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Static Modeling of Miniaturized Pneumatic
Artificial Muscles, Kinematic Analysis and
Experiments on an Endoscopic End-effector

K. P. Ashwin, Ashitava Ghosal

Abstract—In this paper, we present the design, development,
modelling and experimental validation of an endoscopic attach-
ment that can be used to independently position an endoscopic
catheter tip to a desired location. Three Miniaturized Pneumatic
Artificial Muscles (MPAMs) are used in a flexible endoscopic
attachment, each MPAM is of 1.2 mm diameter and 45 mm in
length and placed approximately 120 degrees apart within a pair
of concentric springs. Pressurizing one or more MPAMs allows
the tip to be positioned in a workspace which is approximately
a hemispherical section of radius 45 mm. We present a new and
improved theoretical model for pressure-deformation relationship
of a MPAM using static equations of a pressurized thick cylinder
and constraints due to the braids. Comparison with existing
models show that the proposed model performs better and the
errors predicted by the model is less than 5% with experiments.
A new forward kinematic model relating the position and
orientation of the tip of the end-effector with changes in MPAM
lengths is developed. Finally, we present experimental results
conducted on a prototype endoscopic attachment and show that
our model could predict the pose of the end-effector with a
maximum error of 2±1 mm.

Index Terms—Miniaturized McKibben actuator, Pressure-
deformation relationship, Actuated endoscopic end-effector,
Kinematics of end-effector, Experimental validation.

I. INTRODUCTION

ENDOSCOPE is a diagnostic instrument which is inserted
into a patient’s gastrointestinal (GI) tract from the mouth

with the primary objective of real-time inspection. The device
is a flexible tube of approximately 1.5 m length and about 12
mm in diameter. It contains a camera, lighting system as well
as a nozzle for pumping air and water from its distal tip. Most
of the modern endoscopes are also equipped with one or two
channels through which a medical instrument (catheter) can
be pushed from the holding end till its working end protrudes
from the distal tip of the endoscope. Though all endoscopes
have the provision to actuate the distal tip of the endoscope
in vertical and horizontal directions, endoscopes in general do
not have a provision to actuate the catheter independent of the
camera. A few automated endoscopic platforms have the abil-
ity to actuate gripping tools for performing surgery [1], [2]. In
these platforms, positioning is achieved using an end-effector
which is essentially a cable driven continuum robot [3], [4].
While it is possible to achieve precise control using cable
actuation ( [4], [5], [6]), the device can become a stiff structure
when deployed and can potentially restrict the endoscope to
achieve a desired shape. However, for medical applications,
devices which are soft and flexible have many advantages
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and there has been considerable focus in developing soft
endoscopic devices [7].

McKibben actuators are more suitable in such applications
since the actuators are compliant/flexible even in its actuated
state and are lighter in weight. A McKibben actuator consists
of an inflatable bladder which is braided on the lateral outer
surface using a helical mesh of flexible but inextensible
fibers [8]. Air is pumped into the bladder from one end
while the other end is sealed, allowing the bladder to inflate.
However, the inextensible braid restricts the deformation of the
bladder in such a way that when the braiding angle is less than
54.7◦, the bladder contracts along its length [9]. Miniaturized
versions of PAM (MPAM) would be ideal for medical robotics
since: a) they have high load carrying capacity b) their stiffness
can be controlled by the internal pressure c) they have low
weight, and d) are less expensive to manufacture (see also
[10]–[13]). Although in [14], it is shown that the compliance in
the cable actuated robots can be monitored using load cells and
hence controlled (they use it to measure hard tissue properties),
we believe that the MPAMs are inherently more compliant
and the compliance can be better controlled. The similarity
of PAMs with biological muscles and an advancement in
control strategies have made the actuators popular in bio-
inspired robotics and medical robotics (see [15]–[19]). It is
also observed from the above references that accurate model
to depict the physics of pneumatic muscles is an essential
requirement for improved performance of control system [20].

One of the earliest attempts in modeling McKibben actu-
ators was made by Schulte [9]. Many researchers improved
upon this basic model by considering other physical effects
such as friction, material properties, non-uniform shape of
cylinder, thermal expansion effect as well as various en-
ergy losses [21]–[23]. A comparison between the pressure-
deformation characteristics of MPAM used in this work with
some of the easily implemented theoretical models such as
in [9], [24] and [25] is shown in section III-B of this paper.
It can be seen that even though many models can describe a
standard PAM characteristics with reasonable accuracy, most
of them deviate considerably when applied to an MPAM.
In [10] and [12], the authors developed mathematical models
for MPAM by modifying the existing PAM models. However,
it is required to calculate extra parameters and correction
factors by means of prior experimentation and curve fitting. A
mathematical model which can accurately describe pressure-
deformation relationship of MPAM and can handle changes in
physical parameters of the actuator with reliable consistency
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Fig. 1. End-effector and camera assembly deployed from endoscope

is necessary for developing a robust kinematic model for the
end-effector and for control.

