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Abstract: In concentrated solar power(CSP) generating
stations, incident solar energy is reflected from a large num-
ber of mirrors or heliostats to a faraway receiver. In typi-
cal CSP installations, the mirror needs to be moved about
two axes independently using two actuators in series with
the mirror effectively mounted at a single point. A three
degree-of-freedom parallel manipulator, namely the 3-RPS
parallel manipulator, is proposed to track the sun. The pro-
posed 3-RPS parallel manipulator supports the load of the
mirror, structure and wind loading at three points result-
ing in less deflection, and thus a much larger mirror can be
moved with the required tracking accuracy and without in-
creasing the weight of the support structure. The kinemat-
ics equations to determine motion of the actuated prismatic
joints in the 3-RPS parallel manipulator such that the suns
rays are reflected on to a stationary receiver are developed.
Using finite element analysis, it is shown that for same sized
mirror, wind loading and maximum deflection requirement,
the weight of the support structure is between 15% and 60%
less with the 3-RPS parallel manipulator when compared to
azimuth-elevation or the target-aligned configurations.

Keywords: 3-RPS, Parallel manipulator, Heliostat, Solar
tracking

1 Introduction
Research and development of clean energy systems have

been gaining in acceptance and use in the recent past. Solar
energy being the most abundant, renewable, non-pollutant
and available throughout the year has the highest potential
from which clean energy can be harvested. The popular
methods to harvest solar energy is the use of photo-voltaic
cells, parabolic troughs and dishes, central receiver tower
system etc. In this paper, the focus is on concentrated so-
lar power (CSP) approach where the suns energy is con-
centrated at a central receiver tower and then converted to
electricity. As pointed out by VANT-HULL [1], one of the
advantages of CSP over other solar energy harvesting ap-
proaches is higher thermal efficiency and lower operating
cost. Additionally, in the CSP approach, thermal energy can
be stored using molten salt which enables the production of
electricity even when there is no sunlight [2]. HBERLE [3]

reported that the thermal energy can also be used to gener-
ate process steam for industrial application..

The sun moves in a general East to West direction dur-
ing the day and in a North-South direction during seasons.
To focus the suns energy on to the central receiver, mir-
rors are used and the mirrors must be moved to accom-
modate the sun’s apparent motion in the sky. The first of
these moving mirrors, also called heliostats, were built by
TROMBE Felix at Odellio, France in the 1950s [1]. He used
these heliostats to direct the sun rays on to a fixed horizontal

parabola as parallel beams of light. In modern CSP plants,
there exist two well-known methods for moving the he-
liostats. These are called the azimuth- elevation (Az-El) and
target-aligned (T-A) (also called the spinning-elevation)
methods with the azimuth-elevation method more widely
implemented. In both the above methods, there are two ac-
tuators which track the sun and orient the heliostats(see Fig.
1) in such a way that the incident ray from the sun is always
reflected onto a fixed central receiver.

Figure 1: Schematic of the Az-El and T-A configurations

Though simple and economical, the Az-El method of
tracking has got numerous disadvantages [1]. In order to
overcome the short comings of the Az-El method, RIES, et
al [4], and ZAIBEL, et al [5], proposed the use of a target
aligned mount. CHEN, et al [6] and WEI, et al [7], derived
the formulas for sun tracking for the T-A heliostat. To in-
crease the concentration of incident solar radiation, the mir-
rors are typically canted–the arrangement of mirrors such
that it approximates a paraboloid of revolution. There are
different types of canting methods like on-axis, off-axis and
parabolic canting. A comprehensive study of these methods
has been made by BUCK, et al [8]. Even though canting
gives a better concentration ratio, it effectively modifies the
focal point and introduces what is called the off-axis aber-
ration as reported by RABL [9].

