 1) can be reduced to (0, 1) by appropriate scaling and translation of parameter u.
The basis functions Ni,p for a quadratic spline with p = 2 and for the knot interval (0, 1) are given
by

N1,2 =
1

2
(1− u)2, N2,2 = −u2 + u+

1

2
and N3,2 =

1

2
u2. (4)

6

O P1

P2

P3

θ C(Ui)

C(Ui+1)
Y

X

Pi = (Xi, Yi)

L1

L2

i = 1, 2, 3

dl

|
−−→
OP1| = L1

|
−−→
OP3| = L2

|
−−→
OC1| =

1

2
L1

|
−−→
OC2| =

1

2
L2

Figure 3: Two segments of the control polygon of a quadratic spline

Using the above, l(θ) can be simplified to

l(θ) =

∫ 1

0

√
(−L1(1− u) + L2u cos θ)

2 + (L2u sin θ)
2 du (5)

and for L1 = L2 = L, l(θ) is given by

l(θ) = 1√
32L2(1+cos θ)

(√
8L4(1 + cos θ) + L2(−1 + cos θ) log

√
2−

√
1+cos θ√

2+
√
1+cos θ

)
, 0 < θ < π. (6)

From above, lim
θ→π

l(θ) = L and this agrees with known result for a quadratic curve (see pp. 82 in

[27]). From Eq. (6), (L− l(θ)) is maximum when θ → 0 and the maximum difference is 50% (see
Fig. 5). The expression for l(θ) when L1 ̸= L2 is more complicated and is given in Appendix A.

In general, for a quadratic spline with n segments in the control polygon, the total curve length
can be computed as

LC =

(
1

2
(Ls + Le) +

n−1∑
i=1

li(θi)

)
, (7)

where Ls, Le denotes length of starting and ending segment of the control polygon, respectively, Li

denotes the length of the ith control polygon segment and li(θi) denotes the length of the portion
of the curve defined by the ith, (i+ 1)th and (i+ 2)th control points.

2.2.2 Cubic splines

In the case of the quadratic spline, the three points generating the spline define a plane and locally
the spline is planar in a knot interval. This is not valid for a cubic spline since the four generating
points and the resulting cubic spline need not be planar. In Appendix B, we show that the worst
case, in terms of difference between the curve length and the length of the control polygon, is
obtained when all the four points lie on a plane. Hence, we consider the case of a planar cubic
spline and obtain expressions for bounds on this difference.

Fig. 4 shows four interior control points Pi, i = 1, ..., 4 on a plane and the two included
angle θ1, θ2 between the first and second, second and third segments, respectively. The initial
configuration of the knot vector is assumed to be a clamped open-uniform knot vector of the form

7

O
P1P2

P3

θ1

C(Ui)

C(Ui+1)

Y

XL1

P4

θ2

L2

L3

Figure 4: Control polygon for a planar cubic spline

[u1 u1 u1 u1 u2 u3 . . . um−1 um um um um], u1 ≤ u2 ≤ · · · ≤ um. Note that for a uniform
non-repeated knot vector, the difference between the curve length and control polygon length is
maximum as any repetition of knot vector or subdivision pulls the curve towards the control polygon
thereby reducing the length difference.

From the figure, the points of the spline are P1 = [L1, 0]
T , P2 = [0, 0]T , P3 = [L2 cos θ1, L2 sin θ1]

T

and P4 = [L2 cos θ1−L3 cos(θ1+θ2), L2 sin θ1−L3 sin(θ1+θ2)]
T . The elemental length of the cubic

spline C0(u) is given by

dl =

(n∑
i=1

dNi,p(u)

du
Xi

)2

+

(
n∑

i=1

dNi,p(u)

du
Yi

)2
 1

2

du, (8)

where (Xi, Yi) are the coordinates of Pi, i = 1, ..., 4.
Substituting the X and Y coordinates of the points on the control polygon and using N ′

i to

denote
dNi,3(u)

du
, we get

dl =
√
A+B du,

A =

(
∂X

∂u

)2

=
(
N ′

1L1 +N ′
3L2 cos θ1 +N ′

4 (L2 cos θ1 − L3 cos (θ1 + θ2))
)2

and (9)

B =

(
∂Y

∂u

)2

=
(
N ′

3L2 sin θ1 +N ′
4 (L2 sin θ1 − L3 sin (θ1 + θ2))

)2
.

For a cubic spline, the basis functions in u ∈ [0 1] are

N1,3 =
1

6
(1− u)3, N2,3 =

2

3
+

1

2
u3 − u2,

N3,3 =
1

6
+

1

2
u− 1

2
u3 +

1

2
u2 and N4,3 =

1

6
(1− u)3. (10)

8

Substituting the above in Eq. (9), we get

dl =
√

Pu4 +Qu3 +Ru2 + Su+ T du,

P =
1

4
L2
1 +

1

4
L2
3 + L2

2 + L1L2 cos θ1 +
1

2
L1L3 cos(θ1 + θ2) + L2L3 cos θ2,

Q = −L2L3 cos θ2 − 3L1L2 cos θ1 − L1L3 cos(θ1 + θ2)− L2
1 − 2L2

2,

R =
3

2
L2
1 +

5

2
L1L2 cos θ1 +

1

2
L1L3 cos(θ1 + θ2)−

1

2
L2L3 cos θ2,

S = L2
2 − L2

1, T =
1

4
L2
1 +

1

4
L2
2 −

1

2
L1L2 cos θ1, (11)

and the length of the spline generated in the knot interval [0 1] can be obtained as the integral
of the right-hand side in Eq. (11). Unlike in the quadratic case, for a cubic spline, the analytical
form of the integral as a function of θ1 and θ2 is not known and it is not possible to find analytical
expressions for the difference between the total length of the control polygon and B-spline curve
length. The length difference is a surface (being a function of θ1 and θ2) and can always be found
using numerical integration. We can, however, obtain useful approximations to the integral by
considering the following:

• We consider the effect of change of one angle at a time, i.e., θ1 is varied with θ2 held constant.
This is reasonable since during the motion of the control polygon, the angles between the
adjacent segments are monitored. When the difference in length between spline and control
polygon due to a single angle change becomes large, subdivision is used to reduce the difference
(see Section 3) and hence effect of change in one included angle can be considered.

