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Abstract. Honeycomb sandwich laminates with aluminum and carbon fiber reinforce polymer (CFRP) face 

– sheets are widely used in spacecraft structures and aerospace industries. The damping behavior of such 

structures are reported to improve when the empty cells of the honeycomb core is filled with damping particles. 

The discrete-element-method (DEM) has been successfully used and found to give reasonably accurate 

estimate of the impact damping. The DEM is based on Newtonian mechanics where equation of motion of each 

particle is established by considering the contact forces and moments from the surrounding particles and 

boundary contacts or from any other source. The motion of each particle and its interaction with surrounding 

boundaries is tracked and energy dissipation through impact and friction is computed. The use of DEM for real 

structure where number of particles are of order 108 or more is inefficient and impractical to perform 

optimization. In this paper a damping model dissipating equivalent energy is presented for a system consisting 

of small honeycomb sandwich coupon filled with damping particles and has resonance frequencies beyond the 

bandwidth of the model. The coupon is subjected to a range of harmonic excitations (varying frequency and 

amplitude). The energy dissipated by the damping particles filled are estimated by DEM. The particle-particle 

and particle-wall impact is modeled using Hertz's non-linear dissipative contact model for normal component 

and Coulomb’s laws of friction for tangential component. Then the parameters of the equivalent damper are 

obtained which dissipates same energy. The damping model presented incorporates the effect of fill fraction, 

particle size and material as well as the amplitude and frequency of excitation. The comparison of the DEM 

model for some the load cases is done with the experimental data showing reasonably good agreement. The 

model presented could be readily incorporated in the FEM model like zero-stiffness proof-mass actuator and 

effect of impact damping can be studied without actually solving the equations of motion of the damping 

particles.  

Keywords. Impact damping, discrete element method, Honeycomb sandwich, granular damping particles, 

passive vibration isolation, spacecraft structure    

1. Introduction 

 

Sandwich composites with honeycomb core are widely used in aerospace industries owing 

to its light weight and excellent mechanical properties. However, in general, a honeycomb 

sandwich composite possesses very small, less than 2%, inherent structural damping which 

results in excessive resonance responses endangering the integrity of the structure and also 

the subsystems mounted on it. The damping characteristic of honeycomb is reported to 
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improve when granular particles are inserted in the empty cells of the honeycomb core [1]. 

This technique of enhancing damping is called particle impact damping. A particle impact 

damper (PID) is extremely simple to implement, insensitive to environment, low cost and 

effective over wide temperature and frequency range. A particle impact damper dissipates 

the energy of a vibrating system by impact and friction. The energy dissipation mechanism 

in PID is highly nonlinear and depends on a host of parameters: size, shape, number and 

material of the particles; enclosure relative geometry and material; mass ratio; volumetric 

packing fraction; location of PD with respect to structural mode; and the level of response. 

The dissipation of energy takes place mainly through inter-particle and particle-wall impact 

and friction. The dominant mode of dissipation depends on the relative proportion of 

different parameters. It is extremely difficult to evolve a model to capture the entire 

interactions taking place. There are many modelling techniques reported in literature for 

particle impact damping problem [2-5]. One of the method that is widely used in the particle 

assemblage simulation is discrete element method (DEM) [6]. The DEM alone takes into 

account the particle to particle level interaction enabling to study the dependence of energy 

dissipation on large number of parameters. The DEM is based on Newtonian mechanics 

where equation of motion of each particle is established by considering the contact forces 

and moments from the surrounding particles and boundary contacts or from any other source. 

The motion of each particle and its interaction with surrounding boundaries is tracked. For 

the larger problems where millions of particle motion is required to be solved coupled with 

the dynamics of the structure, the DEM becomes inefficient. Generally, honeycomb 

sandwich panels used are large and thus number of damping particle required to effect the 

damping characteristic is huge. Thus, the use of DEM is computationally very expensive. 