Due to the small overall diameter and high power to weight
ratio, multiple MPAMs could be combined to develop a
continuum robot. In this paper, we introduce the design and
analysis of such an end-effector, which can deflect an endo-
scopic catheter independent of camera. Firstly, we develop a
new and improved pressure-deformation model of an MPAM
that can predict the contraction in an MPAM consistent with
parameter changes. A forward kinematics model of the end-
effector with inputs from MPAM statics is developed and
then experimentally validated. In Section II, the geometry and
design of the end-effector as well as the MPAMs used in
the end-effector are introduced. Characterization of MPAMs
used to actuate the end-effector is detailed in Section III. An
improved model for MPAM is developed and validated in this
section. In section IV, the forward kinematics of end-effector
is presented. Numerical simulation results and experimental
results are compared in section V and it is shown that there
is good agreement between both sets of results. Conclusions
are presented in section VI.

II. DESIGN OF END-EFFECTOR

The proposed modification at the distal end of endoscope
is shown in Fig. 1. The system consists of three main compo-
nents: a) A camera assembly which holds camera, lighting
system and a nozzle for spraying water as well as pump
air, b) An end-effector assembly with endoscopic tool/catheter
attached to the tip which can be deflected independent of the
camera assembly, and c) A spring loaded end-cap which can
be retracted using cables to reveal the end-effector assembly as
well as the camera assembly. The conceptual design of the pro-
posed modification in endoscopic tip is similar to that of [4].
Instead of parallel mechanism used in deploying the sub-
assemblies, the camera subsystem is assembled in an initially
pre-deformed form as shown in the figure (deployed state).
The end-cap will be spring loaded so that in its neutral state,
both the end-effector assembly as well as the visual assembly
will be concealed. By pulling the end-cap backwards, both the
assemblies will be revealed which constitute the deployment
of the system. In order for the camera(visual) assembly to be
resting overhead, the whole camera subsystem is assembled in
a pre-deformed form as shown in the figure (deployed state).
Hence, the subsystem when concealed by end-cap will be

Fig. 2. End-effector prototype and fabricated MPAM

stressed and in the deployed state, will be stress free. This way,
the design is very much simplified. Another major difference
here is the use of MPAM in actuation.

In this paper, we focus exclusively on the end-effector
assembly which is similar to the design proposed in a previous
work [26]. The design consists of two concentric helical
springs with three MPAMs positioned parallel to the axis of
the springs in the space between the inner and outer springs.
The three MPAMs are approximately 120 degrees apart and
are capped at the ends along with the springs using holders1.
The MPAMs can be energized using pressurized air applied
through tubes connected to a reservoir. The catheter/instrument
is fixed at the tip of end-effector and the inner spring acts
as a conduit for cables used to actuate the same. Both the
springs have low axial as well as transverse stiffness with the
axial stiffness of inner spring slightly higher compared to the
outer spring. This enables the the tip of inner spring to act
as a fulcrum whenever the MPAM contracts, facilitating its
deflection. The maximum length of end-effector is restricted
to about 50 mm considering the depth of vision of camera
of the endoscope and size of the operating region in the GI
tract. Since the end-effector needs to be housed alongside other
accessories at the tip of the endoscope, the outer diameter of
end-effector needs to be less than about 8 mm. Due to the
arrangement and contraction in the MPAMs, by actuating two
MPAMs at a time, the tip of end-effector can be positioned
in a section of a hemisphere. Fig. 2 shows a prototype of
the developed end-effector assembly as well as the in-house
fabricated MPAM. The end-effector is 55 mm long (including
holders) and has 9 mm outer diameter. The MPAM used in the
end-effector is 45 mm long with 1.2 mm outer diameter. By
pressurizing one or more MPAMs, the tip of the end-effector
can trace an approximate hemispherical section of radius 45
mm.

The layout of pneumatic circuit used to actuate MPAM is
shown in Fig. 3. A pneumatic compressor of maximum output
pressure 1034 kPa (150 psi) is connected to a 1 liter air reser-
voir which is used to deliver high pressure air to the MPAM.
A pressure regulating circuit operates the compressor when

1Although, not shown in the prototype, the outer springs can be covered
with a flexible plastic layer so that it will not be exposed to GI tract fluids.
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the value of pressure in reservoir falls below certain threshold
thereby maintaining availability of 827 kPa (120 psi) pressure
at all times. The volume of air in the MPAM is approximately
30 mm3 and even in case of rupture, this small volume is not
expected to result in safety issue. In addition, the flow control
valve limits the volume flow rate of air into the MPAM to
avoid sudden bleeding of compressed air from the reservoir
to the MPAM. Two proportional valves are used to control
pressure inside air muscle – one for pressurizing the MPAM
and the other for bleeding. A Honeywell pressure transducer
(with range of 0 to 1034 kPa) is connected in series with
MPAM to measure the inner pressure. An ATmel ATMega2560
micro-controller board interfaced with MATLAB [27] controls
the proportional valves through a current driver circuit to
maintain desired value of pressure inside the MPAM. For
characterization of MPAM, deformation of single MPAM is
captured using high resolution camera and the changes in
length are obtained using image processing. In order to keep a
straight alignment of the MPAM during the experiments, a 5
gram weight (∼ 0.05 N) is applied on the free end of MPAM
which is vertically hung. The maximum possible error due
to measurement is about 0.2 mm which is due to identifying
accurate pixel points in camera image. The experimental plots
are shown with error bars obtained from at least 5 sets of
experiments.

