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Abstract 

Damping characteristic of a honeycomb sandwich laminate is reported to improve when the empty cells 
of the honeycomb core are filled with damping particles. The enhancement of the damping is a result of 
the transfer of kinetic energy from the host structure to the damping particles through impact and friction 
mechanism. The energy of the damping particles is dissipated by inelastic collision and friction among 
themselves and by collisions with the walls of the honeycomb cell. The impact damping depends on 
several parameters, prominent amongst them are the material and geometric properties of the damping 
particles, cell volume to filled-particle volume ratio, area and the location of the area of the structure 
treated with damping particles and level and type of excitation. The effect of these parameters can be 
studied using the discrete element method (DEM) where the equations of motion of each particle is 
established by considering the contact forces and moments from the surrounding particles and boundary 
contacts and the motion of each particle and its interaction with surrounding boundaries is tracked and 
energy dissipation through impact and friction is computed. The use of DEM for large structures, where 
the number of particles is very large, is inefficient and impractical. In this work DEM is applied on a 
small coupon of honeycomb sandwich and a spline model for equivalent viscous damping is obtained. 
Then the model is applied to maximize the equivalent damping coefficient using sequential quadratic 
programming (SQP) subject to a limit on the ratio of mass of the damping particles to host structure, 
and the area at which to apply the damping particles 

1.  INTRODUCTION 

Honeycomb sandwich composite are widely used in aerospace industries owing to its light weight 
and excellent mechanical properties. The natural damping of honeycomb sandwich composites is very 
small which results in excessive vibration responses at resonance frequencies. Taking advantage of the 
porous nature of the core, the damping can be improved by inserting the granular particles [1, 2]. This 
technique of enhancing damping is called particle impact damping. This method of enhancing the 
damping is extremely simple and requires effectively least modification of host structure. The particle 
impact dampers (PID) are insensitive to environment, low cost and effective over wide temperature and 
frequency range. The energy dissipation mechanism in PID is highly nonlinear and depends on a host 
of parameters: size, shape, number and material of the particles; enclosure relative geometry and 
material; mass ratio; volumetric packing fraction; location of PD with respect to structural mode; and 
the level of response. The dissipation of energy takes place mainly through inter-particle and particle-
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wall impact and friction. The dominant mode of dissipation depends on the relative proportion of 
different parameters. It is extremely difficult to evolve a model to capture the entire interactions taking 
place. Most of the researchers have tried to quantify the damping enhancement due granular particles 
experimentally [3-5]. Therefore, extensive study of its dependence on the important parameters is not 
reported. The modelling of the dynamics of the damping particles coupled with the dynamics of the host 
structures is done using the DEM. The DEM is based on Newtonian mechanics where equation of 
motion of each particle is established by considering the contact forces and moments from the 
surrounding particles and boundary contacts. Thus, it allows the exploration of interactions taking place 
when the vibration of host structure is transferred to damping particles and thereafter dissipated as heat 
and sound. Generally, the honeycomb sandwich panels used are large and thus number of damping 
particles are required to effect the damping characteristic. The DEM computation involves integration 
of motion of each particle, along with motion of the host structures. The solution process involves 
detection of contact and thus generation of new set of equations at each step of time as the contact forces 
are required to solve motion of particles and structures. For the larger problems where millions of 
particle motion is required to be solved coupled with the dynamics of the structure, the DEM becomes 
inefficient. Therefore, in this work, DEM is applied on a honeycomb sandwich coupon of smaller size 
filled with damping particle. The coupon is subjected to vibration loads and the energy dissipated is 
estimated and further its dependence on the other parameter is studied. An equivalent damper which 
dissipates same amount of energy per cycle is estimated which could be readily integrated like a proof 
mass actuator enabling prediction of structural responses without solving the DEM. A spline 
multivariable model of the equivalent viscous damper is obtained and optimization is performed to 
maximize the value of equivalent viscous damping coefficient.  

2. MATHEMATICAL FORMULATIONS 

To quantify the dissipation of energy by damping particles filled in the cells on honeycomb, a small 
square shaped coupon as shown in Fig. 1, is considered. 

