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Abstract— To realistically simulate the motion of flexi-
ble objects such as ropes, strings, snakes, or human hair,
one strategy is to discretise the object into a large num-
ber of small rigid links connected by rotary or spherical
joints. The discretised system is highly redundant and the
rotations at the joints (or the motion of the other links) for
a desired Cartesian motion of the end of a link cannot be
solved uniquely. In this paper, we propose a novel strategy
to resolve the redundancy in such hyper-redundant systems.
We make use of the classical tractrix curve and its attrac-
tive features. For a desired Cartesian motion of the ‘head’
of a link, the ‘tail’ of the link is moved according to a trac-
trix, and recursively all links of the discretised objects are
moved along different tractrix curves. We show that the use
of a tractrix curve leads to a more ‘natural’ motion of the
entire object since the motion is distributed uniformly along
the entire object with the displacements tending to diminish
from the ‘head’ to the ‘tail’. We also show that the com-
putation of the motion of the links can be done in real time
since it involves evaluation of simple algebraic, trigonomet-
ric and hyperbolic functions. The strategy is illustrated by
simulations of a snake, tying of knots with a rope and a so-
lution of the inverse kinematics of a planar hyper-redundant
manipulator.

I. Introduction

In realistic computer animation of deformable objects
such as snakes, ropes, trees, grass or human hair, the length
of the object is preserved. To achieve this, one approach
is to discretise the deformable object into a large number
of rigid links connected by joints and then apply motion
at the joints to give realistic animation. A deformable ob-
ject discretised in such a way can be visualised as a hyper-
redundant manipulator [1]. The main difficulty in analysis
of hyper-redundant manipulators is that given a desired mo-
tion of the end-effector or a point on the manipulator, there
exists an infinite number of solutions for the motion of the
joints (or the motion of links). The problem of obtaining
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a unique solution is called as the resolution of redundancy
and there exists vast amount of literature on resolution of
redundancy. One of the main approaches is at the level
of velocity (or infinitesimal motions) where the non-square
manipulator Jacobian matrix relating the end-effector ve-
locities to the joint velocities is inverted using a pseudo-
inverse (see the review paper by Klein and Huang [2] and
the textbook by Nakamura [3] and the references contained
therein). The pseudo-inverse based approach has the at-
tractive property of minimising the sum of the squares of
the joint rates. The pseudo-inverse approach, with a null
space term, has also been extended for obstacle and sin-
gularity avoidance, minimising joint torques and optimis-
ing additional quantities such as a manipulability index.
The pseudo-inverse approach is, however, a purely numer-
ical and local approach. Other approaches use elimina-
tion of variables [4], modeling backbone or spine curve by
splines [5], solution of a partial differential equation from a
continuum approach [1], equally sharing the angle [6] and
workspace density for discretely actuated hyper-redundant
manipulator [7]. In the recent past there has been a renewed
interest in this area due to the need for more realistic com-
puter animations and for developing real-time tools for mi-
crosurgery simulations [8]. In reference [8], the authors
have developed a ‘follow the leader’ approach to simulate
tying of knots in microsurgery where the suture or string is
discretised into large number of rigid links. One end of the
string is held fixed and the other end is moved in a manner
to tie a desired knot. The intermediate links in the string
follow the link ahead of it from which the name of the strat-
egy is derived.

In this paper, we present a novel strategy for resolution of
redundancy at the level of position. The resolution scheme
is based on a classical curve called the tractrix. The de-
formable object is discretised into a large number of rigid
links connected by joints. For a desired Cartesian motion of
one end of link in the chain, the other end is moved accord-
ing to the tractrix equation, and recursively all links are also
moved along different tractrix curves. The attractive prop-
erties of a tractrix curve leads to a more realistic motion of
the entire deformable object since, the motion is distributed
uniformly along the entire object with the displacements
tending to diminish from the ‘head’ to the ‘tail’. We also
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show that the computation of the motion of the links can be
done in real time since it involves evaluation of simple alge-
braic, trigonometric and hyperbolic functions. The strategy
is illustrated by simulations of the motion of a snake, tying
of knots with a rope and a solution of the inverse kinematics
of a planar hyper-redundant manipulator.