III. CHARACTERIZATION OF MPAM

Fig. 4 shows the schematic of MPAM with the nomenclature
used in modeling the MPAM in this work. The symbols ro,
ri and lo denote the outer radius, inner radius and length of
inner silicone tube, respectively. The symbols α and β denote
the angle of winding of MPAM before and after deformation,
ûz and ûr represent axial and radial displacements of braided
sleeve while uz and ur represent axial and radial displace-
ments of silicone tube. The constant b represents the length
of a single braid strand, N denotes the number of windings
of braid and Pi is the input pressure. Since the end-effector is
assumed to be operating in slow speeds, only static analysis
is considered in this paper.
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Fig. 4. MPAM nomenclature

A. Proposed Model for MPAM

The inflation problem of silicone tube can be described as
the solution to the linearized elastic equilibrium equations of
a thick cylinder under pressure [28]:

∂

∂r

(
1

r

∂(rur)

∂r

)
= 0,

∂2uz
∂z2

= 0

which have an analytical solution of the form

ur = c1r +
c2
r
, uz = c3z + c4 (1)

where ci, i = 1, 2, 3, 4 are the constants of integration. The
boundary conditions on radial and axial stresses τrr and τzz ,
as well as the end displacements are

τrr|r=ri = − Pi, τrr|r=ro = − Po, τzz|z=l0 = Ps (2)
uz(r, l = 0) = 0, ur(r, l = 0) = ur(r, l = l0) = 0 (3)

where Po, Ps are the radial pressure on the outer surface and
pressure on the axial end, respectively.

Applying the boundary conditions and solving for the
constants, we get
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λ

]
c4 = 0 (4)

where λ and µ are Lame’s parameters. Since the braid fibers
are assumed to be inextensible, they act as a constraint to the
above displacements.

From (1), we see that the cylindrical tube remains cylin-
drical even after deformation. Hence, referring to Fig. 4, we
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can relate the initial and final configurations of a single braid
strand as previously derived in [29]

l0 = b cosα, 2πrbN = b sinα (5)
l0 + ûz = b cosβ, 2π(rb + ûr)N = b sinβ (6)

When MPAM is pressurized, the axial force Fe acting at
the free end is unevenly distributed among the braided sleeve
and silicone tube as Fnyl and Fsil respectively (refer Fig. 5). In
order to determine the values of these forces, we consider the
deformation at the free end of MPAM. The deformation at the
tip of the MPAM, denoted by ∆ is same as the deformation
of the nylon braid ∆nyl and the deformation of the silicone
tube ∆sil. From Fig. 5,

∆nyl = (F̂ b/ÂnylEnyl)× cosα (7)

where F̂ = (Fnyl/m)× cosα is the force acting on a single
strand of braid – m is the number of braid strands in the
sleeve, Ânyl is the area of cross section of single nylon strand
and Enyl is the modulus of elasticity of nylon. Substituting the
values, we get

∆nyl =
Fnyll0 cosα

mÂnylEnyl
(8)

where we have used the first expression in (5). For the silicone
tube, deflection at the tip is calculated using (1) and (4) with
Pi = Po = 0, and we have

∆sil =
(λ+ µ)

µ (3λ+ 2µ)
Psl0 =

Fsill0
AsilEsil

(9)

where the Poisson’s ratio ν is assumed to be approximately
equal to 0.5 and Asil and Esil are cross sectional area and
modulus of elasticity of silicone tube, respectively. Since Fe =
Fnyl + Fsil, equating (8) and (9) and re-arranging, we get

Fnyl =
FemÂnylEnyl

mÂnylEnyl + cosαAsilEsil
(10)

Fig. 6. Deformation phases of MPAM (inset – elongation part zoomed)

and
Fsil =

Fe cosαAsilEsil

mÂnylEnyl + cosαAsilEsil
(11)

The helical arrangement of the braid converts axial force on
nylon sleeve Fnyl to radial force Fr as shown in Fig. 5(c). To
relate the forces on braid in axial as well as radial directions,
we use the principle of virtual work,

Frδr + Fnylδl = 0 (12)

where δr and δl are the virtual displacements in radial and
axial directions, respectively. From (5) and (6), we get

δl = −b sinβ δβ, δr = b
rb
l0

cosβ

tanα
δβ (13)

where l = l0 + ûz, r = rb + ûr are the length and radius of
sleeve at angle β. Substituting in (12) and rearranging, we get

Fr = Fnyl(l0/rb)tanβtanα (14)

The equation (14) represents the radial force required on braid
sleeve for a given value of axial force in order to maintain
equilibrium when the braid is at deformed angle β.