 

Figure 1. Honeycomb sandwich coupon and local 
coordinate system 

  
A local coordinate system with origin at the geometric center of the cell, x  axis along the  L -  

direction of the core and y axis is along the W – direction  of the core and  parallel to global axis is 

chosen. As the coupon is small in dimension, it can be assumed that the walls of the honeycomb cells 
do not rotate or deform when the coupon is vibrated in transverse direction. The equations of the cell-
walls in local coordinate system can written as: 
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where h  is the thickness of the core and R  is the radius of circumscribing circle, shown in Fig. 1. 
As the damping particles are filled in the cells, they are constrained to move inside the cells when the 
coupon is vibrated, as shown in Fig. 2. The damping particles in the cells, collide and rub with the walls 
of the cells and face-sheets as well as between themselves. 

 

 
Figure 2. Damping particles in the cell 

 
The equation of motion of the coupon can be written as:  
 

 d e
cm c  w w F F    (2) 

 
where w  and w  are acceleration and velocity of the coupon in z  direction, respectively. Mass of the 

coupon is represented by cm  whereas dF and eF  are the particle damping force and external excitation 

force, respectively. The particle damping force dF is the summation of the force in excitation direction 
due to the impact and rubbing of the damping particles with walls of the cell. If the cell i  contains n  
particles which are in contact with the cell wall and there are N cells in the coupon  then the impact 
damping force on the coupon can be written as: 
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The total impact damping force is obtained by summing the forces arising from the impact of particles 
and walls of the cells. A typical contact force due to impact of particle i with particle j or with the wall 

can be written as 

 n t
ij ij ij= +f f f   (4) 

where t
ijf  and n

ijf  are the tangential and normal components of the contact force, respectively. The 

normal contact force n
ijf  is modeled by the Hertz’s nonlinear dissipative model which was proposed by 

Tsuji et al. [6] and has been used by researchers [7-9] in a particle damping problems with reasonably 
good results. The normal contact force can be written as. 

 ( ) ( )( )f n
3/2 1/4n *

ij ijn ij ij n ij ijk m kd a d d= - +    (5) 

where nk  is the Hertz’s constant, ijd is the indentation, shown in Fig. 3, and a is the damping 

constant which is a nonlinear function of the normal coefficient of restitution ne [6] and given as  

 ( )
( )2 2

5
ln

ln
n

n

e
e

a
p

= -
+

  (6) 

The equivalent mass *
ijm  in Eq. (5) is defined as  

 * i j
ij

i j

m m
m

m m
=

+
  (7) 

where im  is the mass of the particel i .The Coulomb’s law has been used by many researcher in 

DEM [7, 8] to model the tangential contact force ij
tf  for predicting vibration responses  and is given as. 

 f f
V

V

t
ijt n

ij ij t
ij

m= -   (8) 

wherem  is the coefficient of friction and t
ijV is the relative tangential velocity of contact point.  Let iv

and jv be the linear velocity of the center of mass and i and j be the angular velocity of particles i and

j , respectively. Then the relative velocity at the center of contact area of particle i with respect to 

particle j  can be written as 

 ( )ij i j ji i j ijr r= - + + ´V v v n    (9) 

and the tangential component t
ijV  can be written as 

 ( )t
ij ij ij ij ijV = V - V n n.   (10) 

 
To evaluate the contact forces on the wall of the cell, the kinematics of impacting particle need to be 

known. The equation of motion of the particle i  that is in contact with 1n  number of surrounding 

particles and 2n points with cell walls can be written as: 

 
1 2

pi i pi ij iw
1 1

n n
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= - +å åp g + f fm m   (11) 
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where pim , ir ,  and iI are the mass, radius and  mass moment of inertia of the particle i , respectively; 

ip  is the position vector of the center of mass and i the angular displacement of the particle i . The 

unit vectors ijn and iwn point from the center of the particle i towards the center of the particle j and 

towards the point of contact with cell wall. The acceleration due to gravity is represented by g  and ijf

and iwf are the forces on particle i due to interaction of particle j  and by the wall of the cell, respectively. 

The normal relative displacements of the center of mass of the particle i  with respect to the particle j  

when they are in contact with each other or with the wall are represented by, ijd and iwd , respectively.  

 

Figure 3. Impact of two damping particles 

The energy dissipated by the damping particle in normal contact and coulomb friction can be written 
as: 

  * 1/4 t t
ij ij

1 0

.f V
cc

tN

d ij n ij ij
k

E m k dt   


      (13) 

where dE  is the  energy dissipated by damping particles,
c
t is the contact duration and 

c
N  is the number 

of contacts. The equivalent viscous damping coefficient can be obtained from the Eq. (13) as. 
  