• We consider the case of a control polygon with equal lengths, i.e., L1 = L2 = L3 = L.

With the above two assumptions, the integral simplifies to

l(θ1) =
L√
2

∫ 1

0

√
1 + (pu4 + qu3 + ru2 − cos θ1) du, (12)

where p = cos(θ1 + θ2) + 2 cos θ1 + 2 cos θ2 + 3,

q = −2 cos(θ1 + θ2)− 6 cos θ1 − 2 cos θ2 − 6 and

r = cos(θ1 + θ2) + 5 cos θ1 − cos θ2 + 3.

Since 0 ≤ u ≤ 1, the term |W | = |pu4 + qu3 + ru2 − cos θ1| ≤ 1. Hence, we can approximate

(1 +W)
1
2 as

(
1 +

1

2
W

)
by keeping only the first term in the binomial expansion. The first-order

length difference between the control polygon and the curve, in the knot interval [0 1] due to a
change in θ1 (with θ2 held constant) is given by

efirst-order(θ) =
L

2
√
2

∫ π

θ

∫ 1

0

∂W

∂θ1
dθ1du =

1

120
L
√
2 (13 cos θ − cos θ2 − cos(θ + θ2) + 13) , (13)

where efirst-order(θ) denotes the length difference when
√
1 +W is approximated by 1 + (1/2)W .

The plot of the exact length difference obtained by numerically integrating right-hand side of
Eq. (11) and the plot of the first-order approximation is shown in Fig. 5. For comparison, the
length difference obtained for a quadratic spline is also shown in the figure.

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

30

35

40

45

50

Included Angle θ1(degrees)%
le
n
gt
h
d
iff
er
en
ce

fr
om

re
fe
re
n
ce

p
os
it
io
n

Cubic Spline analytical
Cubic Spline first order approximation

Quadratic Spline analytical

Figure 5: Plot of bound on length difference for a quadratic and cubic B-spline

2.2.3 Summary

We can summarize the results obtained from the quadratic and cubic B-splines as follows:

• For a quadratic B-spline, we can obtain closed-form analytic expression for the curve length
as a function of the angle between the adjacent segments. For any angle θ the change in curve
length from the completely stretched out case (θ = π) can be obtained using Eq. (A-1) as

equadratic B-spline = l(π)− l(θ) =

(
L1 + L2

2
− l(θ)

)
. (14)

• The difference between the length of the control polygon, LCP =

n∑
i=1

Li, and the length of

the curve LC is given by

EC = LCP − LC =

n∑
i=1

Li −

(
1

2
(Ls + Le) +

n−1∑
i=1

li(θi)

)
. (15)

• For a cubic B-spline, there is no known closed-form analytic expression for the curve length
as a function of the two angles between the three consecutive segments. The length of the
curve can be obtained by integrating Eq. (11) and a numerical plot of change in length with
respect to one or both angles can be obtained.

• A first-order approximation of the difference between the length of cubic spline and the
length of the generating control polygon, with one angle held constant and equal control
polygon segment lengths, can be obtained as shown in Eq. (13). The first-order approximation
is conservative to within a maximum of 3.73% difference from the exact length difference
obtained from integration.

10

• It can be seen by comparing the plots in Fig. 5 that a cubic spline gives less length difference
when the angle between two adjacent segments change – for a θ value of 100◦ the length
difference for a quadratic spline is 15% whereas for a cubic spline it is 10%. A consequence
of this result is that less number of subdivisions (see Section 3) may be required during the
motion of the flexible 1D object when it is modeled with cubic splines.

• Although the plots in Fig. 5 are for equal control polygon segment lengths, they serve as a
design tool whereby the user can choose a threshold angle to limit the change in curve length
within desirable limits.

• When a curve is modeled using cubic splines, non-trivial continuity is guaranteed till third
order which implies curvature continuity. Majority of real-world problems demand a maxi-
mum of curvature continuity or lesser and hence, the results have been obtained only for a
quadratic and cubic spline. However, first-order results along similar lines as the cubic spline
can also be developed for higher-order splines.

One key consequence of the above results is that as the control polygon is moved the angle between
adjacent segments will change and the length of the spline curve will change. The key idea of length
preserving motion of the flexible 1D object will not be possible. In the next Section, we present
an adaptive algorithm to approximately preserve the length of the spline curve to within a user
specified tolerance when the control polygon is moved.

3 Approximate length preservation in splines

As discussed in Section 2.2, error in length of the B-spline curve from an initial value can be related
to the included angle θ between two adjacent segments. The key idea in approximate length
preservation is to sub-divide a segment of the control polygon when the included angle between
two adjacent segments is less than a threshold value and merge the two adjacent segments when
the included angle is larger than another threshold value. In the subdivision step, the control

P0

P1 P2

P3 P0 P4 P0

P5
P1

P2

P3

P1

P2
P3 P4

P6

P7

U = [0 0 0 0 1 1 1 1] U = [0 0 0 0 0.33 0.66 1 1 1 1] U = [0 0 0 0 0.33 0.33 0.66 0.66 1 1 1 1]

P
′

1 P
′

2

(a) (b) (c)

Figure 6: Subdivision in splines

polygon is modified by inserting control points as illustrated in Fig. 6. As shown, the segment
P1P2 in Fig. 6 (a) is replaced by two segments P1P2 and P2P3 in Fig. 6 (b) with the original
segment P1P2 shown as P ′

1P
′
2. From the construction and using triangle inequality in Fig. 6 (b),

|P1P
′
1| + |P ′

1P2| ≤ |P1P2|. Likewise |P2P
′
2| + |P ′

2P3| ≤ |P2P3|. Hence the length of control polygon
P0P1P2P3P4 after subdivision is less than the length of the original control polygon P0P1P2P3. If
the segments P1P2 and P2P3 are further subdivided, as in Fig. 6 (c), the total length of the modified

11

control polygon will decrease even more. In the limit of infinite number of subdivisions, the length
of control polygon will coincide with the length of the curve.