The equations (1) and (4) with expressions for Fe and Fr
can be combined to form the mathematical model for MPAM.
However, as shown in the experimental results in Fig. 6, the
displacement versus pressure curve of MPAM is divided into
two phases and separate governing equations are required for
the two phases. It is noticed that for a small value of pressure
(< 140 kPa), the air muscle elongates by a very small amount
before the contraction starts. This is due to the gap δ (of the
order of 0.04 mm) between the tube and nylon sleeve during
fabrication. Hence, upon inflation of MPAM, the initial stage
will be the expansion of silicone tube till the outer surface
of silicone tube makes contact with the nylon sleeve. The
deformation during the first phase is hence calculated using (1)
and (4) without any constraints, till outer radius of silicone
tube and the radius of braided sleeve are equal. The value of
pressure P̄i at this contact point can be calculated by equating
the outer radius of silicone tube and radius of braid as follows:
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At the contact point,

ro + ur|ro = rb + ûr = ro + δ + ûr (15)

Also, Po = 0 and Ps = Pi
r2i

r2o − r2i
+Psil in this phase, where

Psil is the pressure applied on silicone tube due to external
axial load. From (5) and (6), we get

cos2 α

(
1 +

ûz
l0

)2

+ sin2 α

(
1 +

ûr
rb

)2

= 1 (16)

which relates the radial and axial displacements of braid
sleeve. Since the braid is attached to silicone tube at either
ends, uz|l0 = ûz at all times. Substituting ûz = uz|l0 = c3l0
in the above equation, the radial displacement of braid is given
as

ûr = rb

{
1

sinα

√
1− cos2 α (1 + c3)

2 − 1

}
(17)

From (15) and (1), we get

c1ro+
c2
ro

= δ+rb

{
1

sinα

√
1− cos2 α (1 + c3)

2 − 1

}
(18)

The above equation is a function of applied pressure Pi and
is solved numerically to get the inflection pressure P̄i above
which MPAM will start the contraction phase.

In the second phase, the braid makes contact with the tube
and is assumed to move over the tube surface without slipping.
The total external force Fe acting on the axial end of MPAM
is due to three components,

Fe = F + FPi
+ Fu (19)

where F is the applied axial load, FPi
= Pi

(
πr2i
)

is the
force at the axial end produced by the input pressure acting on
side walls and Fu are the unaccounted forces such as friction
between braid sleeves as well as friction between the sleeve
and the tube and other unmodelled non-linear effects. These
three axial forces are divided among the sleeve and tube as
given in (10) and (11). The axial force on the sleeve Fnyl is
then converted to radial force on the tube using (14). Pressure
acting on the tube surface due to this radial force is given by

Pb =
Fr
Ab

where Ab is the surface area of contact of braided

mesh with the silicone tube. The value of Ab is difficult to

Fig. 8. End-effect due to braiding

measure experimentally and estimate analytically [22], [30]
because of the small surface area. We assume that the contact
area of braid on surface of tube is same as the contact area
between the braid strands at braid cross-over points when the
applied axial force is zero (refer Fig. 7). The expression for
this contact area in terms of deformed braid angle is derived
in [30] and is given as

Acontact =
b2 sin2 αmin cos2 αmin

N sinβ cosβ
=

sin2 αmin cos2 αmin

sin2 β cos2 β
Acyl

(20)

where αmin =
1

2
sin−1

(
2mNrn

b

)
is the angle when the

braided sleeve is fully stretched (least possible angle for a
given braid pattern), rn is half the diameter of single braid
strand and Acyl is the lateral surface area of cylinder after
deformation.

It is observed from experiments, that the contact area at a
length of φ (∼ 5mm) from each axial ends is much higher
compared to the middle of tube (refer Fig. 8). This is because
at the ends, deformation is not cylindrical but tapered unlike
the assumption in the formulation. This effect is to be included
in the formulation since it accounts for approximately 25 % for
a 40 mm MPAM. Contribution of end-tapering in theoretical
models is studied by a few researchers (see [21] and [31]). The
simplest model considers the taper as a conical frustum. In the
case of MPAM used in this paper, the tapered end is densely
braided unlike the rest of the cylindrical surface. Hence, we
assume full contact between silicone tube and braid at these
tapered ends.

Combining the two we get the total area of contact as

Ab =
sin2 αmin cos2 αmin

sin2 β cos2 β
Acyl + 2Aconical (21)

where Aconical = π (rb + r) (φ+ c3φ) is the
surface area of contact at conical ends and
Acyl = 2πr ((l0 − 2φ) + c3 (l0 − 2φ)) is the area of lateral
cylindrical surface.

In order to simplify the calculations in second phase, we
consider the second phase as a problem of deformation with
the dimensions of tube and sleeve modified as per the values
at the inflection point:

ro → ro + ur|ro , ri → ri + ur|ri , lo → lo + uz|lo
For the new arrangement to be in equilibrium, all the traction
forces on surfaces must be zero. Hence, we also modify the
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input pressure to Pi → Pi − P̄i, pressure at the axial end to
Ps → Ps−P̄s and the radial outer surface pressure on silicone
tube (equal to the pressure applied by braid) to Po = Pb →
Pb−P̄b. It may be mentioned that (̄·) denote the corresponding
values of pressures at the inflection point.

