12th IFToMM World Congress, Besancon, June 18-21, 2007

An algebraic formulation of exact force-, moment-isotropy in spatial parallel
manipulators

Sandipan Bandyopadhyay*

Ashitava Ghosal'

Department of Mechanical Engineering Department of Mechanical Engineering

Indian Institute of Science
Bangalore, INDIA

Abstract—In this paper, we present an algebraic method
to study and design spatial parallel manipulators that
demonstrate isotropy in the force and moment distributions.
We use the force and moment transformation matrices sep-
arately, and derive conditions for their isotropy individu-
ally as well as in combination. The isotropy conditions
are derived in closed-form in terms of the invariants of
the quadratic forms associated with these matrices. The
formulation has been applied to a class of Stewart plat-
form manipulators. We obtain multi-parameter families of
isotropic manipulator analytically. In addition to comput-
ing the isotropic configurations of an existing manipulator,
we demonstrate a procedure for designing the manipulator
for isotropy at a given configuration.

1. Introduction

Isotropy is one of the common measures of perfor-
mance of a manipulator. In the case of six-degrees-of-
freedom (DOF) spatial manipulators, the term isotropy is
generally used in the context of kinematics. However, in
practice, the concept of twist-wrench duality is used to
analyse the 6 x 6 wrench transformation matrix H, to ob-
tain conditions such that this matrix has identical singular
values (see, e.g., [1]). A consequence of this approach is
the concurrence of kinematic and static isotropy, where the
later implies the ability of the manipulator end-effector to
resist forces and moments equally well in all spatial direc-
tions. Among the spatial parallel manipulators, the Stewart
platform manipulator (SPM) has been studied by several re-
searchers for isotropy [1], [2], [3], [4]. However, to the best
of our knowledge, no mechanically feasible, non-singular
isotropic configuration has been obtained for a manipulator
of this class. Further, it may be noted that the 3 x 6 sub-
matrices of H pertaining to the force and moment parts
have different physical dimensions for an SPM, therefore
the physical significance of the singular values of H is not
clear.

In this paper, we present a formulation for the study
of static isotropy. Our approach is to analyse the above
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mentioned force and moment transformation matrices sep-
arately. We form the conditions for the force and moment
isotropy in terms of algebraic equations involving the ele-
ments of the respective transformation matrices. We solve
these equations in closed-form to obtain a multi-parameter
family of kinematically valid configurations showing com-
bined force and moment isotropy. We also present exam-
ples of isotropic configurations for an existing manipulator,
as well as demonstrate the design for isotropy at a given
configuration within the above mentioned family.

The paper is organised as follows: in section I, we
present the general formulation of static isotropy of a spa-
tial manipulator, followed by its application to the SRSPM
in section III. In section IV, we present the analytical re-
sults, followed by a numerical example for an existing ma-
nipulator. In section V, we present the method of design for
isotropy at a given configuration. Finally, in section VI, we
conclude the paper.

II. Formulation

In this section, we derive the isotropy conditions of a
general manipulator from its wrench transformation matrix.
First we describe the formulation for obtaining the distri-
butions of the force and moment resultants on the moving
platform. We follow the approach presented in [5] in the
context of the linear and angular velocity distributions of
the moving platform. Using this approach, the said distri-
butions are obtained from the solution of eigenproblems of
two symmetric matrices. The conditions for force and mo-
ment isotropy are then derived in terms of algebraic equa-
tions involving the coefficients of the characteristic poly-
nomials associated with the above eigenproblems. We as-
sume in the following that the resultant force on the top
platform, F', and the corresponding moment (referred to the
centre of the moving platform), M, are available via linear
maps of the actuator efforts (e.g., leg forces in the case of
a platform-type parallel manipulator), f,.! Therefore we
can write F' and M in terms of the respective equivalent

1 Obtaining such a map is trivial for purely parallel manipulators. How-
ever, for hybrid manipulators, there can be significant difficulty in taking
the reactions at the passive joints into account while computing the effect
of the actuator effort on the end-effector.
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transformation matrices:

F=Hprf
M = Hu f (1)

We analyse the properties of the above two linear maps us-
ing well know tools of linear algebra [6], [7]. This leads to
the following eigenproblems respectively:

grf =Af ()
Imf =Amf 3)

where g = HIT;HF andgns = Hg/IHM. These eigen-
problems have the following characteristics:

o The eigenvalues A\, A\ ps are real and nonnegative.

o Atthe most 3 of the eigenvalues are nonzero in each case,
as the rank of H g or H ps can not exceed three. Therefore,
if dim(gp) = n with n > 3, at least (n — 3) eigenvalues
of g are zeros— and the same applies to g, as well.