As shown in Fig. 1, the mirrors are supported by a sup-
port frame and a pedestal which is fixed to the ground. The
pedestal with the drives for the Az-El and the T-A heliostats
are typically placed at the geometrical center of the mirror
assembly. Due to this arrangement, the deflection of the
support frame and the mirrors due to self-weight and wind
load can go beyond the allowable slope error limit of 2-3
mrad [1] at the edges or corner of the mirror structure. In
order to tackle this problem, either the support frame has to
be made more rigid or smaller sized heliostats have to be
used. A larger number of smaller heliostats imply the use
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of more actuators and sometimes loss of harvested energy
due to blocking of one by another.

Both the azimuth-elevation and the target-aligned ar-
rangement are kinematically in a serial configuration and as
in any serial configuration the tracking error is the sum of
the errors of the two actuators. To reduce tracking error to
less than the required 2 mrad, accurate and expensive gear
boxes need to be used to achieve the large gear reduction
required to track the motion of sun (approximately radians
in 12 h). In this paper, we propose the use of a three-degree-
of-freedom parallel manipulator, namely the well-known 3-
RPS parallel manipulator. As in any general parallel manip-
ulator, the payload, in this case the mirror and support struc-
ture subjected to gravity and wind loading is supported at
more than one point. As a result the payload can be much
larger and the tracking accuracy will be governed by the
largest error in an actuator [10]. In spite of the use of an
extra actuator, as compared to the azimuth-elevation and
target-aligned method, it is expected that the overall cost of
the heliostat per unit area, especially for larger heliostats,
will be lower with the 3-RPS parallel manipulator. Google
Inc. [11] [12] also developed a novel method for changing the
position and orientation of the reflector(mirror). They pro-
pose the use of an electric cable drive system which is con-
stantly under tension. They also claim that this method will
reduce the power consumption, size and cost of the actuator
system.

This paper is organized as follows: In section 2, this
paper presents a brief description of the three-degree- of-
freedom parallel 3-RPS manipulator, the optics and kine-
matic equations relating the orientation of the mirror to the
motion of the sun in the sky and the motion of the actuated
joints required to focus the reflected sun radiation on to a
fixed receiver. In section 3, this paper presents the finite el-
ement based modeling of the mirror and structure to study
the effects of the wind loading and self-weight. In section 4,
this paper presents the kinematic and finite element analysis
results and demonstrate the advantages of using a parallel
manipulator for a heliostat. Finally, in section 5, the con-
clusions of the work and future directions are presented.

2 Geometry and kinematics of a 3-RPS manipulator
Fig. 2 shows the well-known three-degree-of-freedom

3-RPS parallel manipulator. It consists of a top moving
platform which is connected to a fixed base by means of
three actuated prismatic(P) joints Pi, i=1, 2, 3. At each of
the connection points, Si, i=1, 2, 3, at the top moving plat-
form, there is a spherical(S) joint and at each of the connec-
tion points at the fixed base, Ri, i=1, 2, 3, there is a rotary(R)
joint. The axes of the rotary joints are in the plane of the
fixed platform. The mirror assembly is fixed to the top mov-
ing platform using a support structure which is designed to
provide adequate stiffness such that deflections due to wind
loads and self-weight are within acceptable limits as men-
tioned earlier. Even though the mirror assembly can have
arbitrary shapes, for the purpose of kinematics only the tri-
angle formed by S1, S2 and S3 need to be considered.

The degrees of freedom of the manipulator can be found
out by using the well-known Grbler - Kutzbach equation:

do f = (N − J−1)+Fi,
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Figure 2: Schematic diagram of a 3-RPS heliostat

where λ is 6 for 3D and 3 for planar motion, N is the num-
ber of links including the fixed link, J is the number of joints
and Fi is the degrees of freedom of joint i. For the 3-RPS
manipulator, N=8, J=9 and Fi =15, and thus dof=3. This
implies that three actuators are required to move the top
platform [13] [14]. SRIVATSAN, et al [15], has further shown
that the three principal motions of the top moving platform
are rotation about X and Y axis and a linear motion along
the Z axis. For tracking the sun, the rotation capability
about the X and Y axes are used. The linear motion along
the Z axis can be used to bring the mirror assembly down
when high wind speeds are present or for optimization.