In this second phase, we also have the constraints on
displacements ur|rb = ûr and uz|lo = ûz . The displacements
as obtained from (5) and (6), can be written as

ûz = l0

(
cosβ

cosα
− 1

)
, ûr = rb

(
sinβ

sinα
− 1

)
(22)

Since displacement of sleeve and tube are same in the second
phase, the constants ci will be (from (22)),

c1 +
c2
r2o

=

(
sinβ

sinα
− 1

)
, c3 =

(
cosβ

cosα
− 1

)
(23)

The solution procedure for the second phase can now be
summarized as follows: The value of pressure on the outer
surface of tube, Pb = Fr/Ab can be obtained using (14), (10)
and (19) for Fr and (21) for Ab. Given all parameter values,
there will be two unknown quantities Fu and β in the
expression for Pb. Then the six equations in (4) and (23) are
solved for 6 unknowns, namely c1, c2, c3, c4, Fu and β. The
values of ci are in turn plugged into (1) to calculate the final
deformation of MPAM. One major advantage of the above
formulation compared to the existing models in the literature
is that all unaccounted forces which are required to maintain
static equilibrium of MPAM such as frictional force and
thermal expansion effects are included in the term Fu which
is obtained from the solution of the six equations. To study the
dependency of Fu on the individual factors, one needs to break
the axial force Fu into its components as has been done for
static frictional force and force due to conical end-effects [21].
However, we believe that this compartmentalization of forces
will not still be accurate since the models for these factors
are not accurately known and one might miss out on other
contributing factors. A study on the factors affecting Fu is
beyond the scope of this paper.

B. Validation of Proposed Model for MPAM

In order to validate the above developed theoretical model,
deflection values are calculated numerically using ‘fsolve’
routine in MATLAB and plotted alongside measured values
for a pressure range from 0 to 827 kPa (120 psi). Three
models by Schulte [9], Liu-Rahn [24] as well as Kothera
et.al. [25] are also plotted for comparison. As mentioned in
Section I, most of the theoretical models available in the
literature for PAMs require accurate determination of physical
parameters such as friction coefficient, thermal expansion
coefficient or nonlinear material properties to calculate end-
point deformation. This require sophisticated measurement
techniques due to the miniature size of fabricated muscle. Due
to this reason, we chose for comparison, only those models
which has parameters that can be easily measured as well as
implemented. Fig. 9 shows the plot for deflection of 40 mm
long MPAM where it can be seen that theoretical results match
experimental values very well. The computation time for the
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Fig. 9. Experimental validation for 40 mm MPAM α = 36◦, ri = 0.25
mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa,
ν = 0.499.
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Fig. 10. Experimental validation for 60 mm MPAM. α = 36◦, ri = 0.25
mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa,
ν = 0.499.

serially coded routine was approximately 0.04 seconds on an
Intel Pentium PC at 2.0 GHz.

To check the consistency of the model for an MPAM with
different initial length, the results obtained with length 60
mm while keeping all the other parameters same, is shown
in Fig. 10. For both the lengths, the deformation curve is well
within the error bounds of measured values. The RMS errors
calculated from mean values are 4.6% and 2% of maximum
contraction for 40 mm and 60 mm MPAM respectively. Sim-
ulation results for MPAM with slightly higher braiding angle
is shown in Fig. 11. The gap between silicone tube as well
as the braid was higher in this case for the selected specimen
(δ = 0.06 mm). The applied force vs axial displacement for a
45 mm MPAM from fully contracted position at 758 kPa (110
psi) is plotted in Fig. 12. The larger error at higher applied
force is due to the fact that at higher forces, the surface area of
contact between braid and tube is higher and the formulation
will have to include protrusion effects as well as other complex
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contact modeling. However, the trend in curve is consistent
with the actual values and there is a maximum error of 0.6
mm at the highest value of applied force. In terms of the
final deformation (including the free deformation), this value
corresponds to less than 2% error from the measured value.

IV. KINEMATICS OF END-EFFECTOR

The developed end-effector shown in Fig. 2 is similar to the
tendon driven robots based on the actuation technique. The in-
ner spring acts as the backbone and the tendons are replaced by
MPAMs. The kinematic analysis of such designs is available
in the literature (see, for example, [3], [32]–[34]). However,
unlike in the conventional tendon driven robots, there are no
guiding discs in our prototype. The presence of guiding discs
limits the radial expansion and also generates friction thereby
reducing the overall contraction. In the absence of guiding
discs, the MPAMs can drift sideways once the end-effector is
deflected as shown in Fig. 13, and as a consequence existing

Outer spring

MPAM

Inner spring

Tool cables

a

Section S-S

S

S

End-e�ector after bending

A

A

Fig. 13. Tendon driven robot analogy – dotted and filled circles are initial
and final position

v̂1

v̂1

X1
a

X1
b

X2
a

X2
b

X3
a

X3
b

x2
a

x2
b

x3
b

x3
a

Xi
a

Xi
b

xi
a

xi
b

xi−1
a

xi−1
b

v̂2

v̂2

v̂3

v̂3

v̂i−1

v̂i−1

v̂i

v̂i

Xi+1
a

Xi+1
b

actuator

inner spring

a

δl0

δla

outer spring

Fig. 14. Backbone-actuator profile

kinematic models for continuum robots cannot be used for the
end-effector developed in this work.