Therefore, in this work DEM is applied on a honeycomb sandwich coupon of smaller size 

filled with damping particle. The coupon is subjected to vibration loads and the energy 

dissipated is estimated and further its dependence on the other parameter is studied. An 

equivalent damper which dissipates same amount of energy per cycle is estimated which 

could be readily integrated like a proof mass actuator with enabling prediction of structural 

responses without solving.    

2. Mathematical Formulation 

A small square shaped coupon of the honeycomb sandwich, shown in Figure 1, is considered 

for the assessing the dissipation of energy by damping particles. The coupon is of 100mm x 

100mm x 25.4mm dimension. The coupon is very stiff; a normal mode analysis with free-

free boundary condition shows that the first natural frequency is at 6235.2 Hz and 

corresponding mode shape is shown in Figure 2. In this study where we intend to study the 

damping behavior up to 1000 Hz. The coupon is assumed to be rigid and therefore, cells of 

the honeycomb do not rotate and undergo deformation. The equations of the cell walls with 

respect to a local coordinate system, which is at the geometric center of the cell with axis 

parallel to the global axis, is shown in Figure 1, is given by Eqs (1). The x-axis of global 

coordinate system is along the L-direction of the core and y-axis is along the W-direction of 

the core. 
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Figure.1. Honeycomb coupon and axis definition 

 

Figure.2. First mode of the coupon 

The damping particles are constrained to move inside the cell as shown in Figure 3 when 

coupon is vibrated. The damping particles in the cells, collide and rub with the walls of the 

cells and face-sheets as well as between themselves. The rubbing and collision results in 

momentum transfer and energy dissipation. An impact results in normal and tangential 

forces, the normal force is modelled by Hertz’s nonlinear dissipative contact model defined 

as.                                                
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where nijd is the normal relative velocity of the center of particle i  with respect to the center 

of particle j  and a is the damping constant and a nonlinear function of the normal 

coefficient of restitution ne [7], defined as. 
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Figure.3. Motion of damping particles in a cell 

The elastic Hertz's constant nk  for spherical impacting bodies and sphere-plan wall is given 

in [8], and the equivalent mass *
ijm  in Eq. (2) is defined as                                                              

 * i j
ij

i j

m m
m

m m
  (4) 

The tangential contact force is modelled the coulomb’s law of sliding friction [8] that is 

easiest to implement and most efficient among all the models for tangential force  component 

computation in a contact process, given as 

 n
ijf f
V

V

t
ijt

ij t
ij

m   (5) 

where m  is the coefficient of friction and Vtij is the relative tangential velocity of contact 

points. The change in the velocity and evolution of the forces/moments during an oblique 

contact process is given in Figures 4 and 5.  Figures 4a-d present the velocity and forces 
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moments  when a damping particle collides with an velocity of   0 0.5 0.1−  m/s to the 

plane, / 2z h= − .Figures 4c and 4d show the effect of nonlinear dissipative terms present in 

the expression for normal force, due to this dissipative term the relative velocity is reaching 

to zero well before the end of the contact process which can be seen as small loop at the end 

of contact process. 

 
Figure.4. Change in velocities of a particle colliding walls of the cells  

The pre and post collision velocity and force distributions of the same damping particle 

colliding again with plan: 3 / 2 0y R− =  is given in Figures 5a-d. As it is known that the 

Coulomb’s model of friction force gives grossly erroneous results of post impact dynamics 

when the angle of incidence is small (less than a critical value that depends on material 

properties of impacting bodies, for ordinary material it is around 30 degree, see [8]). The 

tangential force oscillates due to change in the direction of the tangential velocity this 

phenomenon is clearly visible in time-tangential force plot in Figure 5d. It captures only 

gross-sliding and rolling phases and fails to predict the negative bounce for certain angles of 

incidence. However due to its simplicity and speed it is extensively used by researcher in 

vibration problems. 
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Figure.5. Change in velocities of a particle colliding walls of the cells (2nd collision)  