 2
d

eq

E
C

W
   (14) 

where eqC  is the equivalent viscous damping coefficient,   is the excitation frequency and W  is 

amplitude of the displacement. 
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3. COMPUTING DAMPING USING DEM 

An aluminium honeycomb sandwich coupon of dimension 100 mm x 100 mm is considered for 
evaluation of energy dissipation using DEM and subsequently computing the equivalent viscous 
damping constants. The coupon has 441 cells and each cell can accommodate 36 damping particles 
when filled to 100%. Acrylic damping particle are filled in the cells of honeycomb. The geometric and 
material properties of the damping particles and honeycomb sandwich is given in Table 3 and Table 4, 
respectively. 

 
Table 1 Properties of damping particles 

Properties Units Aluminum Acrylic 

Radius  mm 1 1.25 

Density  kg/m3 2850 1180 

Young's modulus  N/m2  70 x 109  2.84 x 109 

Poisson’s ratio  ‐  0.33  0.402 

Material pairs  ‐  Coefficient of sliding friction  Normal restitution coefficient 

Aluminium – aluminium  ‐  0.50  0.85 

Acrylic – acrylic  ‐  0.096 0.70 

Acrylic – aluminium  ‐  0.14 0.70 

 

Table 2 Properties of honeycomb coupon 

Properties Units 
Face-sheet 

(AA 2024 T3) 

Honeycomb core 

(CR 3/16-5056-0.0007-P-32) 

Thickness  mm  0.25  25.4 

Density  kg/m3 2800 32.1 

Young's modulus  N/m2  72 x 109  = 10000xx yy zzE E E= =
 

Poisson’s ratio    0.33  0.3yzxy xzn n n= = =
 

Shear modulus  N/m2  ‐  8

8

10000
0.89 10
1.85 10

xy

yz

xz

G
G
G

=
= ´
= ´

 

Diameter of inscribing circle of hexagonal cell mm ‐ 4.76 
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The energy dissipated by the damping particles, when the coupon is excited with a constant amplitude 
sinusoidal acceleration of amplitude g  and frequency  , is computed using Eq. (13) for different fill 

fractions r . The equivalent viscous damping eqC  is computed using Eq. (14). Table 3 shows the 

computed values of equivalent viscous damping for different combinations of excitation and fill 
fractions. 
  

Table 3 Equivalent viscous damping coefficient computed using DEM  

  g r Ceq   g r Ceq   g r Ceq 

50  1  25  0.0009  50  5  25  1.0425  50  10  25  0.6449 

50  1  50  0.0072  50  5  50  0.4936  50  10  50  0.9719 

50  1  75  0.0169  50  5  75  0.6959  50  10  75  1.4471 

50  1  90  0.0282  50 5 90 1.4492 50 10 90 1.7163 

100  1  25  0.0036  100 5 25 1.5000 100 10 25 1.4048 

100  1  50  0.0247  100  5  50  0.9654  100  10  50  1.7566 

100  1  75  0.0784  100  5  75  1.5746  100  10  75  2.6750 

100  1  90  0.1314  100  5  90  1.6865  100  10  90  2.8160 

500  1  25  2.9428  500 5 25 8.6277 500 10 25 4.6368 

500  1  50  6.9911  500 5 50 14.0934 500 10 50 8.1613 

500  1  75  14.9472  500  5  75  19.9140  500  10  75  11.5414 

500  1  90  25.1659  500  5  90  24.8507  500  10  90  15.0455 

750  1  25  0.8868  750  5  25  11.3041  750  10  25  5.4388 

750  1  50  14.7637  750  5  50  22.4851  750  10  50  13.5106 

750  1  75  68.4725  750 5 75 32.1501 750 10 75 17.7975 

750  1  90  111.4007  750 5 90 38.9846 750 10 90 20.0345 

1000  1  25  3.6385  1000  5  25  17.8389  1000  10  25  7.0294 

1000  1  50  30.4235  1000  5  50  29.1117  1000  10  50  17.3705 

1000  1  75  123.5922  1000  5  75  46.1753  1000  10  75  24.6060 

1000  1  90  168.3460  1000 5 90 50.8938 1000 10 90 27.7986 
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4.1 Interpolation model for eqC   

The equivalent viscous damping coefficients eqC  computed using DEM and given in Table 3 shows 

that the eqC  depend prominently on excitation frequency, packing fraction and level of excitation. A 

multivariate spline is used to obtain the functional relation between the variables and eqC to obtain the 

intermediates values and to perform the optimization described in subsection 4.2. 
 