To take into account the absence of guiding disks, we
developed a new kinematic model which relates the position
of the tip of the end-effector as a function of the deformation
in the three MPAMs. The main assumption is that when
the end-effector is deflected, the 3 MPAMSs move minimum
distance so as to achieve an equilibrium position. Fig. 14
shows the backbone-actuator assembly along an axial section
of end-effector (section AA from Fig. 13). The entire length
of end-effector is discretized into n segments, each segment
representing the length at which the outer spring comes in
contact with the MPAM. An axial force will cause change in
length in inner spring. However, since we are only considering
transverse loading on the end-effector due to the moment
applied by the MPAM, the spring (backbone) is assumed to be
of constant length throughout the actuation. The length of a
backbone in a segment is given as δl0 = l0/n and the length of
actuator in a segment is δla = la/n where la is the final length
of MPAM after pressurizing. In un-actuated state, the segment
forms a quadrilateral with co-ordinates Xib,X

i+1
b ,Xi+1

a ,Xia as
shown in the figure where the subscripts b and a represent
backbone and MPAM, respectively and i = 1 for segment at
the base of end-effector and i = n at the tip. The natural
undeformed initial positions Xi+1

b and Xi+1
a are found out as

Xi+1
b = Xib + δl0v̂i and Xi+1

a = Xia + δlav̂i (24)

where, v̂i =
Xib − Xi−1b

‖Xib − Xi−1b ‖
(25)

For the initial segment i = 1, the unit vector v̂1 is perpendicu-
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ξ0

ξ1

ξ2

d1

d2 d′
2

(b) Individual actuations (c) Combined actuation

î

ĵ

k̂

β1

q̂1

a1

a2

a3

ar

F1

F2

(a) Force vectors

Fres

d1

î

ĵ

k̂

Fig. 15. Displacement vector addition

lar to the vector X1
b−X1

a along the initial axis of end-effector.
After deformation, the quadrilateral changes to

Xib, x
i+1
b , xi+1

a ,Xia where vectors in lower case characters
represent deformed position. Since the distance between
backbone and MPAMs are constrained by the outer spring
to a fixed value, the length ‖xi+1

b − xi+1
a ‖ = a at all times.

The deformed quadrilateral could be positioned in different
configurations depending on the angle formed by xi+1

a − Xia
and Xib − Xia. Here, the natural configuration is assumed
to be the one which minimizes the displacement of tip
xi+1
a [35]. To find the deformed configuration, we formulate

an optimization problem

min
xi+1
b ,xi+1

a

‖Xi+1
a − xi+1

a ‖

Subject to : ‖xi+1
b − Xib‖ = δl0,

‖xi+1
a − Xia‖ = δla, ‖xi+1

b − xi+1
a ‖ = a (26)

The solution to the above optimization problem gives the
co-ordinates of tips xi+1

b and xi+1
a . The iterative method starts

from the base segment and proceeds towards the tip of the
end-effector to determine the final pose of the end-effector
backbone and the actuated MPAM.

In the case of two MPAMs actuated together, the resultant
moment due to these actuations can be written as

M = ai × Fi + aj × Fj = ar × Fres (27)

where ai,j are the position vectors of the tip of ith and jth

MPAM and Fi,j are the applied forces on end-effector by the
MPAMs, ar is the position vector of a hypothetical actuator
whose resultant force Fres = F1 + F2 will provide the same
moment as due to the other two MPAMs actuated together
(see Fig. 15(a)). From basic mechanics, the direction of the
hypothetical actuator is given by

lr =
(l1F1 + l2F2)

F1 + F2
, mr =

(m1F1 +m2F2)

F1 + F2
(28)

where li,mi, i = 1, 2 determine the directions of F1 and F2

and lr, mr also determine the plane of bending of the end-
effector.

If two MPAMs are pressurized simultaneously, the axial
force generated at the tip will be large enough to compress
the inner spring. Hence, MPAMs are pressurized only one

after the other. From Fig. 15(b), the tip deflection from initial
position (ξ0 in the figure) due to individual actuation of two
MPAMs (given by curves ξ1 and ξ2) are along the direction
of force vectors represented by d1 and d2 respectively. When
these MPAMs are pressurized successively, with d1 followed
by d2, then the vector d2 is rotated about β1 angle which is
the angle at the tip of ξ1 with respect to k̂ axis. The rotation
will be along the axis of rotation of the end-effector when only
the first MPAM is actuated (unit vector q̂1 shown in Fig. 15).
The resultant deflection will be in the direction of vector sum
of d1 and d′2 where d′2 = R̂(q̂1,β1)d2 is the rotated vector (see
Fig. 15(c)).