Referring to Fig. 2, let O be the origin of the fixed co-
ordinate system, X, Y, Z, and attached to the fixed-base
(ground) on the surface of the earth. The axes OX, OY,
and OZ point towards local East, local North and the zenith
directions, respectively. The foot of the receiver tower and
the origin, O, of the fixed coordinate system coincides with
each other. The point R denotes the location of the re-
ceiver where the incident solar energy is focused by the
mirror. Without loss of generality, we assume that the tri-
angle formed by the connection points Si, i=1, 2, 3 form an
equilateral triangle whose circum-radius is rp. The plane
of the moving top platform, containing the mirror assem-
bly, is defined by the normal given by the cross product of
the vectors and . From the laws of optics, a) the incident
ray from the sun and the reflected ray to the receiver make
equal angle θ with the normal and b) the incident ray, the
normal and the reflected ray lie on a plane

Let l1, l2 and l3 denote the lengths of the prismatic joints
at any instant of time. Without loss of generality, we as-
sume that the revolute (R) joints at the fixed base are placed
at the corners of an equilateral triangle whose circum-radius
is rb. The centroid of this equilateral triangle is O1 which

2



is at a distance, D, from O and at an angle ψ with respect
to the OX axis. The co-ordinate system at O1 with axis
{X1,Y1,Z1} is described with respect to the fixed coordi-
nate system by a rotation about Z axis and a translation
along

−−→
OO1. The coordinate system at G is denoted with

{x,y,z} and the vector
−−→
O1G is denoted by [xc,yc,zc]

T . The
homogeneous transformation matrix [T ] which relates the
coordinate system at O1 and G can be described by,

[T ] =

n1 o1 a1 xc
n2 o2 a2 yc
n3 o3 a3 zc
0 0 0 1


where the column vectors (n1,n2,n3)

T , (o1,o2,o3)
T and

(a1,a2,a3)
T determine the orientation of the moving plat-

form.

2.1 Kinematics of a 3-RPS heliostat
In the kinematics of a 3-RPS manipulator, there are two

well-known problems. In the direct kinematics problem,
the prismatic joint variables l1, l2 and l3 are known and the
position vector (xc, yc, zc)T and the orientation of the top
platform or T is to be found out. In the inverse kinematics
problem, for a given T the prismatic joint variables need to
be obtained. For sun tracking, we are primarily interested
in the inverse kinematics of the 3-RPS manipulator. The el-
ements of the transformation matrix can be computed from
the knowledge of suns direction vector, the location of the
central receiver tower and the location of the heliostats in a
field. Once the transformation matrix T is found out, the leg
lengths of the manipulator can be calculated as a function
of time.

The unit vector pointing to the sun is denoted by
−→
GS and

is obtained by knowing the azimuth and elevation angles
(The azimuth and elevation angle of the sun depends on the
time of the day and the latitude and longitude of the place on
the surface of the Earth. This is available from websites [16]

or from programs available in literature). These two angles,
as a function of time, completely describe the apparent mo-
tion of the sun in the sky. Since the 3-RPS has three degrees
of freedom and the tracking of the sun requires only two
variables, there are several constraint equations relating the
9 unknowns in the transformation matrix T. As mentioned
earlier the rotation about the X and Y axis are used for ori-
enting the top platform and one can choose the vertical mo-
tion of the top platform, zc arbitrarily. To obtain the other
constraints we proceed as follows.

As for any transformation matrix, we can write five con-
straint equations as

n2
1 +n2

2 +n2
3 = 1 (1)

o2
1 +o2

2 +o2
3 = 1 (2)

n1a1 +n2a2 +n3a3 = 0 (3)
n1o1 +n2o2 +n3o3 = 0 (4)
o1a1 +o2a2 +o3a3 = 0 (5)

The unit vector from the center of the moving platform to
the receiver is given by