The characteristic equation of g  may be written with real
coefficients a; as:

A2+ a1 )+ ao n=2
0=< A+ a1\ +ax\+as n=3 (@)
A3+ a1 A? +ag) +a3) n>3

The characteristic equation of g,, has exactly the same
form as above. However, we use the notations b; for the
coefficients, and Az for the eigenvalues in that case. From
linear algebra isotropy of Hp and H s imply, respec-
tively:

X = |F*|1?, A= |M*? i=1,...,n (5

where (-*) indicates an extremal quantity. Under this condi-
tion, the force ellipsoid, (the ellipsoid corresponding to F’)
to a sphere of radius | F*||. Similarly, the moment ellip-
soid reduces to a sphere of radius || M *||. This implies that
the nontrivial roots of equation (4) should be equal, and not
all of ay, as, az can be zero.” The nontrivial roots of equa-
tion (4) can also be obtained explicitly in terms of a; using
Sridhar Acharya’s and Cardan’s formula for the quadratic
and cubic cases respectively (see, e.g., [8]). However, it
is not required to compute the roots explicitly in order to
obtain the conditions for isotropy from their equality. In-
stead, those conditions can be easily formed as algebraic
equations in the coefficients a; etc. as follows. For the case
n = 2, we equate the discriminant to zero and obtain the
following condition:

a% —4a, =0 (6)

For the case n > 3, we consider the nontrivial cubic part of
equation (4):

N4+ aiX? +asd+a3 =0 (7)

21t may be noted here that the coefficients a;, b; can be computed in
closed form using Newton identities [6], [7].

Using the standard transformation A = z— %, the quadratic
term may be removed to obtain the cubic in the form:
23 4+ Pz + Q = 0 (see, e.g., [8]). It is obvious that if
P =@ =0, then z = 0, and hence equation (7) has the re-
peated roots \; = —%-, i = 1,2, 3. In terms of the coeffi-
cients of the original cubic equation (7), the conditions for
equal roots are:

a% 2a§’ ajas
ag—— =0, ——

3 27 3

+az3=0 (®

Further, if we solve the above equations exactly in symbolic
form, then the second of them can be simplified using the
first, yielding the pair of equations below:

3a —a? =0, 2Taz—a3=0 9)
The conditions for moment isotropy can be obtained in the
same fashion. In the following, we list down the conditions

for the different types of isotropy considered in this paper.
A. Force (F'-isotropy): H f is isotropic.

a? —4as =0, n=2
3a2—a% =0 (10)
27a3 — a3 =0 nz3

B. Moment (M -isotropy): H ps is isotropic.

b2 — 4by = 0, n=2
by — 2 =0 (an
27hy — b3 =0 nz3

C. Combined: Both H g, H ps are isotropic. The con-
ditions that apply in this case are simply the union of the
conditions in cases A and B.

2 —
R } =2 (12)
3(12 7(1% =0
27a3 — a3 =0
3by — b =0
27bs — b3 =0

n>3 (13)

III. Isotropy conditions of an SRSPM

In this section, we apply the theory developed in sec-
tion II to formulate the isotropy conditions of an SRSPM.
In addition to its wide-spread technical applications men-
tioned earlier, the other motivations to choose this ma-
nipulator as our example are: (a) it is probably the most
well-studied spatial parallel manipulator (see section 1 for
some of the references) (b) no feasible configuration of
any Stewart platform manipulator demonstrating combined
static isotropy is reported in literature to the best of our
knowledge.

The manipulator along with the frames of reference used
is shown in figure 1. The bottom platform, shown in fig-
ure 2, has the legs arranged in a circle, with each pair lying
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Fig. 1. The semi-regular Stewart platform manipulator
Y

Fig. 2. Geometry of the bottom platform

symmetrically on either side of three axes of symmetry in
the plane. The axes are 2% 5 apart from each other, while the
adjacent pair of legs have an angular spacing 2+;. Without
any loss of generality, we scale the circumradius of the bot-
tom platform, 7, to unity, thus eliminating one parameter
from all subsequent analysis, and rendering all other length
parameters used in this paper dimensionless®. The top plat-
form geometry is similar, except that it has a circumradius
r¢, and a leg spacing 2.