One effect of subdivision is that the number of control points (and the number of segments)
monotonically increases over time depending on the extent of bending/warping of the control poly-
gon during the motion and this increases the computation requirement in the tractrix based motion
algorithm. To overcome this problem, we reduce the number of segments in the control polygon
when parts of the control polygon stretches out and the included angle is larger than a pre-defined
threshold. The reduction in the number of segments is schematically opposite of subdivision – the
sequence for merging is from right to left in Fig. 6. Note that during merging the length of the
resulting control polygon increases.

We discuss in detail and present mathematical results for subdivision and merging in the rest
of this Section.

3.1 Subdivision in splines

=⇒
Knot Insertion

=⇒
Knot Removal
(Removes a segment)(Adds a segment)

θi
θ
p
i

L1

L2

cL1

(1− c)L1

(1− d)L2

dL2

L1

L2

L3

θ1

θ2

L1

L3L′

3

L′

2
L3

(a) (b)

Figure 7: Knot insertion and knot removal

Fig. 7 (a) shows subdivision (also called knot insertion). Assuming the control polygon segments
are of lengths L1, L2 and the included angle is θi, the length of the portion of control polygon before
subdivision (LCP0) and the length after subdivision (LCP1) is given by

LCP0 = L1 + L2 and LCP1 = cL1 + dL2 + L3 (0 < (c, d) < 1), (16)

where by using law of cosines

L3 =
√

((1− c)L1)2 + ((1− d)L2)2 − 2(1− c)(1− d)L1L2 cos θi ,

and c, d are the ratios for subdivision which can be chosen by user. Hence, the decrease in length
of the control polygon after subdivision is given by

∆LCP = LCP0 − LCP1 (17)

= (1− c)L1 + (1− d)L2 −
√

((1− c)L1)2 + ((1− d)L2)2 − 2(1− c)(1− d)L1L2 cos θi .

From the above, as the portion of the control polygon stretches out and the included angle θi → π,
the change in length of the control polygon lim

θi→π
∆LCP → 0.

12

During subdivision, the length of the spline curve remains the same. As mentioned earlier, the
length of the control polygon, LCP , is more than the length of the spline curve, LC , and we can
write

LCP = LC + e, (18)

where e ≥ 0 is the difference in length between the control polygon and the spline curve. During
subdivision, the length of the spline curve is not changed, and from Eqs. (17) and (18), we get

LCP 1 ≤ LCP 0 and e1 ≤ e0, (19)

where e0 and e1 are the length differences before and after subdivision, respectively.
The above proves that the length difference between spline curve and control polygon decreases

during a subdivision. Most importantly, the angles between the adjacent segments of the control
polygon increases, and, as shown in Fig. 5, increasing the angle reduces the difference in the length
between the spline curve and the control polygon. Hence, through subdivision, it is possible to
control spline length by setting a threshold angle value θth. If the angle between any two segments
is less than this threshold (θi ≤ θth), then the control polygon is subdivided to obtain two new
control points. As θth increases, length difference on any elemental segment reduces which in turn
reduces the total difference in length. Hence the threshold angle plays a key role in the total
difference between length of the control polygon and curve. From the analytical results in the
previous Section and from Fig. 5, a suitable θth can be chosen to satisfy a desired length error
requirement. In extensive simulation (see Section 4), it is observed that a threshold angle of 140◦

is found to give total difference less than 5%.

3.2 Merging in splines

When two adjacent segments of a control polygon are merged (by knot removal), the number of
segments in the control polygon will reduce and the computations required for the tractrix based
motion algorithm will reduce. Knot removal is shown schematically in Fig. 7 (b). As mentioned
earlier, in case of knot removal, the length of the control polygon increases and the length before
and after knot removal can be written as

LCP0 = L1 + L2 + L3 and LCP1 = L1 + L′
2 + L′

3 + L3. (20)

But we know that θpi = (θ1 + θ2)− π and by using the law of sines,

L′
2 = − sin θ2

sin(θ1 + θ2)
L2 and L′

3 = − sin θ1
sin(θ1 + θ2)

L2. (21)

From Eq. (20) and Eq. (21), the increase in length of the control polygon can be computed as

∆LCP = LCP1 − LCP0 = − sin θ2
sin(θ1 + θ2)

L2 −
sin θ1

sin(θ1 + θ2)
L2 − L2. (22)

Unlike subdivision, the increase in the length of the control polygon is a function of two angles θ1
and θ2 and thus lies on a surface. When (θ1, θ2) → π, lim

(θ1,θ2)→π
∆LCP → 0 and we can infer that

knot removal should be done when the θ1 and θ2 are close to π.
Knot removal has the additional complexity of not yielding a unique solution/curve (see pp.

179 in [27] for further details). As shown in Fig. 8, there are two possible solutions (red and blue)
for the merged spline curves, which can be derived from the original spline (black). The length of
the two spline curves can be computed by integration, and are denoted by LC1 and LC2 . We denote

13

the control polygon and curve length before merging by LCP and LC , respectively. Since merging
increases the length of the control polygon, we can write

LCP1 ≥ LCP , LCP2 ≥ LCP , LCP1 = LC1 + e1, LCP2 = LC2 + e2, (23)

where the two control lengths are denoted by LCP1 , LCP2 , and the difference between the curve
length and the control polygon length are denoted by e1 and e2. As the length of the two control
polygons is known, the terms e1 and e2 can be computed and the solution with lower difference
between the spline and control polygon length is chosen as the new curve definition. For a knot of

P1

P2

P3

P4

P
1

s

P
2

s

Solution 2: Spline defined by P1P
2

s
P4

Solution 1: Spline defined by P1P
1

s
P4

Original Spline: Spline defined by P1P2P3P4

Figure 8: Illustration of multiple solutions encountered in merging process

multiplicity 2 to be removed once, the condition to be satisfied is that two points given below

P 1
s =

P2 − (1− α1)P1

α1
and P 2

s =
P3 − α2P4

1− α2
, (24)

with α1 =
u3 − u1
u4 − u1

and α2 =
u3 − u2
u5 − u2

must coincide [27]. As shown in Fig. 8, the two points-P 1
s

and P 2
s , lie on the vector directed along

−−−→
P1P2 and

−−−→
P4P3. Substituting for points P1 = [L1 0]

T , P2 =
[0 0]T , P3 = [L2 cos θ1 L2 sin θ1]