−→
GR . The angle bisector which is

also the normal to the platform,
−→
GN , is given by

−→
GN=

−→
GS+

−→
GR

||
−→
GS+

−→
GR||

The vector
−→
GR is a function of xc,yc and the assumed value

of zc and since
−→
GS is known in terms of azimuth and eleva-

tion angles, the normal
−→
GN is also a function of the azimuth

and elevation angles of the sun and xc,yc and the assumed
value of zc. This implies that the direction cosines a1,a2

and a3 of the normal vector
−→
GN are functions of five vari-

ables.
The 3-RPS configuration introduces additional three

constraints [4] given by

yc +n2rp = 0 (6)
n2 = o1 (7)

xc =
rp

2
(n1 −o2) (8)

where rp is the distance of the vertices from the centre
of the moving platform. Thus there are 8 equations in 8
unknowns, i.e., {xc,yc,n1,n2,n3,o1,o2,o3}. From equa-
tions (6) and (7),

n2 = o1 =
−yc

rp

and from equation (8),

o2 = n1 −
2xc

rp

Eliminating n2, o1 and o2, we get

n2
1 +(

yc

rp
)2 +n2

3 = 1 (9)

(
yc

rp
)2 +(n1 −

2xc

rp
)2 +o2

3 = 1 (10)

n1a1 −
yc

rp
a2 +n3a3 = 0 (11)

−2n1
yc

r
+

2xcyc

r2
p

+n3o3 = 0 (12)

−yc

rp
a1 +(n1 −

2xc

rp
)a2 +o3a3 = 0 (13)

Thus we can arrive at 5 equations in 5 unknowns, i.e.,
(n1,n3,o3,xc and yc) which can be further reduced by sub-
stitution and using Bezout’s method of elimination. Finally
we can get two equations in xc and yc given in equation (14)
and equation (15) below. Equations (14) and (15) are nu-
merically solved for xc and yc in MATLAB R⃝ using the in-
built routine fsolve [18] for a given a1,a2 and a3. The two
equations are as follows:.

d1x2
c + e1xc + f1 = 0, (14)

d2x2
c + e2xc + f2 = 0, (15)