The kinematic constraints defining the manipulator are
written in the task-space variables. The center of the top
platform is described in the base frame as p = (x,y, z)%.
The top platform orientation is described by the matrix
R € SO(3), where R = R.(¢)R,(0.)R,(0,)*. The
loop-closure equations are written as

p+ Ra; —b; —1;s;, =0, i=1,...,6 (14)
where [; denotes the length of the ith leg and a;, b; lo-
cate the leg connection points with respect to the platform
centers in respective frames (see figure 1), and s; denotes
the ith screw axis along the respective leg. The screw axis

3We use radians for the angular unit in this paper, while the unit for the
base radius can be chosen as convenient.

4In this paper, we denote the rotation about the axis X through an an-
gle 6 as R, (0) etc.

can be written in terms of the task-space variables and ac-
tuated variables as:

(p—i—RaZ—b) 1,...,6 (15)

NlH

The actuation force along the :th leg can be written as
F; = s;f;, where f; denotes the sense and magnitude of
the force. In terms of the force transformation matrix, the
resultant force on the top platform can be written as:

F=Hpf (16)

where, f = (f1, f2, f3, f1, f5, fo)T is the vector of leg
forces, and the matrix H g is given by:

é(p'i_Ral_bl)l .. ?(p-l—RaG—bG)l
Hp = E(erRCh—bl) E(erRaGbe)
i(p+ Rai—bi)s i (p+ Rag — be)s

where (-); denotes the ith component of the vector ‘-*. Mo-
ment imparted on the top platform due to the force along
the ith leg can be written as M; = (Ra;) X f;s;. Us-
ing the expression for s; from equation (15), M ; may be
written as M; = %(((Rai) x (p — b;))). Therefore the
resultant moment M can be written in terms of the moment
transformation matrix H py as

M=Huf 17
with H ps given by

(Ra1 X (p — bl))l e %(Raﬁ X (p bﬁ))l
(Ra1 X (p — bl))g . g(Rag X (p bg))g
(Ray x (p—b1))s i (Rag x (p — bg))s

It may be noted that the use of equation (15) ensures that
expressions of H g and H ps are kinematically consistent,

e., the loop closure equations are automatically satisfied
when they are cast in this form.

The conditions for static isotropy are obtained from H r,
H s following the previous section. The computational
steps involved for all the cases A, B, and C are summarised
below.

1. Form the symmetric matrix g, = Hn H

2. Form the symmetric matrix g, = H 17 H pr

3. Compute the coefficients of the characteristic equations
of g, gps using Newton identities.

4. Use equations (13) or any subset of the same, as appro-
priate for the different cases of static isotropy.

e

IV. Analytical results on the isotropy of an SRSPM

We now describe some analytical results for the differ-
ent cases of isotropy of the SRSPM using the formulation
developed in the last section. The independent variables in-
volved in the isotropy equations are the position of the top
platform p = (x,y,2)7, the orientation variables «, 3, ¢,
and the architectural variables r;, v, and ;.
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A. Architecture, configuration constraints

The natural restrictions on the architectural parameters
for mechanically feasible design would be the following:

e Ty > 1y > 13 where 7¢, 1y > 0 are two prescribed limits.
We adopt in this work 77 = 1,7, = 1/4.

e /3 > b, > 0. At both ends of these limits, the
hexagonal platforms reduce to triangles, and beyond these
limits the leg connection points with the platforms cross
over, and the legs can interfere mutually.

o The moving platform is above the fixed one, i.e., z > 0.
e % # 7. If the platforms are scaled versions of each
other, the manipulator is architecturally singular [9], [10].

Any solution for the architecture within these restrictions
would be termed as feasible or valid. Other mechanical
constraints, such as joint limits, leg limits, and physical di-
mensions of the legs etc. are not considered in the present
work. As a result, we do not impose any ranges on the val-
ues of the position and orientation variables, except z > 0.
We start with the following assumptions which enable us to
perform symbolic computations and obtain exact analytical
expressions:

« Isotropic configurations and corresponding architectures
are obtained only for the case when the manipulator is in its
home position. The home position is defined as x = y =
0, « = 8 = 0. In other words, displacement along and
rotation about only the Z axis is considered.

o The leg lengths have special relationships among them-
selves. We consider a family of configurations in which
alternate legs of the manipulator have equal lengths, i.e.,
length of the odd numbered legs is L1, and that of the even
numbered legs Lo = pL;, where p > 0 and in general
p # 1. This choice is motivated by the 3-way symmetry
inherent in the manipulator architecture, and the set of con-
figurations is more general than those studied in [11], [12],
(31, [1].