T , and P4 = [L2 cos θ1−L3 cos(θ1+ θ2) L2 sin θ1−L3 sin(θ1+ θ2)]
T ,

we get

P 1
s =

u4 − u3
u3 − u1

[
−L1

0

]
and P 2

s =
1

u5 − u3

[
L2 cos θ1(u5 − u3) + L3 cos(θ1 + θ2)(u3 − u2)
L2 sin θ1(u5 − u3) + L3 sin(θ1 + θ2)(u3 − u2)

]
. (25)

Since merging is done only when both the angles θ1 and θ2 cross the threshold angle, the limiting
case can be taken as θ1 = θ2 = θm. For equi-spaced knots, the above equation simplifies to

P 1
s =

[
−1

2L1

0

]
and P 2

s =

[
L2 cos θm + 1

2L3 cos 2θm
L2 sin θm + 1

2L3 sin 2θm

]
(26)

Fig. 9 shows the two points P 1
s and P 2

s that define the two control polygons respectively. We can
make the following observations from the above analysis:

• If link lengths L1 = L3 = L, then in the limiting case mentioned above (θ1 = θ2 = θm),
the portion of spline shown in Fig. 9 is symmetric about an axis AA passing through the
midpoint of points P2 and P3. The lengths of the two curves are equal and either of the two
curves can be chosen after merging. The two curves and the length difference due to merging
as a function of θm are shown in Fig. 10.

14

P1P2

P3

Pm

P4

C(u2)

C(u6)

X

Y

|P 1

1
P 1

2
| = L1, |P

1

2
P 1

3
| = L2, |P

1

3
P 1

4
| = L3

6 P1P2P3 = 6 P2P3P4 = θm

P 1

s

P 2

s

A

A

θ − π

2

Figure 9: Portion of spline to be merged (knot removal)

P1

P4

P
1

s

P
2

s

A

A

Solution 2

Solution 1

(a) Affine nature of solutions

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

30

35

40

45

50

55

Included Angle θm(degrees)

P
er
ce
nt
ag
e
le
n
gt
h
d
iff
er
en
ce
(%

)

Solution 1
Solution 2

(b) Percentage length difference plot

Figure 10: Multiple merging solutions when L1 = L3

• In a more generic case, where L1 ̸= L3, the two solutions are not symmetrical. This is shown
in Fig. 11 for arbitrarily chosen control polygon segment lengths L1 = 1, L2 = 3 and L3 = 4.
The difference between the curve length and the control polygon is shown in Fig. 11(b); during
simulations we noted that the smaller of the two differences is chosen.

• The variation in length with change in included angle shown in figure 11 can be numerically
computed and generated for other combination of lengths. Similar to subdivision, the plot
of length difference versus θm can be used to choose the threshold angle for merging. From
extensive numerical simulations (see also Section 4), it was observed that an angle of 160◦ for
merging (knot removal) resulted in a total spline curve length error of less than 5%.

3.3 Algorithm for approximate length preservation

Based on the analysis in Sections 3.1 and 3.2, the algorithm followed for approximate length
preserving configuration planning for a flexible 1D body is summarized in the flowchart of Fig. 12.

15

P1

P4

P
1

s

P
2

s

Solution 2

Solution 1

(a) Unsymmetric solutions

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

10

20

30

40

50

60

70

80

Included Angle θm(degrees)

P
er
ce
nt
ag
e
le
n
gt
h
d
iff
er
en
ce
(%

)

Solution 1
Solution 2

(b) Percentage difference plot

Figure 11: Multiple merging solutions when in a generic scenario

The inputs to the algorithm are the initial curve configuration, the path (curve) along which the
leading end is moved, the velocity of the motion and location of the perturbed point on the curve.
Based on these data, the initial control polygon configuration and the open uniform knot vectors
are derived and initialized into the algorithm. The output is the motion of the flexible 1D object.

Steps of the Algorithm

1. Obtain the control polygon by interpolating the vertices/points in the input polyline. The
number of segments in the control polygon is taken to be n, degree 3 and a clamped open
uniform knot vector is used. The maximum deviation between the curve and the points is set
to a predefined threshold for terminating the interpolation algorithm.

2. Initialize length parametrized motion of the leading end and discretized it for smooth visual-
ization of motion.

3. For each incremental motion, starting from leading segment, recursively obtain the motion of
all segments using the tractrix equations.

4. Perform threshold crossover checks for each included angle in the control polygon and execute
subdivision or knot removal algorithms.

5. Update the new control polygon configurations and knot vectors and continue to next incre-
mental motion of the leading end.

6. Repeat steps 3, 4 and 5 till the full motion of leading end is completed.

In the next Section, we present numerical simulation results illustrating the approach developed in
this work.

4 Numerical simulation

We present numerical simulation results for a chosen 1D (1D) flexible object 5 units in length. All
simulations were done using the commercial software MATLAB [29] on a PENTIUM quad core PC
with 16 Gb RAM running the LINUX operating system. The first two simulations are for an arbi-
trarily chosen 2D path of the leading end and there are two 3D simulation. We present simulation

16

Initial
curve configuration S0

Arc length parametrized Perturbation
Profile of leading end P (s)(s=arc length)

Derive cont. poly. [CP]k×n

(Open Uniform Knot Vector)

Initialize P (0), i = 1, Link Li

∆i = P (s+ ds)− P (s)

Output final
curve config.

No

Stop

Start

Is
s ≤ sf

Yes

Discretize
Perturbation profile

Compute lag end motion δl of
link Li by Tractrix Algorithm
for lead end disturbance ∆i

Is
i ≤ n− 1?

n =Number of control points in control polygon

Yes

Update Control Poly.

k =Number of dimensions of the affine space(2 for 2D, 3 for 3D)

[CP] = [CP] + [∆]

∆i+1 = δl
i = i+ 1

No
l = 1

Is
θl ≤ θth1

Knot
Insertion

Yes

Is
l ≤ n− 2

Yes

θl =Included angle between links Ll & Ll+1

Li =Link between control points Pi & Pi+1

l = l + 1
No

No

m = 1

θpm =Included angle between Lm & Lm+2

Is
θpm ≥ θth2

Knot
Removal

Is
m ≤ n− 3

m = m+ 1

Yes

No
Yes

s = s+ ds

sf =Total arc length of the perturbation profile of leading end
θth1 =Threshold angle for knot insertion θth2 =Threshold angle for knot removal

Figure 12: Flow chart of the algorithm

results for an exact length preserving tractrix based algorithm (labeled as TRX), an approximate
length preserving tractrix and spline based algorithm with subdivision (labeled as TRX SD) and
finally an approximate length preserving tractrix and spline based algorithm with subdivision and
knot removal (labeled as TRX SD MRG). In all the simulations the initial configuration of the
flexible 1D object is a straight line – there is no restriction on the initial configuration and it is
chosen as a straight line to ensure that the initial length error between the actual object and the
discretized object/curve is zero.