From the static model of MPAM derived in section III-A, we
obtain the deformed length corresponding to a given applied
pressure and axial load. From the forward kinematic equations
derived in section IV, we get the pose of end-effector cor-
responding to given displacement of MPAMs/tendons. Com-
bining both the models, we obtain the pose of end-effector
corresponding to pressure applied at MPAMs.

V. EXPERIMENTAL VALIDATION

In order to validate the developed model, end-effector proto-
type is subjected to different values of pressure and the pose
of end-effector after deflection is compared with the values
obtained from theoretical model. Two cameras are used to
capture images from different angles and the 3D co-ordinates
of the central (backbone) curve of end-effector is obtained
using multiple view image reconstruction techniques [36].
A thin flexible film of white colour is applied on the end
effector surface to facilitate control point identification. A
high contrast marking relative to the colour of end holder is
made at the tip so that the marker is easily identified in the
captured images. To find the co-ordinates of tip, respective
pixels in the two images corresponding to the marker position
is manually selected. The possible error in this method is in
incorrectly identifying the marker pixels which will not be
more than 4 pixels size for both the images. For the scale and
measurement set up used, the maximum error in reconstruction
is approximately 2 mm at the tip.

Fig. 16 shows the deformation of end-effector as well as
the re-constructed profile when one MPAM is pressurized. It
may be noted that the reconstructed profile is limited to the
tip of MPAM which is at 45 mm from the base, while the
end-effector tip extends up to 55 mm due to the distal holder.
By actuating three MPAMs individually, it is found out that
the MPAMs are positioned at 307.5◦, 219◦ and 75◦ angles
from the positive î axis shown in Fig. 16. They are named R,
G and B respectively for identification. By applying a 0.1 N
transverse load at the tip of the end-effector, a deflection of
approximately 15 mm is obtained. The flexural rigidity is then
calculated using the standard Euler-Bernoulli beam equation.

The solution to kinematics of end-effector considering the
MPAM statics is carried out using an iterative scheme. At
first, the deformation of a single MPAM for zero applied axial
force is found out using the theoretical model discussed in
section III-A. This value of deformation is used to calculate δla
and the optimization problem in (26) is solved to get the pose
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î

ĵ

Actual Image Reconstructed profile

Fig. 16. Profile reconstruction using image analysis

TABLE I
R AT Pi = 689.4 KPA

F (N) ∆ (mm) δe (mm) F ∗ (N)

0 7.6 22.8 1.69
1.69 6.9 20.4 1.51
1.51 6.9 20.4 1.51

of end-effector. The displacement of tip δe from the original
position is calculated from the theoretical pose of end-effector.
The moment that may be applied at the tip of end-effector in
order to produce the same deflection is calculated using the
cantilever equation δe = ML2/3EI , where EI is the flexural
rigidity of the end effector. Since moment M = a × F , we
get the axial force F that should be produced by the MPAM
in order to get the same deflection. Using this value of F , the
deformation of single MPAM is re-calculated and the same
procedure is repeated till the change in final deflection of end-
effector is within a specified tolerance.

In order to validate the theoretical model, a pressure of
689.4 kPa(100 psi) is applied to MPAM-R (refer Fig. 16). For
no applied axial force, R gives ∆ = 7.6 mm contraction as
per the derived theoretical model. The final length of MPAM
will be la = lo −∆ = 37.4 mm. This value is used to predict
the pose of end-effector using the kinematic model where 15
segments are used for computation (length of one segment is
equal to the pitch of the outer spring). The final pose of end-
effector gives a tip deflection of δe = 22.8 mm. The force F
which MPAM has to apply on end-effector so as to obtain this
value of deflection is calculated to be F ∗ = 1.69 N. Now, the
deformation of MPAM is re-calculated with F = F ∗ = 1.69
N force where the deflection is 6.9 mm for 45 mm MPAM.
The procedure is repeated as shown in Table I. The value of
deformation of MPAM to achieve equilibrium is found out
to be 6.9 mm. The pose of end-effector obtained with final
length of MPAM as 45− 6.9 = 38.1 mm is shown in Fig. 17
alongside the actual deflection of end-effector. The measured
pose of the end-effector matches with the theoretical model
with a maximum error of 1 mm at the tip. The time required
to solve the forward kinematics is about 0.6 seconds on an
Intel Pentium PC at 2.0 GHz.

Fig. 18 shows the comparison between theoretical and
measured pose for MPAM-G actuated at 551.6 kPa (80 psi).
The maximum error in tip deflection in this case is also found

0

5050

0

0

50

-50
-50

-50

0

50

-50 0 50

Fig. 17. MPAM R actuated at 689.4 kPa

Actual deflection

0

50

−50 0 50
−50

0

−50 0 50
−50

0

0

50

−50
0

50

−50

0

Front view Isometric view

Reconstructed profile

Fig. 18. MPAM G actuated at 551.6 kPa

to be about 1 mm.
The following steps summarize the method in finding the

final pose of end-effector when two MPAMs (say R and G)
are actuated:

1) Pose of end-effector ξ1 when MPAM-R is pressurized
individually is found out using the above formulation;
tip deflection vector d1 is calculated. Likewise ξ2 is
found out when MPAM-G is pressurized individually
and corresponding d2 is calculated.