The motion of the DP in the cell can described by the force and moment equations as 
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where pim , ir ,  and iI are the mass, radius and  mass moment of inertia of the particle i , 

respectively; ip  is the position vector of the centre of mass and i the angular displacement 

of the particle i . The unit vectors nij and in w point from the centre of the particle i towards 

the centre of the particle j and towards the point of contact with cell wall. The acceleration 

due to gravity is represented by g  and fij and fiw are the forces on particle i due to interaction 

of particle j  and by the wall of the cell, respectively. The normal relative displacements of 

the centre of mass of the particle i  with respect to the particle j  when they are in contact 

c 
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with each other or with the wall are represented by, ijd and iwd , respectively. The DEM 

formulation assumes that the motion of any particle is affected by its immediate 

neighborhood contacts only. This implies that the time step chosen to integrate the equations 

of motion should be small enough so that the disturbance does not propagate beyond its 

immediate neighbor in single step and it must at least an order less than the contact period. 

In this work a time step 2 x10-6s is used.  

 

 

Figure.6. Energy dissipation prediction by equation 7 (1st and 2nd collision)  
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The energy dissipated per unit area by the contact forces during impact as result of vibration 

can be written as 
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Where ct  is the contact duration, cN  is the number of contacts , A  is the area of the coupon 

and dE  is the energy dissipated. The energy dissipated by Hertz’s and Coulomb’s forces for 

a single particle collision described above in two events are given in Figure 5.  

3. Criterion for PID performance 

The PID dissipates energy by Collison and friction which results in damping effect on 

structure as it takes energy from the structures. As the process being highly nonlinear the 

criterion for performance assessment should hold for harmonic as well as transient 

vibrations. Specific damping capacity (SDC) is one such parameter which is used for 

assessment of performance of a PID [9]. It is defined as  

 
E

E



=   (8) 

Where E  is the kinetic energy converted into heat during one cycle of vibration, and E  is 

the maximum kinetic energy during the cycle. If the structure is subjected to harmonic 

excitation of constant acceleration amplitude, then 

 
dE E =   (9) 

And E is given by 

 2

2

1

2
cE m a


=   (10) 

 The specific damping capacity is related to the loss factor as  / 2   and  to the linear 

damping as ( )ln 1 / 4 − − . 

4. Specific damping computation and experimental validation 

The specific damping capacity computation is performed for the acrylic damping particles. 

The properties of the damping particles are given in Table 1 and the properties of coupon is 

given in Table 2. The specific damping capacity is studies with respect to excitation 

acceleration level, frequency of excitation, and fill fraction as these are the parameters on 

which SDC is strongly dependent. It is reported in literature that the density of the DP effects 

the performance but in context of the honeycomb structures where it cannot be loaded with 

metallic particles as it will drastically increase the weight of the structure nullifying the 

advantage it offers due to its light weight. Therefore, in this study, light particle like acrylic 

is used and study with respect to density of DP is ignored.  
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Table.1. Properties of damping particles 
Properties Units Aluminum Acrylic 

Radius mm 1 1.25 

Density kg/m3 2850 1180 

Young's modulus  N/m2 70 x 109 2.84 x 109 

Poisson’s ratio - 0.33 0.402 

Material pairs  Coefficient of sliding friction Normal restitution coefficient 

Aluminium – aluminium  - 0.50 0.85 

Acrylic – acrylic  - 0.096 0.70 

Acrylic – aluminium  - 0.14 0.70 

Table.2. Properties of honeycomb coupon 

Properties Units 
Face-sheet  

(AA 2024 T3) 

Honeycomb core 

 (CR 3/16-5056-0.0007-P-32) 

Thickness mm 0.25 25.4 

Density kg/m3 2800 32.1 

Young's modulus  N/m2 72 x 109 = 10000xx yy zzE E E  

Poisson’s ratio  0.33 0.3yzxy xzn n n  

Shear modulus N/m2 - 
8

8

10000
0.89 10
1.85 10

xy

yz

xz

G
G
G

 

Diameter of inscribing circle of 

hexagonal cell 
mm -  4.76 

1.1. Experimental setup 

The coupon was excited by a modal shaker (make: M B Dynamics, model: 2050A, Force 

rating: 100N) fixed at center of the coupoun. A high sensitivity impedance head (make: PCB, 

model: 288D01) for measuring the input acceleration and force sensor was attached at the 

top of the stinger connecting the modal shaker to the coupon. For measurement of velocity 

a PDV-100 Portable Digital Vibrometer was used. A 32 channel data acquisition system 

(DAS) from LMS was used for data acquisition and LMS Test Lab software was used for 

data processing. The setup is shown in Figure 7.  