In the first simulation, the leading end is moved along an arbitrarily chosen 2D path in steps of
0.5 length units over 52 steps. The arbitrary path is shown in Fig. 13 (a). Along the path, seven
arbitrary snapshot locations are chosen and these are denoted by 0⃝ through 6⃝. The configuration
of the flexible 1D object at each of the seven snapshot locations of the leading end is shown in
Fig. 13 (b) – as mentioned at the start the flexible 1D object is a straight line (see configuration
0⃝ in Fig. 13 (a)). The configuration of the flexible 1D object computed according to the three
algorithms, namely TRX, TRX SD and TRX SD MRG, are shown in Fig. 13 (b).

In the purely tractrix (TRX) algorithm, the flexible 1D object needs to be discretized into a
large number of linear segments to realistically represent the continuous flexible 1D object and to
make the motion look smooth. As the number of linear segments, n, increases, the computations,
as expected, grow in a O(n) manner – the simulation time grows from 40 seconds for n = 10 to

17

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

0

1

2

3

4

5

6

(a) 2D path with snapshot locations

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

0

1

2

3

4

5

6

TRX

TRX SD

TRX SD MRG

(b) Trajectory comparison with different algorithms

Figure 13: Simulation a planar curve subjected to generic 2D motion

about 1680 seconds for n = 200. In Fig. 13(b), the configuration simulations for the tractrix based
simulations are done for n = 20.

For the approximate length preserving tractrix and spline based algorithms (TRX SD and
TRX SD MRG), the initial number of linear segments in the control polygon is chosen as 6 and
the angle threshold for subdivision was chosen as 140◦. The threshold angle for removing a control
point/knot was chosen as 160◦. Snapshots of the curve for different points on the chosen path
are shown in Fig. 13(b) for illustrating the qualitative nature of the results. As mentioned the
maximum percentage length difference depends on the chosen threshold angle (140◦ for subdivision
and 160◦ for knot removal in this simulation) and the number of control points required to ensure
that the angle threshold is not exceeded, in this case, turns out to be 20 for subdivision algorithm
and 18 for subdivision with merging algorithm as seen from the Fig. 14. The maximum error
introduced by merging at any instant over the whole simulation is 1.8%.

Fig. 14(b) shows the variation of curve length and Fig. 14(a) shows number of control points in
the control polygon backbone over the simulation duration. As seen, the algorithm adapts to the
characteristics of the motion by adding control points as and when required to compensate for the
warping of the curve. It also removes control points as and when the curve can be simplified and
represented in terms of a lesser number of control points. From the figures, it is observed that the
maximum number of control points to represent the curve over the complete duration of simulation
is 17 for TRX SD MRG algorithm.

Intuitively, the higher the number of control points chosen initially, the lesser will be the error
in length between control polygon and the spline. This is demonstrated in Table 1 in which results
of TRX SD MRG simulation run on the planar curve input as 20 line segments is shown. As
seen in the results, as the initial number of control points increases, the error in total length
over the whole simulation comes down significantly to 4.90%. However, as seen in the results,
the number of line segments in the backbone also increases accordingly. Finally, to see the effect
of the threshold angle, we performed the TRX SD MRG simulations on the generic planar curve
discretized into 20 segments with different threshold angles for subdivision and knot removal. The
results are given in Table 2. Clearly, as the threshold angle increases, the curve sub-divides more
frequently thereby resulting in more number of sides in the control polygon. However, the length
error keeps on reducing with higher thresholds because the curve subdivides more to keep the
length difference within bounds. The simulation results illustrate the theoretical results developed

18

No.
Initial number
of points in
Control Polygon

Max. %
Error in
Curve Length

Max. number
of sides
in Control Polygon

Total
Simulation
Time(sec.)

1 7 12.65 14 25.53

2 10 8.81 14 25.80

3 13 6.74 18 36.34

4 16 4.90 19 37.37

Table 1: Algorithm performance comparison for different initial number of control points in the
control polygon

No.
Subdivision
threshold(deg.)

Knot
removal
threshold(deg.)

Max. percentage diff.
in length b/w curve
and control polygon

Max. number
of sides in
control polygon

Total
simulation
time(sec.)

1 160 170 8.6 19 37.51

2 140 160 12.65 16 30.73

3 120 150 20.35 12 18.91

Table 2: Algorithm performance comparison for different threshold angles for subdivision and knot
removal

0 5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20

22

Step index

N
u
m
b
er

o
f
C
o
n
tr
o
l
P
o
in
ts

TRX
TRX SD

TRX SD MRG

(a) Variation in number of control points

0 5 10 15 20 25 30 35 40 45 50
4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

5.05

Step index

L
en
g
th

o
f
C
u
rv
e

TRX
TRX SD

TRX SD MRG

(b) Variation in length of curve

Figure 14: Simulation a planar curve discretized by 50 linear segments subjected to generic 2D
motion

earlier in Section 3. It may be mentioned that the actual numbers for length error and control
points will vary based on the motion. However, the algorithm adaptively computes the lowest
number of control points to effectively represent the curve respecting the prescribed error bounds.
To illustrate this, a slightly modified trajectory of the leading end is chosen as shown in Fig. 15.
In this trajectory at the end there exists a longer straight segment. The results for the simulation
for the new motion are shown below and in the attached video (see file example2D.mpg). The
number of segments initially chosen was 20 and the merging thresholds are relaxed to 150◦. Other
parameters were kept exactly the same as before. As expected, due to the presence of straight