Figure 4. eqC with sine acceleration input of 2g 

 

Figure 5. eqC with sine acceleration input of 5g 

 

Figure 6. eqC with sine acceleration input of 8g 
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Figures 4-6 show that the eqC  distribution when acceleration amplitude is increased from 2 g to 8 g. 

It can be seen that for lower input excitation the eqC increases with packing ratio and frequency. 

However, at higher level of around 8g it tends to increase reaching maximum around 500 Hz and there 
after decreases for high packing fractions, more than 80%.  

 
 

 

Figure 7. eqC  with 25% packing fraction 

 

Figure 8. eqC  with 50% packing fraction 

 

Figure 9. eqC  with 80% packing fraction 
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4.2 Optimization   

The equivalent viscous damping constant per cell of the honeycomb can be written as a function of 
four variables as,   

  , , ,eq
c c

C
n f r w n

N
    (15) 

The function f  is a   spline interpolant derived based on DEM data. It can be seen that the eqC  per unit area 

or per cell is depending on the excitation acceleration and frequency which is characteristic of the 
operating environment. An optimization problem can be defined as: 

  

 

 

 
 

: , , ,

9
: 0

25
, , ,

, , ,

eq
c c

c b

c

c

C
maximize n f r w n

N

Subject to n r n

lb r w n

ub r w n









 







  (16) 

Since the damping particles add mass to the structure, a fixed mass of the damping particles, not 
more than 10% mass of the structure is desirable. Fixing the mass of the damping particles limits the 
number of damping particles to be used and an upper and lower bound for cN  is established. When each 

cell contains small number of damping particles that is the packing fraction r  is low, the number of cell 
filled are more, and therefore it is spread over a large area. The inverse relation between total mass of 
the damping particle and packing fraction can be obtained as: 

 
9

0
25 c bn r n    (17)   

Optimization was performed in the MATLAB using fmincon subroutine with sequential 
programming algorithm option. A maximization result is obtained by minimizing the negative of 
objective function using the said subroutine. Three different operating environment defined by 
frequency bands 250 – 300 Hz, 450 – 500 Hz and 750 – 800 Hz and corresponding excitation levels 5 – 
6 g, 1 – 2 g, and 4 – 6 g respectively. Figures 10 – 12 show the convergence with respect to iteration 
number for different starting vectors. A large number of starting vectors were tried to capture the global 
maxima. It was seen that algorithm would frequently converge to local optimal values. Figure 10 shows 
the convergence to one local and one global maxima. Only global optima iteration histories are plotted 
in Figures 11 and 12.  

The converged results for three load cases are given in Table 4. The fist load case shows that the 
maximum equivalent viscos damping is achieved at lower packing ration of 25% which will cover 1764 
cells of the honeycomb while third load case shows that optima value is obtained at 92% filling ratio 
covering 496 cells. The optimal values vary depending upon the operating conditions, and therefore 
choice of area and fill fraction should be made on average values of operating frequency and excitation 
amplitude.  

Table 4 Mechanical Properties 

Operating environment r (%) cn  eqC (N/m/s) 

250 – 300 Hz, 5 – 6 g   25  1764  20.6 

450 – 500 Hz, 1 – 2 g  42  1050  35.3 

750 – 800 Hz, 4 – 6 g   89  496  160.7 
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Figure 10. Iteration number vs objective function for 
load case – 1   

 

Figure 11. Iteration number vs objective function for 
load case – 2  

 

Figure 12. Iteration number vs objective function for 
load case – 3  
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5. CONCLUSIONS  

The equivalent viscous damping coefficient corresponding to the energy dissipated by the damping 
particles filled in a small coupon of honeycomb is studied with discrete element method and optimal 
values of the parameters on which the dissipation depends are obtained. The coupon is subjected to 
different levels of constant amplitude harmonic acceleration in frequency band of 50 – 1000 Hz with 
varying amount of damping particles in the cell. Equivalent viscous damping coefficient, obtained by 
equating the energy dissipated due to impact and friction, is found to depend on: fill fraction, amplitude 
and frequency of the input acceleration. A multivariate interpolation model of equivalent damping 
coefficient is worked out using spline interpolant. The interpolant was used to study the variation of 
equivalent viscous damping at intermediate values of variables and carryout optimization. Optimum 
values of the fill fraction and the number of cells to be filled with damping particles varies widely with 
operating conditions. A lower value of fill fraction at lower excitation level and lower frequency gives 
maximum damping coefficient while a higher value of fill fraction is more appropriate filling strategy 
for high frequency environments. 
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