1.2. Computing the loss factor using experimental data 

The loss factor can be computed from the direct measurement of velocity by laser vibrometer 

and the input force sensor fixed between the stinger and coupon. Let the f(t) and v(t) 

represents the instantaneous signals from the from force sensor and laser vibrometer, 

respectively,  then the complex power Pc can be expressed as [10, 11] 

 
( ) ( )
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T
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T
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 
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=

  
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  
    (11) 

   The loss factor can be obtained from the complex power Pc as it is the ratio of the real and 

imaginary parts of the complex power given by Eqn. (11). The loss factor can be related to 

SDC as discussed in section 3. The SDC obtained for some of the load cases is given Table 

3. Three levels of harmonic input acceleration of constant amplitudes of  1 5 10 g at 
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frequency points  50 100 500 1000 Hz for varying fill fractions are computed using the 

DEM and results are given in Table 3 along with measured values. The coupon contains 441 

cells and each cell can accommodate a maximum of 36 damping particles (100% fill 

fraction). As the DEM takes 12 to 16 hrs of computational time for each load case, and SDC 

depends on range of parameters predominantly on fill fraction frequency of excitation and 

input acceleration amplitude, a multivariate interpolation function is proposed. The 

interpolating function is obtained using the data given in the Table 3 and the values of SDC 

at intermediate data points are generated using the interpolation function. 

 

 
Figure.7. Experimental setup  
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Table.3. SDC 
Frequency 

(Hz) 

Acceleration 

(g) 
Packing ratio 

Specific damping capacity 

Method (DEM) 
Experimental 

50 

1 

25 1.5702e-4  

50 0.0018 0.10 

75 0.0051  

90 0.0089  

5 

25 0.2210  

50 0.1856 0.23 

75 0.2904  

90 0.3490  

10 

25 0.1150  

50 0.2783 0.31 

75 0.3914  

90 0.4832  

100 

1 

25 2.9705e-4  

50 0.0032 0.01 

75 0.0109  

90 0.0195  

5 

25 0.1836  

50 0.1891 0.21 

75 0.3158  

90 0.3190  

10 

25 0.1211  

50 0.2648 0.32 

75 0.3849  

90 0.4321  

500 

1 

25 0.0034  

50 0.1443 0.22 

75 0.4963  

90 0.6503  

5 

25 0.1965  

50 0.5417 0.65 

75 0.8044  

90 0.8359  

10 

25 0.0975  

50 0.2770 0.35 

75 0.4145  

90 0.4756  

1000 

1 

25 0.0505  

50 0.6138 0.71 

75 0.8078  

90 0.8010  

5 

25 0.1968  

50 0.5612 0.63 

75 0.8720  

90 0.8843  

10 

25 0.0911  

50 0.2886 0.30 

75 0.4444  

90 0.5305  
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1.3. Variation of SDC with input acceleration amplitudes 

Figures 8-12 show the variation of SDC with respect to input acceleration levels at fill 

fractions varied from 25%, 50, 75% and 90%, respectively. For all the fill fractions SDC 

increases as acceleration level increased up to 5g and thereafter it is seen decreasing till 10g. 

The levels computed using DEM and interpolated is shown in the legend. For low fill 

fractions a lower value of SDC can be attributed to lesser number of particles in the cell and 

thus less number of collision and therefore smaller values of SDC. The value of SDC appears 

almost constant in frequency range of study. However, for the fill fractions 50%-90%, SDC 

increased up to 500Hz and thereafter remains nearly constant. 