The paper is organised as follows: in section II we
present a brief overview of the tractrix curve and extend
the notion of the tractrix when the head moves along an ar-
bitrary direction in a plane. In section III we extend the
tractrix to spatial 3D motion and derive an algorithm to ob-
tain the points on the tractrix when the end of a link moves
in 3D space. In section IV, we present an algorithm based
on the tractrix, to resolve redundancy in hyper-redundant
systems and obtain motion of deformable objects such as
snakes and ropes. In section V, we present numerical sim-
ulation results and present the conclusions in section VI.

II. An overview of the tractrix curve

The tractrix arises in the following problem posed to
Leibniz: What is the path of an object starting of with a ver-
tical offset when a string of constant length drags it along
a straight horizontal line? By associating the object with a
dog, the string with a leash, and the pull along a horizon-
tal line with the dog’s master, the curve has the descriptive
name hund curve (hound curve) in German. Leibniz found
the curve using the fact that the axis is an asymptote to the
tractrix [9].

The above concept of the curve traced by the dog is also
valid for a a single link moving in the plane as shown in
figure 1. If the head P denoted by j1 is made to move
along a straight line ST parallel to the X-axis, the motion
of the tail denoted by j0, such that the velocity of j0 is along
the link, is a tractrix shown by the dotted curve in figure 1.
Using the fact that the velocity vector at j0 is always aligned
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Fig. 1. Motion of a link when one end is pulled along the line ST parallel
to X-axis

with the link, i.e., with the tangent to the tractrix, the tractrix

equation can be derived from the differential equation of the
tangent

dy

dx
=

−y√
L2 − y2

(1)

where L is length of the link. The above differential equa-
tion can be solved in closed from, and we can write

x = L log
y

L−
√
L2 − y2

−
√
L2 − y2 (2)

The solution of the differential equation can also be written
in a parametric form, with p as the parameter, as

x(p) = p− L tanh(
p

L
), y(p) = L sech(

p

L
) (3)

Since the instantaneous motion of the tail j0 is directed
along the link, the following optimality property holds:
given an infinitesimal displacement dp of j1 along ST , the
length of the path traversed by the tail j0, denoted by a vec-
tor dr, presents a local minimum of all possible paths for
j0. Furthermore, the ratio between dr and dp obeys an in-
equality dr ≤ dp. The inequality follows from the follow-
ing reasoning: Let x and y be the coordinates of point j0,
and p is the x-coordinate of j1. From figure 1 we get

p = x+
√
L2 − y2 (4)

The displacement dr can be written as dr =
√
dx2 + dy2,

and using elementary calculus and the tractrix equation, we
get

dr

dx
=

L√
L2 − y2

(5)

and dr/dp can be obtained as

dr

dp
=

√
L2 − y2

L
≤ 1 (6)

where we get an equality if the link is along the line ST .
We next consider the case of the head moving along an

arbitrary straight line (not necessarily the X axis) given by
ye = mxe where m = yp/xp is the slope of the line con-
necting the initial position of the head and the destination
point of the head (xp, yp). The differential equation for the
tangent can now be written as

dy

dx
=
y − ye
x− xe

(7)

From the length constraint, L2 = (x − xe)2 + (y − ye)2,
we can solve for xe and we get,

xe =
−B ±

√
B2 − 4AC

2A
(8)

where A = 1 + m2, B = 2my + 2x,C = x2 + y2 − L2.
From the above expression for xe, we can see that there are
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two values possible of xe for every x and y. The positive
sign is used when the slope of the link (m1), with respect
to a new coordinate system with the path of the head as the
X-axis is negative and vice versa. Substituting the expres-
sions obtained for xe from equation (8) and ye = mxe in
equation (7), and integrating it we get the tractrix shown in
figure 2.
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Fig. 2. Motion of a link when one end is pulled along the line ye = mxe

III. Extension of the tractrix to spatial motion

The equations describing a tractrix can be extended to 3D
space. In 3D space we will have two differential equations
of the form

dy

dx
=
y − ye
x− xe

,
dz

dx
=
z − ze
x− xe

(9)

The equations of the path followed by head are

ye = m1xe, ze = m2xe (10)

where, m1 = yp/xp, m2 = zp/xp, and (xp, yp, zp) is the
destination point of the head. It may be noted that the above
equations assumes that the link is initially lying along Y -
axis; however, similar equations can be obtained if the link
is along the Z or the X axis. We also have the constraint of
length preservation

L2 = (x− xe)2 + (y − ye)2 + (z − ze)2 (11)

Similar to the planar case, one can numerically integrate
the above differential equations and obtain the path taken
by the tail in 3D space.