These restrictions by no means reflect any limitation of our
formulation; relaxing these has only the effect of increasing
the complexity of problem®.

B. Isotropic configurations

To ensure the practical utility of the isotropy, we first
check for the possible singularities within the target family
of configurations. The singularities in statics occur when

we have det (HF ) = 0. In this case the determinant is
Hyy
given by:

54723 cos(y — ¢) sin(y)

Dy
LSp?

Y=Vt

5 Although we do not have a proof, we have not been able to find
any other family of isotropic configuration (namely with all unequal leg
lengths or at x,y, o, 3 # 0) for the SRSPM’s studied by us. This is in
spite of extensive searches using various methods.

From equation (14), we obtain only two distinct equations
defining the leg lengths:

L3=1+47r+2*—2r,cosd

PpPL =141 + 2% — 2r;cos(2y — ¢) (18)
Eliminating L; between the above equations, we get a lin-

ear equation in p2, which gives the positive solution for p
as

+ 22

_[(re —cos(2y — 9))? + 22 +5in*(27 — ¢)
r= (1 — cos )2 + sin? ¢

The corresponding solution of L; is obtained as

L= \/(rt —co8(27 — ¢))2 + 22 +sin*(2y — ¢) (19)

The expressions for p, L; indicate that there are five free
parameters, namely 7,7, v, ¢ and z, for which the kine-
matic constraints are valid. We now search for isotropic
configurations within this 5-parameter family of kinemati-
cally valid configurations. First, we establish the conditions
for isotropy in general.

B.1 F'-isotropy.

The kinematically consistent F'-isotropy conditions
computed from equation (10) are found to share a common
factor, which can be written as a polynomial in zp:
coz% + clz% + co = 0, where ¢y = 2, (20)

c1 = 2r2 — 4cos(y) cos(y — @)re + cos(4y — 2¢) + cos(2¢)

co = (cos(4y — 2¢) + cos(2¢) — 2)r7 + 4(cos(¢) sin®(2y — ¢)

+ cos(2y — ¢) sin®(¢))r; + cos(4y — 2¢) + cos(2¢) — 2

B.2 M -isotropy.
In this case also, the isotropy conditions in equation (11)
have a common factor, which is a quadratic in ZJQVI:
dozjlv[ + dlz?\/f + dy = 0, where dg = 2 21)
dy = r? —2cos(y) cos(y — @)ry + 1
do = —r} + 4 cos(y) cos(y — @)rd — 2(cos(27)
+cos(2(y = ¢)) + 1)ri + dcos(y) cos(y — p)re — 1

B.3 Combined static isotropy.

The condition for combined static isotropy is simply the
intersection of the above two conditions, i.e., zgp = zps. In
other words, equations (20,21) should have common root(s)
in z2. The condition for the same can be obtained in closed
form by eliminating z from these equations:

C%dg + c1eadody + C%dOdQ — c1d1ds
+dj + ca(d} — 2dods) = 0 (22)
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The eliminant is of degree 6 in 74, but it is possible to
write it as 7 sin?(7) sin® (y — ¢) Ps(r;), where the quintic
P5(r¢) = 0, as the vanishing of the other factor leads to sin-
gularity. The coefficients of the quintic are functions of the
parameters 7, ¢, and can be derived in closed-form. How-
ever, due to their large size, we do not include them here.
When the quintic has a real solution, equations (20,21)
share a common root, and the corresponding positive value
of z can be obtained as:

N,
z 23
: D, 23)

N, = frf + 4 cos(7y) cos(y — ¢)rt3 —2(2cos(2(y — ¢))

x cos?(y) + cos(27))ri + 2 cos(7)((2 cos(2y) — 1) cos(y — @)

+ cos(3(y — ¢)))rs + 2sin?(p) — cos(4y — 2¢)
D, =12 — 2cos(v) cos(y — @)ry + cos(4dy — 2¢)
+ cos(2¢) — 1

C. Examples of combined static isotropy

We choose the free parameters as v, = T, ¢ = 75, and
¢ = {5 The numerical solutions for 7 are obtained as

ry = (0.3789,0.9828 & 0.1866i, 1.4795, 5.5939)
Of these, only r, = 0.3789 is feasible for the ranges of
parameters we have chosen. The resulting value of z from

equation (23) is obtained as z = 0.4627. The correspond-
ing configuration is shown below in figure 3.