 

Figure.8. SDC at 25% fill fraction 

 

Figure.9. SDC at 50% fill fraction 
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Figure.10. SDC at 75% fill fraction 

  

Figure.11.SDC at 90% fill fraction 

1.4. Variation of SDC with varying fill fraction 

Figures 12-14 present the variation of SDC with respect frequency when amplitude of 

harmonic input acceleration is kept constant and packing ratio is varied. The SDC is seen 

increasing with respect to frequency at lower acceleration levels for all fill fractions. 

However, the rate of increase with respect to acceleration level decreases as acceleration 

increase. At an acceleration level of 10g, SDC appears to be independent of frequency. The 

likely reason for such behavior could be the fact that particles remains most of the time in 

the cavity space and colliding less frequently with the structure.    
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Figure.12. SDC at 1g acceleration level 

 

Figure.13. SDC at 5g acceleration level 

 

Figure.14. SDC at 10g acceleration level 
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Conclusions 

The dissipation of energy by the damping particles filled in a small coupon of honeycomb is 

studied with discrete element method and experimentally. The coupon is vibrated with 

different levels of constant amplitude harmonic acceleration in frequency band of 50Hz - 

1000Hz with varying amount of damping particles in the cavity. The energy dissipation is 

estimated in terms of specific damping capacity and it is found to be dependent on 

predominantly three parameters: fill fraction, amplitude and frequency of the input 

acceleration. A multivariate interpolation model of SDC is worked out using ‘pchip’ 

interpolant. Using the interpolation, SDC is predicted and presented for various combination 

of the variables. The interpolation function developed herewith for SDC can be used for 

prediction of structural response of any honeycomb structure treated with damping particles 

under harmonic, transient excitation loads.     

References 

[1] N. Ahmad, R. Ranganath, and A. Ghosal, "Modeling and experimental study of a honeycomb beam 

filled with damping particles," Journal of Sound and Vibration, vol. 391, pp. 20-34, 2017/03/17/ 2017. 

[2] C. Zhang, T. Chen, X. Wang, and Y. Li, "Discrete element method model and damping performance 

of bean bag dampers," Journal of Sound and Vibration, vol. 333, pp. 6024-6037, 2014. 

[3] C. J. Wu, W. H. Liao, and M. Y. Wang, "Modeling of Granular Particle Damping Using Multiphase 

Flow Theory of Gas-Particle," Journal of Vibration and Acoustics, vol. 126, p. 196, 2004. 

[4] M. Saeki, "Analytical study of multi-particle damping," Journal of Sound and Vibration, vol. 281, pp. 

1133-1144, 2005. 

[5] S. E. Olson, "An analytical particle damping model," Journal of Sound and Vibration, vol. 264, pp. 

1155-1166, 2003. 

[6] P. A. Cundall and O. D. L. Strack, "A discrete numerical model for granular assemblies," 

Géotechnique, vol. 29, pp. 47-65, 1979. 

[7] Y. Tsuji, T. Tanaka, and T. Ishida, "Lagrangian numerical simulation of plug flow of cohesionless 

particles in a horizontal pipe," Powder Technology, vol. 71, pp. 239-250, 1992. 

[8] K. L. Johnson, Contact Mechanics: Cambridge University Press, 1985. 

[9] K. Mao, M. Y. Wang, Z. Xu, and T. Chen, "Simulation and Characterization of Particle Damping in 

Transient Vibrations," Journal of Vibration and Acoustics, vol. 126, p. 202, 2004. 

[10] C. Wong, M. Daniel, and J. Rongong, "Energy dissipation prediction of particle dampers," Journal of 

Sound and Vibration, vol. 319, pp. 91-118, 2009. 

[11] M. Ben Romdhane, N. Bouhaddi, M. Trigui, E. Foltête, and M. Haddar, "The loss factor experimental 

characterisation of the non-obstructive particles damping approach," Mechanical Systems and Signal 

Processing, vol. 38, pp. 585-600, 2013. 

 