Instead of the numerical solution of the differential equa-
tions, we can also find the point on the tractrix in 3D space
in closed form. For this purpose a reference plane is con-
structed using the three points, namely the initial positions
of head, tail and the destination point of the head denoted
by Xp = (xp, yp, zp)

T . The X-axis of the reference plane
is aligned with the path of head. The parametric equation of

tractrix is then solved to get the position of the tail (xr, yr)
in the reference plane. Finally, to obtain the position of
the tail in global co-ordinates, the points (xr, yr) are trans-
formed from the reference (local) to the global co-ordinate
system.

A. Algorithm to obtain the tractrix curve in 3D space

1 Define the vector S = Xp−Xh where Xh is the current
location of the head.
2 Define the vector T = X−Xh where X = (x, y, z)T is
the tail of the link lying on the tractrix.
3 Define the new reference coordinate system {r} with the
X-axis along S. Hence X̂r = S

|S| .

4 Define the Z-axis as Ẑr = S×T
|S×T| .

5 Define rotation matrix 0
r[ R ] = [X̂r Ẑr × X̂r Ẑr].

6 The Y -coordinate of the tail (lying on the tractrix) is
given by y = Ŷr · T and the parameter p can be obtained
as p = L sech−1( yL)± |S|.
7 From p, we can obtain the X and Y coordinate of the
point on the tractrix in the reference coordinate system as

xr = ±|S| − L tanh(
p

L
)

yr = L sech(
p

L
) (12)

8 Once xr and yr are known, the point on the tractrix
(x, y, z)T in the global fixed coordinate system {0} is given
by

(x, y, z)T = Xh +0
r [ R ](xr, yr, 0)T (13)

The above steps are illustrated in figure 3. It may be
noted that the point on the tractrix is obtained in terms of
cross and dot products of vectors and hyperbolic functions,
and do not require solution of differential equations. This
makes the algorithm amenable for real time computations.
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Fig. 3. Tractrix in global and local coordinates

IV. Algorithm for resolution of redundancy

The basic equations of a tractrix in 3D space can be used
for resolution of redundancy for any serial discretised de-
formabale object. Consider a deformable object such as a
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snake or a rope discretised into n rigid links l1, l2, ..., ln
with joints j1, j2, ..., jn−1. For spatial motion, we assume
that the joints are spherical joints. Consider the last two
links ln and ln−1. The head of the link ln denoted by
the point jn is moved to a new position jnnew given by
(xp, yp, zp)

T . From the steps given in the previous section,
we can obtain the displaced location of the tail (x, y, z)T as
it follows a tractrix (see equation (13). The link ln−1 is at-
tached to the link ln and hence the head of link ln−1 should
now be moved from the existing location to (x, y, z)T . The
location of the tail of link ln−1 (following a tractrix) can
again be obtained from the steps given in previous section.
It maybe noted that the reference plane and the rotation ma-
trix obtained in the steps described in section III are not the
same for the two links. Following similar steps, we recur-
sively obtain the motion of the head and tail of all links
down to the first link l1.

We can make the following remarks about the above al-
gorithm.
• Instead of the flexible object being moved from the end,
if it is moved from any point on the body, then we can di-
vide the object into two parts and apply the steps listed in
section III to the two parts individually.
• In case of a hyper-redundant robot, the joint angles can
be obtained by simple vector algebra since the initial and
final position of all the links are known.
• Under a tractrix motion, when the head of the link ln
moves by drn the displacements of all the links obey the
inequality dr0 ≤ dr1 ≤ ... ≤ drn−1 ≤ drn, with the
equality dri = dri−1 reached only when the line of motion
of joint ji coincides with link li. This observation follows
from equation (6). A consequence of this observation is that
the motion of the links away from the head gets progres-
sively smaller and appears to ‘die’ out. This feature gives
a more realistic visualization of the motion of the flexible
object and was observed in animations of a snake and knot
tying.
• The above property also imply that for a tractrix mo-
tion, the total displacement of all links except the head,∑i=n−1

i=0 |dri|, is minimised. Note that this is different from
a pseudo-inverse based resolution of redundancy where the
infinitesimal motion of the joints are minimised in the least
square sense. The results obtained from the tractrix based
resolution of redundancy are thus different from pseudo-
inverse based methods.