" os

Fig. 3. Combined static isotropic configurations of the SRSPM

V. Design of an SRSPM for combined static isotropy

The formulation presented in this paper allow us to solve
the problems of analysis and synthesis within the same
setup, in addition to studying the isotropic configurations
in general. In this context, by analysis we mean obtaining
the isotropic configurations of a manipulator with a given
architecture, and by synthesis, the determination of the ar-
chitectural parameters such that the manipulator is isotropic
in a given configuration. We present a few case studies be-
low.

A. Synthesis of an SRSPM for combined static isotropy at
a given position zy and orientation ¢

In this case we assume that the top platform location and
orientation have been completely specified by zp = 2ps =
zp and ¢ = ¢g (in conjunction with the assumptions defin-
ing the isotropic family). The task is to obtain vy and r; such
that the manipulator exhibits combined static isotropy.

We start with the F'-isotropy equation (20) and the M-
isotropy equation (21). Substituting the actual expressions
of ¢;, d; in these equations, and rewriting them as polyno-
mial equations in r;, we get a quartic and a quadratic re-
spectively:

gori + g1} + gory + gare + 92 =0
hor? + hare + ha = 0 (24)

The common root of these two equations can be obtained in
terms of the coefficients g;, h; when the resultant with re-
spect to r; vanishes. The resultant is a complicated expres-
sion involving trigonometric terms in vy, and algebraic terms
in zp. We transform it to a polynomial in ¢ = tan(vy/2)
and simplify its coefficients using the algorithms described
in [10]. This results in a 32nd degree polynomial in ¢. Ex-
tracting the real values of ¢ such that the corresponding val-
ues of v are within the prescribed limits, we compute r;
numerically. For every positive solution for r; within the
specified range, the free parameter ~y; can be chosen as con-
venient, and the architecture of the manipulator can be com-
pletely prescribed. We illustrate this synthesis procedure
with an example below.

We choose the configuration as zp = 1/2, ¢¢ = /20,
and the free architectural parameter as y; = 7/12. Corre-
sponding to these numerical values, there are 24 real solu-
tions for ¢, of which, however, only 2 turn out to be feasible.
The feasible values of +y are (—0.1750, 0.3321) and the cor-
responding values of r; are (0.3239,0.3239) respectively.
The configurations are shown in figures 4(a)-4(b).

B. Combined static isotropic configurations of an SRSPM
of given architecture

In this section, we find out the configurations of an
SRSPM of given architecture showing combined static
isotropy. The manipulator geometry is completely speci-
fied in terms of the architectural variables, r¢, v and ;. We
need to find the configuration variables z and ¢ such that
the conditions for combined static isotropy are met.

We refer to the condition for combined static isotropy in
equation (22), which is a function of ¢ alone. We convert
this equation into a polynomial in v = tan(¢/2) using the
symbolic simplification tools as in the case of the synthe-
sis. In this case we end up with a 8-degree polynomial in .
For each of the feasible values of ¢ arising from the solu-
tions for u, the corresponding value of z can be computed
uniquely from equation (23), thereby completing the defini-
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0.4

NO.2.

(a) v = —0.1750, 7 = 0.3239

(b) v = 0.3321, r+ = 0.3239

Fig. 4. Combined static isotropy of an SRSPM at a given location and
orientation

tion of the manipulator configuration. We demonstrate the
solution procedure with an example below.

We use an architecture based on the INRIA prototype of
the SRSPM (data taken from [13]). The isotropic configu-
rations are shown in figures 5(a)-5(b).

VI. Conclusion

In this paper, we have developed an algebraic formula-
tion for the study of static isotropy of spatial manipula-
tors. We have applied the theory to SRSPM’s, and obtained
in closed-form a family of configurations showing force
and moment isotropy. The formulation allows us to design
an SRSPM for combined static isotropy at a given configu-
ration within this family. Also, we can obtain such config-
urations for an SRSPM with existing architecture. The an-
alytical procedures and results presented in the paper have
been numerically illustrated with examples of both analysis
and design.
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