3



where

d1 =−12
yc

2a2
2

a12r4 −4
yc

2

r4 −4
yc

2a2
4

a14r4 +4
a2

2

r2a32

−4
yc

2a2
4

r4a32a12 +4
a2

2

a12r2 −8
a3

2yc
2a2

2

a14r4 −4
yc

2a2
2

r4a32

−4
a3

4yc
2

a14r4 −8
a3

2yc
2

a12r4

e1 =−4
a1yc

3a2

r4a32 −4
a2

5yc

a13a32r2 +4
yca2

3

r2a1a32

−4
a3

2yca2

a13r2 +4
yc

3a2
5

r4a13a32 −8
yca2

3

a13r2 −4
yc

3a2

r4a1
+4

yc
3a2

3

r4a13

f1 =
yc

2

rp2 −5
yc

4a2
4

rp4a14 −
a2

2

a12 +
yc

4a2
4

rp4a12a32 +
a2

6yc
2

a14a32rp2+

4
a3

4yc
2

a14rp2 −4
a3

4yc
4

rp4a14 +4
a3

2yc
2

a12rp2 −8
a3

2yc
4

rp4a12 −5
yc

4

rp4−

a1
2yc

4

rp4a32 −6
yc

4a2
2

rp4a12 +8
a3

2yc
2a2

2

a14rp2 −8
yc

4a3
2a2

2

rp4a14 +

yc
4a2

2

rp4a32 +5
yc

2a2
4

a14rp2 −2
yc

2a2
4

rp2a12a32+

2
yc

2a2
2

a12rp2 +
yc

2a2
2

rp2a32 − yc
4a2

6

rp4a14a32

d2 =−4
a3

4yc
2

a14rp4 −4
a2

4yc
2

a14rp4 −4
a2

4yc
2

rp4a32a12

+4
a2

4

rp2a12a32 −8
a3

2yc
2

a12rp4 +4
a2

2

rp2a12 −8
a3

2a2
2yc

2

a14rp4

−4
a2

2yc
2

rp4a32 −12
a2

2yc
2

a12rp4 −4
yc

2

rp4

e2 =−4
a1yc

3a2

rp4a32 −4
a2

5yc

a13a32rp2 +4
yca2

3

rp2a1a32 −4
a3

2yca2

a13rp2

+4
yc

3a2
5

rp4a13a32 −8
yca2

3

a13rp2 −4
yc

3a2

rp4a1
+4

yc
3a2

3

rp4a13

f2 =
yc

2

rp2 −5
yc

4a2
4

rp4a14 −
a2

2

a12 +
yc

4a2
4

rp4a12a32 +
a2

6yc
2

a14a32rp2+

4
a3

4yc
2

a14rp2 −4
a3

4yc
4

rp4a14 +4
a3

2yc
2

a12rp2 −8
a3

2yc
4

rp4a12 −5
yc

4

rp4−

a1
2yc

4

rp4a32 −6
yc

4a2
2

rp4a12 +8
a3

2yc
2a2

2

a14rp2 −8
yc

4a3
2a2

2

rp4a14 +
yc

4a2
2

rp4a32

+5
yc

2a2
4

a14rp2 −2
yc

2a2
4

rp2a12a32 +2
yc

2a2
2

a12rp2 +
yc

2a2
2

rp2a32 −
yc

4a2
6

rp4a14a32

As mentioned earlier a1, a2 and a3 are the direction
cosines of the vector

−→
GN and are dependent on the azimuth

and elevation of the sun (or
−→
GS ) and xc, yc and the as-

sumed value of zc. The computed xc and yc values along
with the arbitrarily chosen value for zc give the vector and
all the other unknowns in the transformation matrix can be
obtained.

2.2 Determination of leg lengths
From the geometry of the 3-RPS manipulator, the co-

ordinates of the revolute joints with respect to {X1,Y1,Z1}
are given by

−−−→
O1R1 = [rb,0,0]T ,

−−−→
O1R2 = [− 1

2 rb,
√

3
2 rb,0]T

and
−−−→
O1R3 = [− 1

2 rb,−
√

3
2 rb,0]T and the co-ordinates of

the spherical joints with respect to {x,y,z} are given
by

−−→
GS1 = [rp,0,0]T ,

−−→
GS2 = [− 1

2 rp,
√

3
2 rp,0]T and

−−→
GS3 =

[− 1
2 rp,−

√
3

2 rp,0]T . The position vector of the spherical
joints with respect to the co-ordinate system {X1,Y1,Z1} is
given as[−−→

O1Si
1

]
= [T ]

[−→
GSi
1

]
The leg lengths can be found out as shown in reference [13]

as

li = ||−−→O1Ri −
−−→
O1Si||

where i = 1,2,3 and || represents the norm of the vector.In
the next section, we present a finite element method based
modeling of the mirror and the support structure to deter-
mine deflections due to wind loading and self weight.

3 Finite element modeling of mirror and support struc-
ture
The finite element analysis of the mirror and support

structure is done in ANSYS R⃝ Workbench [19]. The ele-
ment types used are SOLID186 and SOLID187 with three
degrees of freedom per node. Program controlled automatic
meshing is enabled for the analysis. The mesh size is re-
fined in each iteration until convergence is achieved.

The deformation of the mirror and support structure is
found out for its self-weight and for a survival wind speed,
v of 22 m/s and an operational wind speed, v of 10 m/s.
The guidelines for wind load calculation are given in PE-
TERKA, et al [20] [21]. The structure is kept vertically so
that the worst case scenario can be simulated. The factor
of safety(FoS) used for the analysis is 2. The uniform wind
load(P) on the surface of the mirror is calculated by using
the equation

P =
1
2

Cdρv2FoS

where Cd = 1.18 is the drag coefficient and ρ is the den-
sity of air assumed to be 1.25 kg/m3 (see Fig. 3). The
mirror is assumed to be made of float glass weighing 10
kg/m2 and we have created models of various sizes – re-
sults for 2m× 2m, 3m× 3m and 5m× 5m are presented.
We have attempted various configurations of support struc-
tures and supporting material, made of low carbon steel,
of different cross-section and wall thickness. The CAD
model of the support structure and the mirror was made us-
ing SolidWorks R⃝ [22] and the two were mated to obtain a
single object and then ported to ANSYS R⃝Workbench for
finite element analysis to obtain the stresses and deforma-
tion due to the wind and self-weight loading. The goal of
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Figure 3: Uniform wind load acting on the mirror

the continuing study is to obtain the lightest possible sup-
port structure which satisfies the maximum deformation re-
quirements and thus reduce material cost. We present rep-
resentative results in the next section.