19

trajectory towards the end, the number of control points further reduce to 12 when compared to
18 in the earlier case. However, due to relaxed merging threshold, the maximum error introduced
by merging is now seen to be 4%. The numerical results shown in above figures and in the video

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−1

0

1

2

3

4

5

Figure 15: Modified motion trajectory for second simulation

0 5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20

22

Step index

N
u
m
b
er

o
f
C
o
n
tr
o
l
P
o
in
ts TRX

TRX SD
TRX SD MRG

(a) Variation in number of control points

0 5 10 15 20 25 30 35 40 45 50

4.4

4.5

4.6

4.7

4.8

4.9

5

Step index

L
en
g
th

o
f
C
u
rv
e

TRX
TRX SD

TRX SD MRG

(b) Variation in length of curve

Figure 16: Simulation of motion of a planar 1D curve with generic 2D motion at the leading end

clearly shows that the spline based algorithm results in a more natural motion together with a
significant reduction in computation time. Additionally, the spline based algorithm is tunable for
tolerances on length error specified by user requirements via the threshold values of the angles and
the initial number of control points.

The algorithm is easily extendable to three dimensional space without any significant modifica-
tions. Fig. 17 shows the input desired motion of the leading end and simulated snapshots of motion
of the complete flexible 1D object using the adaptive spline based subdivision algorithm proposed
in this paper for a generic motion in three dimensions. In the attached video excomp3D1.mpg, three
simulations are shown for a flexible 1D object of length 60 units and whose leading end is moved
along an arbitrary path in 3D space. In the video, the left most simulation is for an exact length
preserving tractrix based algorithm(TRX) where 15 linear segments are used to approximate the
1D flexible object. In the middle simulation, the number of linear segments is increased to 25 for
enhanced smoothness and the right most simulation uses the approximate spline based algorithm,
the path and snapshots of which are shown in Fig. 17. As shown in the video, the time for simulat-
ing with 15 segments is about 280 seconds while it increases to 914 seconds when 25 segments are
used to make the motion appear more smoother. In comparison, the right most simulation shows
an equally smooth motion with the approximate length preserving algorithm (difference less than
10%) in about 244 seconds. It may be noted that the approximate length preserving spline based

20

No. Algorithm used
Initial number
of points in
control polygon

Maximum percentage difference
between curve length and
control polygon length

Total
simulation
time(sec.)

1 TRX 15 0.0 280

2 TRX 25 0.0 914

3 TRX SD MRG 12 8.9 244

4 TRX SD MRG 15 4.7 300

Table 3: Algorithm performance comparison in 3D

algorithm takes even smaller time than the exact length preserving algorithm with 15 segments as
only a 12 sided control polygon is employed initially. As mentioned in the text, the length error can
be brought down below 5% if more number of sides in the initial control polygon is used – if a 15
sided control polygon is used and time required is of the order of 300 seconds. Table 3 summarizes
the simulation results for the 3D trajectory of Fig. 17.

A second video (see excomp3D2.mpg) shows similar improvement in execution time and smooth-
ness in motion when the leading end is moved along a completely different arbitrary trajectory
(Fig. 18(a)). Motion snapshots of this simulation are shown in Fig. 18(b).

−10

0

100

10

20

30

40

50

60

0

10

0

1

2

3

4

5

6

(a) A generic 3D motion for the leading end

−10
−5

0
5

100

10

20

30

40

50

60

0

10

0

1

2

3

4

5

(b) Motion snapshots along the path at various
points

Figure 17: Motion simulation of a curve subjected to a generic 3D motion at the leading end (video
file excomp3D1.mpg)

5 Conclusion

This paper proposes a new paradigm for the simulation and rendering of the motion of 1D flexible
objects. The motion of the flexible 1D objects, represented using splines, is computed using a
tractrix based approach. The tractrix based approach yields a more natural and realistic motion

21

−20

0

20 0

20

40

60

80

100

120

140

160

−20

0

20

0

1

2

3
4

5

6

(a) A generic 3D motion for the leading end

−20

0

20
0

20

40

60

80

100

120

140

160

−20

0

20

0

1

2

3
4

5

6

(b) Motion snapshots along the path at various
points

Figure 18: Motion simulation of a curve subjected to a generic 3D motion at the leading end (video
file excomp3D2.mpg)

with the motion dying out along the length of the flexible 1D object. The use of splines and adaptive
modification of the control polygon leads to an approximate length preservation with efficient
computation and smoother rendering of the motion of the 1D flexible object. An important feature
of the proposed algorithm is that it is a purely kinematics or geometry based algorithm. It is shown
that the use of splines and adaptive modification of the control polygon increases computation
efficiency and the increased efficiency is more clearly observed when the number of segments in
the input is large (more than 20 in the simulations shown in this work). The approach presented
in this paper can be easily applied to simulation and realistic rendering of the motion of generic
1D flexible objects such as snakes, chains, ropes and for redundancy resolution in hyper-redundant
robotic manipulators.

Appendix A

Quadratic spline with L1 ̸= L2

For the general case of a quadratic spline with L1 ̸= L2, the expression for the curve length is more
complicated and is given by

l(θ) =

∫ 1

0
dl =

(L5
1 + 2L3

1L
2
2 + 2L2

1L
3
2 + L5

2)
√

L2
1 + L2

2 + 2L1L2 cos θ + (L3
1L

2
2 + L2

1L
3
2) cos 2θ

√
L2
1 + L2

2 + 2L1L2 cos θ

2(L2
1 + L2

2 + 2L1L2 cos θ)
5
2

− L2
1L

2
2(L

2
1 + L2

2) sin
2 θ

2(L2
1 + L2

2 + 2L1L2 cos θ)
5
2

log
−L2

1 − L1L2 cos θ + L1

√
L2
1 + L2

2 + 2L1L2 cos θ

L2
2 + L1L2 cos θ + L2

√
L2
1 + L2

2 + 2L1L2 cos θ
(A-1)

+
L1L2 cos θ(3L

3
1 + L1L

2
2 + L2(L

2
1 + 3L2

2))
√
L2
1 + L2

2 + 2L1L2 cos θ

2(L2
1 + L2

2 + 2L1L2 cos θ)
5
2

+
2L3

1L
3
2 sin

2 θ cos θ

2(L2
1 + L2

2 + 2L1L2 cos θ)
5
2

log
L2
2 + L1L2 cos θ + L2

√
L2
1 + L2

2 + 2L1L2 cos θ

−L2
1 − L1L2 cos θ + L1

√
L2
1 + L2

2 + 2L1L2 cos θ
, 0 < θ < π.