2) Angle of end-point vector of MPAM-R is calculated
using the equation:

β1 = cos−1
(

xnb − xn−1b

‖xnb − xn−1b ‖ · k̂
)

(29)

3) Axis vector q̂1 is found out using the equation:

q̂1 =
xn − xn−1

‖xn − xn−1‖ ×
xn−2 − xn−1

‖xn−2 − xn−1‖ (30)

4) Rotation matrix R̂(q̂1,β1) is populated using axis-angle
method [37] and tip displacement of second MPAM
(MPAM-G), d2 is rotated to get d′2.

5) Direction cosines of ar are calculated using (28). The
plane containing the vector ar as well as the k̂ axis can
be defined by its normal vector (mr) î + (−lr) ĵ.
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Fig. 19. MPAMs R,G actuated at 689.4 kPa

6) A straight line is drawn from the vector l0k̂ + d1 in the
direction of d′2. The intersection of this line with the
plane defined in step 4) gives the final tip position.

7) The iteration is repeated with n→ n− 1 for the entire
length of end-effector to obtain the final pose.

Fig. 19 shows the final deformation of end-effector when
two MPAMs are actuated by 689.4 kPa (100 psi). The
experimental results agree with the theoretical model with
approximately 1 mm error at the tip. For example, the de-
formation and axial force for a 413 kPa (60 psi) pressure
input are δe = 15.8 mm as well as F = 1.17 N respectively.
The direction cosines of ar calculated using F1 = 1.51
N (corresponding to 689 kPa pressure) and F2 = 1.17 N
(corresponding to 413 kPa pressure) are lr = −0.17 and
mr = −0.7 respectively–i.e, the plane forms an angle 13.3◦

with the ĵ axis. For a pressure combination of 413 kPa for
MPAM-R and 689 kPa for MPAM-G, the results are shown
in Fig. 20. The predicted data as well as the reconstructed
image for all the results show the promise of employing
the developed theoretical formulation in model based control
strategies.

Ex-vivo experiments conducted on animal tissue [38] show
that the end-effector does not cause any damage to the tissue
even at highest value of applied pressure (see accompanying
video). Unlike the conventional cable-driven robots where
the desired position is achieved by directly controlling the
cable lengths, in MPAM-based end-effector, it is indirectly
controlled through the applied pressure. If the end-effector is in
contact with the environment, the applied pressure will lead to
deformation of the end-effector. At the same time, the applied
force at the tip for maximum pressure is only about 0.2 N
which is adequate for deflecting all commonly used catheters
up to 15 mm in all directions (video shows end-effector lifting
10 gms).

Actual deflection

0

50

−50 0 50
−50

0

−50 0 50
−50

0

0

50

−50

0

50

−50

0

Front view Isometric view

Reconstructed profile

Fig. 20. MPAM G at 689.4 kPa and R at 413 kPa

VI. CONCLUSION

This paper deals with the modeling, analysis and experi-
mental validation of a novel independently actuated flexible
endoscopic end-effector. The end-effector is actuated by three
miniaturized pneumatic artificial muscles (MPAMs). For anal-
ysis and control, a new static model of the MPAM is developed
based on the static equations of a thick cylinder for the silicone
tube and the braiding in the MPAM as a constraint. The
novel developed model of the MPAM contains six parameters,
including one representing unmodeled effects such as friction
and other nonlinearities, and all the six parameters are solved
for using mechanics equations. The numerical solutions of the
model gives the deformation of the MPAM and this is shown
to agree with experimental results with less than 5% error.
The improved developed model is also compared with existing
models of MPAM and it is shown that the developed model
predicts the deformation more accurately.

The kinematics of the actuated end-effector, taking into
account the absence of guiding discs, is formulated as a
constrained optimization problem. For an applied pressure in
one or more MPAMs, first the change in length is obtained
from the developed MPAM model and then the position and
orientation of the end-effector is obtained using an iterative
scheme. Experiments performed on the developed proof-of-
concept prototype show that the tip of the end-effector can be
positioned in an approximate hemispherical section of 45 mm
radius. Using 3D profile reconstruction of the images obtained
during experimentation, it is shown that the maximum position
error at the tip of the end-effector between the predictions from
the forward kinematic model and experiments is 2 ±1 mm.
At present, the computation time for the forward kinematics
is of the order of 0.6 seconds on a desktop PC due to the
iterative scheme. Attempts are being made to reduce this time
for real-time control.

This paper is intended mainly to demonstrate the proof-of-
concept and the feasibility of using soft-actuated end-effector
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for endoscopy. Significantly more work is required before the
same can be employed in a clinical setting.
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