4 Simulation results
In this section, we present numerical simulation results

for the motion of the heliostat to track the sun. We also
present finite element analysis to determine deflection of
various sized mirrors due to wind load and self-weight. As

Figure 4: Azimuth and Elevation angles for May 6th
2013 for Bangalore

mentioned earlier the observed motion of the sun in the sky
depends on the date and time of the year and also on the

Figure 5: Motion of 3-RPS heliostat with time

latitude and longitude of the location on Earth. We present
simulation results for 6th of May 2013 and for Bangalore,
India (Latitude 120 58′ 13” N and Longitude 770 33′ 37” E).
The Azimuth and Elevation angles of the sun for the same
day and for the same place is shown in Fig. 4. The motion
of the 3-RPS based heliostat for different instants of time is
simulated in MATLAB R⃝ and is shown in Fig.5.

For rp equal to 0.9 m and rb equal to 1m, the leg lengths
(actuated joints) of the 3-RPS based heliostat are computed
and is plotted for summer solstice (June 21) and winter sol-
stice (December 21) and is shown in Figs. 6 and 7. The
central receiver tower for the above calculations is kept at
(0, 0, 65)m with respect to the fixed co-ordinate system. It
can be seen that the leg lengths change during the day and
the plot of the leg length variation also changes with the
season. Although not shown, the change in the leg lengths
also depend on the location of the heliostat in the solar field.
Such simulations of the motion of the heliostat can be used
to choose the stroke of the linear actuator which will change
the leg lengths.

Figure 6: Leg length variation for summer solstice

Figs. 8 - 10 show the finite element analysis results for
three heliostats. Tables 1 and 2 show the maximum defor-
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Figure 7: Leg length variation for winter solstice

Figure 8: Deformation of a 2m x 2m mirror

mation and the weight of the support structure required in
each of the three heliostats for two different wind speed of
10 m/s and 22 m/s – the heliostat is designed to function
for wind speeds up to 10 m/s and must be able to withstand
wind speeds and gusts up to 22 m/s.

The details of the sections used for the finite element
analysis are as follows: :

1. Wind speed of 22 m/s

• For 2 m × 2 m the results are for square box
section of size 30 mm and wall thickness of 2
mm.

• For 3 m × 3 m the results are for square box
section of size 50 mm and wall thickness of 2
mm.

• For 5 m × 5 m the results are for square box
section of size 70 mm and wall thickness of 3
mm.

2. Wind speed of 10 m/s

Figure 9: Deformation of a 3m x 3m mirror

Figure 10: Deformation of a 5m x 5m mirror

• For 2 m × 2 m the results are for square box
section of size 20 mm and wall thickness of 2
mm.

• For 3 m × 3 m the results are for square box
section of size 30 mm and wall thickness of 2
mm.

• For 5 m × 5 m the results are for square box
section of size 50 mm and wall thickness of 2.5
mm.

The maximum stress values are not shown as they are
very small and the maximum deformation is of interest. For
comparison, we also made finite element models of each of
the three heliostat with single point support thus simulating
the currently used Azimuth-Elevation and Target-Aligned
system of actuation. From the figures and tables, it can be
seen that the slope error is less than 2 mrad everywhere.