A. Obstacle avoidance

While moving the links of the deformable object such as
in tying a knot, we must ensure that the discretised links do
not intersect or collide with each other. To effectively sim-
ulate the motion of the discretised links, we need to detect
collisions between the links and then develop a strategy to
manage the collisions. There exists a wide variety of al-
gorithms and literature for collision detection (see, for ex-
ample, the review paper [10] and the references contained

there in). In our implementation, we have used a simple
conservative strategy of bounding each link by a sphere and
then checking for the distance between the centre of the
spheres. If the distance is such that there is collision, we
move the centre of one of the links along the common nor-
mal by a distance slightly greater that (li+ li+1)/2 where li
is the length of the ith link. Unfortunately this motion can
result in a collision at some other link. Hence, we must re-
cursively follow a strategy of detection and collision man-
agement for all links. If the number of iterations exceeds
a given value the object is considered to be locked at that
configuration.

V. Simulation results

The tractrix based redundancy resolution has been ap-
plied to visualize the motion of a snake, tying a knot in
a rope, and for solving the inverse kinematics of hyper-
redundant planar manipulator. We present snap shots of
animation results for each of these objects.
Motion of a snake in 3D: We model a snake with 40 links.
The head of the snake is moved along an arbitrary curve and
the motion of each of the links are obtained according to the
tractrix strategy. From the motion of the links, an animation
is created using Matlab. Figure 4 shows the configuration
of the snake at few instances.
A single-handed knot: We model a rope with 40 rigid links
each one unit long. One end of the rope is moved in a fash-
ion so that a knot is tied near the centre of the rope. Several
configurations of the rope while tying the knot are shown in
figure 5. An animation of the knot tying process was cre-
ated in Matlab from the computed configurations and since
the computations are fairly simple, this could be done in
real time.
Two-handed knot: In case the knot is to be tied by mov-
ing both the ends of the rope (by moving both hands) then
the two ends are moved alternatively. Again, the motion of
all the links are obtained in real-time by using the tractrix
based approach. Various configurations of the rope while
two-handed knot tying are shown in figure 6. It was ob-
served that the collision avoidance takes most of the time in
the simulation of single-handed and two-handed knots.
Planar hyper-redundant manipulator: In the case of in-
verse kinematics of a hyper-redundant manipulator, the de-
sired (xp, yp) of the end-effector (same as the head) is spec-
ified. We obtain the motion of all the links by the tractrix
approach. In a tractrix the tail of the first link also moves
although by a small amount. However, for a manipulator
the position j0 should be fixed. To overcome this problem,
we move the point j0 to (0, 0) and all other links are trans-
lated rigidly (no joints are rotated). This results in the end-
effector moving away from the desired (xp, yp). We repeat
the tractrix based approach till the head reaches (xp, yp)
within a prescribed error bound. It may be noted that con-
vergence is guaranteed since the tractrix motion dies down
along the links (see observation listed in the previous sec-
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tion). Figure 7 gives intermediate configurations of a 10
link hyper-redundant planar manipulator where each link
length is 0.2 units. The initial configuration and the final
(desired) end-effector (x, y) coordinates are as marked in
figure 7. The intermediate configuration with blue mark-
ers are obtained from the tractrix based approach and the
configuration with black markers are from a pseudo-inverse
formulation. The plot of joint rotations from the tractrix and
pseudo-inverse based approaches are shown in figure 8.
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Fig. 4. Simulation of the motion of snake
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Fig. 5. Simulation of the single-handed knot tying

VI. Conclusion

In this paper, we have presented a novel tractrix based
scheme for resolution of redundancy for hyper-redundant
manipulators and simulation and visualisation of motion of
flexible objects such as snakes and ropes. The flexible ob-
ject is discretised into a large number of rigid links and for
an arbitrary chosen motion of the head of one link, the mo-
tion of all other links are computed by using the equations
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Fig. 6. Simulation of a two-handed knot tying

of a tractrix. One of the key property of a tractrix is that the
motions of links decreases as one goes away from the head
and this makes the visualization of tying knots and motion
of a snake more realistic. In addition, since the computa-
tions involve simple vector algebra and evaluation of hy-
perbolic functions, the simulation and visualization can be
done in real-time.
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