22

For case when L1 ̸= L2 and θ → 0 (the curve folding and overlapping with itself), the curve length

is given by lim
θ→0

l(θ) =
L2
1 + L2

2

2(L1 + L2)
. In the case of L1 ̸= L2 and θ → π (curve straightening out

to a line), we have lim
θ→π

l(θ) = (1/2)(L1 + L2), which is another well known result for a quadratic

B-spline curve (see pp. 78, [27]). From the analytical expression of l(θ) in Eq. (A-1), the maximum
and minimum curve length occurs when θ → π and when θ → 0, respectively.

Appendix B

Analyis for non-planar cubic spline

O
P1

P2

P3

θ1

Y

X

Pi = (Xi, Yi)

L1

L2

P4(α)

n̂

α

L3

−→
V (α)

θ2

P4(0)

−→
V (0)

P3

i = 1, 2, 3, 4

C(Ui)

C(Ui+1)

θ2

Figure 19: Three segments of the control polygon and planarity

Fig. 19 shows four points P1, P2, P3, P4 and the two included angles θ1 and θ2 between the
three segments of a control polygon for a cubic spline. The first three points define a plane and the
fourth point can lie anywhere on a cone with apex at P3 and slant length |P3P4| equal to L3. We

denote the vector on the surface of the cone along P3P4 by
−→
V (α), where α is the angle of rotation

about an unit vector n̂ along the cone axis lying along P2P3. For α = 0, the point P4, denoted by
P4(0), lies on the plane formed by P1, P2 and P3 and the vector from P3 to P4(0) is denoted by
−−→
V (0). From Fig. 19, the angle between n̂ and

−−→
V (0) is seen to be π − (θ1 + θ2) and we can write

−→
V (0) = [−L3 cos(θ1 + θ2) − L3 sin(θ1 + θ2) 0]

T . (B-1)

The vector
−−−→
V (α) can be obtained as

−−−→
V (α) = R(α)

−−→
V (0), (B-2)

where R(α) is a rotation matrix given by the Rodrigues’ rotation formula

R(α) = I3 + (sinα)K + (1− cosα)K2, (B-3)

23

with I3 denoting a 3× 3 identity matrix and [K] given by

K =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 ,

is a skew-symmetric matrix which represents the cross product operation with vector n̂ = [n1, n2, n3]
T .

From Fig. 19, the vector n̂ is given by [cos θ1, sin θ1, 0]
T and we can write the vector locating

the point P4(α) with respect to the origin of the coordinate system O (or P2) as

−→
P4(α) =

−→
P3 +R(α)

−→
V (0) =

−→
P4(0) +

−−→
∆P4(α), (B-4)

where

−−→
∆P4(α) =

 L3 sin θ1 sin θ2 (cosα− 1)
−L3 cos θ1 sin θ2 (cosα− 1)

−L3 sin θ2 sinα

 .

Using the above, the expression for the spline can be written as

C(u, α) = N1,3(u)
−→
P1 +N2,3(u)

−→
P2 +N3,3(u)

−→
P3 +N4,3(u)

(−→
P4(0) +

−−→
∆P4(α)

)
, (B-5)

and its derivative can be written as

C ′(u, α) = N ′
1,3(u)

L1

0
0

+N ′
3,3(u)

L2 cos θ1
L2 sin θ1

0


+N ′

4,3(u)

L2 cos θ1 − L3 cos(θ1 + θ2)
L2 sin θ1 − L3 sin(θ1 + θ2)

0

+

 L3 sin θ1 sin θ2 (cosα− 1)
−L3 cos θ1 sin θ2 (cosα− 1)

−L3 sin θ2 sinα

 . (B-6)

When the spline lies in a plane and
−−→
∆P4(0) = 0, the spline can be written as

C(u, 0) = N1,3(u)
−→
P1 +N2,3(u)

−→
P2 +N3,3(u)

−→
P3 +N4,3(u)

−→
P4(0), (B-7)

and the derivative can be written as

C ′(u, 0) = N ′
1,3(u)

L1

0
0

+N ′
3,3(u)

L2 cos θ1
L2 sin θ1

0

+N ′
4,3(u)

L2 cos θ1 − L3 cos(θ1 + θ2)
L2 sin θ1 − L3 sin(θ1 + θ2)

0

 . (B-8)

The square of the elemental length of the cubic spline is given by

dl(α)2 = C ′(u, α)TC ′(u, α)du2 =

dl(0)2 + 2N ′
4,3(u)L3 sin θ1 sin θ2 (cosα− 1)X ′(u, 0) +

(
N ′

4,3(u)L3 sin θ1 sin θ2 (cosα− 1)
)2

− 2N ′
4,3(u)L3 cos θ1 sin θ2 (cosα− 1)Y ′(u, 0) +

(
−N ′

4,3(u)L3 cos θ1 sin θ2 (cosα− 1)
)2

+
(
−N ′

4,3(u)L3 sin θ2 sinα
)2

,

24

where (X ′(u, 0), Y ′(u, 0)) denote the X and Y components of C ′(u, 0) – Z ′(u, 0) is zero from Eq. (B-
8). The above equation on simplifying gives

dl(α)2 = dl(0)2 + 2N ′
1,3N

′
4,3L1L3 sin θ1 sin θ2(cosα− 1), (B-9)

and by using the Cauchy-Schwarz inequality, we can write

dl(α)− dl(0) ≤
√

2N ′
1,3N

′
4,3L1L3 sin θ1 sin θ2(cosα− 1), (B-10)

where (cosα− 1) ≤ 0 ∀α ∈ [0 2π].
For a cubic spline, the basis functions N1,3, N4,3 and their derivatives are given by

N1,3 =
1

6
(1− u)3, N ′

1,3 = −1

2
(1− u)2, N4,3 =

1

6
u3, N ′

4,3 =
1

2
u2, (B-11)

and hence dl(α) − dl(0) is real and positive. Additionally, the right-hand side of Eq. (B-10) is
maximum when α = π and minimum when α = 0. The length of control polygon remains the same
for all α and hence the elemental length difference between the cubic spline curve and the control
polygon becomes maximum when α = 0. This proves the assertion that the worst case difference
between the length of the control polygon and the cubic spline is when α = 0 (when the four control
points lie on a plane) and we do not need to consider the four points in 3D space.