For meeting the 2 mrad maximum deflection criterion, it
can be seen that the weight of the support structure is much
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Table 1: Comparison of weight and deflection for 3-RPS
and Az-El heliostat (v=10 m/s)

Wind loading of 10 m/s

Mirror size
L x B / (m x m)

Support structure
weight
W/ kg

Deflection
δ / mm

3-RPS Az-El 3-RPS Az-El
2 x 2 15 20.94 1.93 1.87
3 x 3 45 53.53 2.45 2.65
5 x 5 198 356.97 4.90 4.74

Table 2: Comparison of weight and deflection for 3-RPS
and Az-El heliostat (v=22 m/s)

Wind loading of 22 m/s

Mirror size
L x B / (m x m)

Support structure
weight
W/ kg

Deflection
δ / mm

3-RPS Az-El 3-RPS Az-El
2 x 2 30 35.50 1.82 1.93
3 x 3 93 181.20 2.66 2.87
5 x 5 535 1332.55 4.92 4.74

less with the three point support available when the parallel
3-RPS manipulator is used. The reduction in weight varies
from 15% to 60% when compared with the Az-El config-
uration with more reduction in weight for the larger 5m ×
5m configuration.

5 Conclusions and challenges ahead
1. The kinematic equations of the parallel 3-RPS manip-

ulator were obtained. It is shown that the 3-RPS ma-
nipulator can be used for tracking the sun in concen-
trated solar power systems.

2. Based on a finite element analysis of the 3-RPS based
heliostat it is shown that the support structure is 15%
to 60%less as compared to the existing Azimuth-
Elevation or Target-Aligned configurations used in
current heliostats. Alternately, for a given weight of
the support structure and pointing accuracy require-
ment, the 3-RPS heliostat can carry a larger mirror.

3. Due to the lower weight, the 3-RPS based heliostat
is expected to be less expensive. The 3-RPS based
heliostat is also expected to be more accurate due to
its parallel structure.

The work is continuing. One of the major challenges is
to find a good way to fix the mirror(s) to the support struc-
ture and to obtain an optimum value for the radius of the
circumscribing circle rp. A change in rp value not only
changes the stroke of the linear actuators but also the max-
imum deformation at the edges of the mirror. If the value
of rp is large, the prismatic joints have to be moved more

to get the required orientation of the moving platform and
if it is less, then the deformation at the edges will be larger.
Another issue is to make use of the third degree of free-
dom available in the 3-RPS manipulator, namely the trans-
lational motion along the vertical direction, in interesting
ways or optimizing an useful objective function

Acknowledgment
This research is based upon work supported in part

by the Solar Energy Research Institute for India and the
U.S. (SERIIUS) funded jointly by the U.S. Department of
Energy subcontract DE AC36-08G028308 (Office of Sci-
ence, Office of Basic Energy Sciences, and Energy Ef-
ficiency and Renewable Energy, Solar Energy Technol-
ogy Program, with support from the Office of Interna-
tional Affairs) and the Government of India subcontract
IUSSTF/JCERDCSERIIUS /2012 dated 22nd Nov. 2012.

The authors would also like to thank Mohit Acharya
who helped in obtaining results relating to maximum de-
flection of the mirror assembly for the Azimuth-Elevation
configuration.

References
1. VANT-HULL L L. Chapter 8 Central tower con-

centrating solar power(CSP) systems[M/OL]//Keith
Lovegrove and Wes Stein, eds. Concentrating solar
power technology. Philadelphia: Woodhead Publishing,
2012: 240283. http://www.sciencedirect.com/science/
article/pii/ B978184569769350008X.

2. KOLB G J, SCOTT A J, MATTHEW W D,
et al. Heliostat cost reduction study[M/OL].
New Mexico: Sandia National Laborato-
ries, 2007. http://prod.sandia.gov/techlib/access-
control.cgi/2007/073293. pdf.

3. HBERLE A. Chapter 19 Concentrating solar technolo-
gies for industrial process heat and cooling[M/OL]//
Keith Lovegrove and Wes Stein, eds. Concentrat-
ing solar power technology. Philadelphia: Woodhead
Publishing, 2012: 602619.http://www.sciencedirect.
com/science/ article/pii/B9781845697693500194.

4. RIES H, SCHUBNELL M. The optics of a two-stage
solar furnace[J]. Solar Energy Materials, 1990, 21(23):
213217.

5. ZAIBEL R, DAGAN E, KARNI J, et al. An astig-
matic corrected target-aligned heliostat for high concen-
tration[J]. Solar Energy Materials and Solar Cells, 1995,
37(2): 191202.

6. CHEN Y T, CHONG K K, BLIGH T P, et al. Non imag-
ing focusing heliostat[J]. Solar Energy, 2001, 71(3):
155164.

7. WEI Xiudong, LU Zhenwu, YU Weixing, et al. Track-
ing and ray tracing equations for the target-aligned he-
liostat for solar tower power plants[J]. Renewable En-
ergy, 2011, 36(10): 26872693.

8. BUCK R, TEUFEL E. Comparison and optimization of
heliostat canting methods[J]. ASME Journal of Solar
Energy Engineering, 2009, 131(1): 011001 (8 pages).

9. RABL A. Active solar collectors and their applica-
tions[M]. New York: Oxford University Press, 1985.

7



10. MERLET J P. Parallel robots[M]. 2nd ed. Dordrecht:
Springer, 2006.

11. HOpS: The heliostat optical simulation[OL].
Mountain View, CA: Google Inc., 2012.
http://hops.googlecode.com/svn/trunk/ doc/hops.
html.

12. RE¡C: Heliostat cable actuation system de-
sign[OL]. Mountain View, CA: Google Inc. 2012.
http://www.google.org/pdfs/google˙ heliostat˙ ca-
ble˙actuation.pdf.

13. GHOSAL A. Robotics fundamental concepts and anal-
ysis[M]. New Delhi: Oxford University Press, 2006.

14. LEE K M, SHAH D. Kinematic analysis of three de-
grees of freedom in-parallel actuated manipulator[J].
IEEE Journal of Robotics and Automation, 1988, 4(2):
354360.

15. SRIVATSAN R A, BANDYOPADHYAY S, GHOSAL
A. Analysis of the degrees-of-freedom of spatial parallel
manipulators in regular and singular configurations[J].
Mechanism and Machine Theory, 2013, 69: 127141.

16. BOWDEN S, HONSBERG C. Pveduca-
tion.org[OL]. Tempe, AZ: Solar Power Labo-
ratory, Arizona State University Research Park,
2014.http://pveducation.org/pvcdrom/properties-of-
sunlight/azimuth-angle.

17. SALMON G. Lessons introductory to modern higher
algebra[M]. 5th ed. Chelsea Publishing Co., 1986.

18. MATLAB version 7.12.0(R2011a)[CP]. The Math-
Works Inc., Natick, MA, 2012.

19. ANSYS Workbench version 14.0[CP]. Ansys Inc.,
Canonsburg, PA, 2011.

20. PETERKA J A, HOSOYA N, BIENKIEWICZ B, et
al. Wind load reduction for heliostats[M/OL]. Colorado:
Solar Energy Research Institute, 1986: SERI/STR-
256-2859, DE86010703. http://www.nrel. gov/ docs/
legosti/old/2859.pdf

21. PETERKA J A, TAN Z, BIENKIEWICZ B, et al.
Wind loads on heliostats and parabolic dish collec-
tors[M/OL]. Colorado: Solar Energy Research In-
stitute, 1988: SERI/STR-253-3431, DE89000852.
http://www.nrel.gov/docs/legosti/old/3431.pdf.

22. SolidWorks 2013[CP]. Dassault Systems, Waltham,
MA, 2013.

Biographical notes
ASHITH SHYAM R B was born in 1984 and is currently

a research scholar at Indian Institute of Science, Bangalore,
India. He received his master degree from Indian Institute
of Science in 2011. His research interests are in the field
of dynamics, optimization, vibrations and robotics. E-mail:
shyamashi@gmail.com

GHOSAL A was born in 1959 and is currently a profes-
sor at Department of Mechanical Engineering, Indian In-
stitute of Science Bangalore, India. He received his PhD
degree from Stanford University in 1986. His research in-
terests are in the areas of kinematics, dynamics, control and
design of robots and other computer controlled mechanical
systems. E-mail: asitava@mecheng.iisc.ernet.in

8