Acknowledgment

This work was funded in part by the Robert Bosch Center for Cyber Physical Systems (RBCCPS)
at the Indian Institute of Science, Bangalore.

References

[1] Barzel, R. (1997), Faking dynamics of ropes and springs, IEEE Computer Graphics Applica-
tions, 17(3), pp. 31-39.

[2] Hergenröether, E. and Däehne, P. (2002), Real-time virtual cables based on kinematic simula-
tions, Proceedings of WSCG 2000, Czech Republic, February 7-11.

[3] Taskıran, H. D. and Güdükbay, U., (2005), Physically-based simulation of hair strips in real-
time. WSCG, pages 153-156.

[4] Güdükbay, U., Özgüç, B. and Tokad, Y. (1997), A spring force formulation for elastically
deformable models. Computers & Graphics, 21(3), pp. 335-346.

[5] Natsupakpong, S. and Çavuşoğlu, M. C.(2010) Determination of elasticity parameters in
lumped element(mass-spring) models of deformable objects. Graphical Models, 72(6), pp. 61-
73.

[6] Moll, M. and Kavaraki, L. E. (2006), Path planning for deformable linear objects, IEEE
Transactions on Robotics, 22(4), pp. 625-636.

[7] Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P. and Lin, M. C (2007), A sur-
vey on hair modeling: styling, simulation and rendering, IEEE Transactions on Visualization
and Computer Graphics, 13(2), pp. 213-234.

25

[8] Grégoire, M. and Schömer, E. (2006), Interactive simulation of one-dimensional flexible parts,
Proceedings of 2006 ACM Symposium on Solid and Physical Modeling, UK, June 6-8, pp.
95-103.

[9] Spillmann, J. and Tescner, M. (2009), Cosserat nets, IEEE Transactions on Visualization and
Computer Graphics, 15(2), pp. 325-338.

[10] Lenoir, J., Grisoni, L., Chaillou, C. and Meseure, P.(2005) Adaptive resolution of 1D mechan-
ical B-spline., In Proceedings of the 3rd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia GRAPHITE ’05, pp. 395-403, New
York, USA..

[11] Theetten, A., Grisoni, L., Andriot, C. and Barsky, B.(2008) Geometrically exact dynamic
splines. Computer Aided Design, 40(1), pp. 35-48.

[12] Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun. E (2007), Efficient
simulation of inextensible cloth, ACM Transactions on Graphics, 26(3), Art. no.49.

[13] Baraff, D. and Witkin, A. (1998), Large steps in cloth simulation, In Proceedings of the 25th

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, New
York, USA, pp. 43-54.

[14] Wang, H., O’Brien, J. F and Ramamoorthi, R (2010), Multi-resolution isotropic strain limiting,
ACM Transactions on Graphics(TOG)-Proceedings of ACM SIGGRAPH Asia 2010, 29(6),
Art. no.156.

[15] Mikchevitch, A., Léon, J. C and Gouskov, A (2004), Flexible beam part manipulation for
assembly operation simulation in a virtual reality environment, Journal of Computing and
Information Science in Engineering, 4(2), pp. 114-123.

[16] Nealen, A., Mller, M., Keiser, R. , Boxerman, E. and Carlson, M.(2006), Physically based
deformable models in computer graphics Computer Graphics Forum, 25(4), pp. 809-836.

[17] Brown, J., Latombe, J.-C. and Montogomery, K. (2004), Real-time knot-tying simulation, The
Visual Computer: International Journal of Computer Graphics, 20(2), pp. 165-179.

[18] Su, Z., Li, L. and Zhou, X. (2006), Arc-length preserving curve deformation based on subdivi-
sion, Journal of Computational and Applied Mathematics, 195(1-2), pp. 172-181.

[19] Sreenivasan, S., Goel, P. and Ghosal, A. (2010), A real-time algorithm for simulation of
flexible objects and hyper-redundant manipulators, Mechanism and Machine Theory 45(3),
pp. 454-466.

[20] Menon, M. S., Ananthasuresh, G. and Ghosal, A. (2013), Natural motion of one-dimensional
flexible objects using minimization approaches, Mechanism and Machine Theory, 67, pp. 64-76.

[21] Nakamura, Y. (1990), Advanced Robotics: Redundancy and Optimization, Addison-Wesley
Longman Publishing Co., Inc.

[22] Chirikjian, G. S. and Burdick, J. W.(1994), A modal approach to hyper-redundant manipulator
kinematics, IEEE Transactions on Robotics and Automation, 10(3), pp. 343-354.

[23] Reznik, D. and Lumelsky, V. (1994), Sensor-based motion planning in three dimensions for a
highly redundant snake robot, Advanced Robotics 9(3), pp. 255-280

26

[24] Ravi, V. C., Rakshit, S. and Ghosal, A.(2010), Redundancy resolution using tractrix - Simu-
lations and Experiments, Journal of Mechanisms and Robotics, 2(3), pp. 031013-031013-7

[25] Kühnapfel, U., Cakmak, H. K. and Maaß, H. (2000), Endoscopic surgery training using virtual
reality and deformable tissue simulation, Computers & Graphics, 24(5), pp. 671-682.

[26] Kang, H. and Wen, J. T. (2002), Robotic knot tying in minimally invasive surgery, Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2, pp. 1421-1426.

[27] Piegl, L. and Tiller, W. (1997), The NURBS book, Springer.

[28] Abbena, E., Salamon, S. and Gray, A. (2006), Modern Differential Geometry of Curves and
Surfaces with Mathematica, CRC Press.

[29] MATLAB, version 7.12.0 (R2011a), The MathWorks Inc., Natick, Massachusetts, 2012.

27

