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Abstract

The recursive forward dynamics algorithm (RFDA) for a tree structured rigid multi-
body system has two stages. In the first stage, while going down the tree, certain equa-
tions are associated with each node. These equations are decoupled from the equations
related to the node’s descendants. We refer them as the equations of RFDA of the node
and the current paper derives them in a new way. In the new derivation, associated
with each node, we recursively obtain the coordinates which describe the system con-
sisting of the node and all its descendants. The special property of these coordinates is
that a portion of the equations of motion with respect to these coordinates are actually
the equations of RFDA associated with the node. We first show the derivation for a
two noded system and then extend to a general tree structure. Two examples are used
to illustrate the derivation. While the derivation conclusively shows that equations of
RFDA are part of equations of motion, it most importantly gives the associated coordi-
nates and the left out portion of the equations of motion. These are significant insights
into the RFDA.

1 Introduction

The forward dynamics of a tree structured or open-loop, rigid, multi-body system with n
rigid bodies is efficiently done by the well known O(n) recursive forward dynamics algorithm
(RFDA). Early contributions to this algorithm could be traced to Armstrong [Armstrong, 1979].
In Featherstone [Featherstone, 1983], this algorithm has been generalized and explained us-
ing the screw theory and the concept of articulated body inertia (AB Inertia) was also in-
troduced. The same algorithm was explained using variational equations of motion, by Bae
and Haug [Bae and Haug, 1987]. In the work by Rodriguez [Rodriguez, 1987], the algorithm
was derived using the techniques similar to Kalman filtering and smoothing. Rodriguez and
Kreutz-Delgado [Rodriguez and Kreutz-Delgado, 1992] used the spatial operator algebra to
describe this algorithm. The concept of decoupled natural orthogonal coordinates and re-
verse Gaussian elimination was used to derive this algorithm by Saha [Saha, 1999]. Lubich
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and co-workers [Lubich et al, 1992] derived the recursive algorithm using constraint equa-
tions.

As described by Bae and Haug [Bae and Haug, 1987], Featherstone [Featherstone, 1983]
and by Lubich and co-workers [Lubich et al, 1992], the RFDA consists of two sequential
stages. In the first stage, certain equations are recursively associated with each node of the
tree and they are decoupled from the equations related to the descendant nodes. We refer
them as the equations of RFDA of the node and the current work presents a new way to
derive them. It is well known that different coordinates 1 describing the same multibody
system results in different equations of motion. The new derivation is based on recursively
obtaining special coordinates for each node having following characterization - 1) it describes
the system consisting of the node and all its descendants, 2) it is consistent with all joints
in the node-descendants system, and 3) most importantly, a portion of equation of motion
with respect to these coordinates is the equations of RFDA for the node. Henceforth, such
coordinates are referred as coordinates of RFDA. In section 3.2.2, we examine that for a
system as simple as two noded planar system with revolute joint, finding the coordinates of
RFDA for the parent node is not straight forward.

In the paper, the derivation is first shown for a two noded system. For the terminal node,
the coordinates of RFDA is same as the absolute coordinates for the node. For the parent
node, the coordinates of RFDA is found in two stages. In the first stage, the coordinates
describing terminal node and satisfying two conditions (see section 4) are found. In the
second stage, using simple coordinate transformation, we obtain coordinates describing both
nodes. The equation of motion in terms of the later coordinates has block diagonal mass
matrix and the equations corresponding to one of the blocks is the equations of RFDA for
the node. The originality of the paper lies in enunciating the two conditions for coordinates
of the first stage and the methods used to obtain them. We later extend the derivation to
a general tree structure.

This derivation conclusively shows that equations of RFDA is actually a part of equations
of motion. Most importantly, it gives the associated coordinates and the left out portion
of the equations of motion. These are important insights in this cornerstone algorithm in
multibody dynamics. We don’t make any claims on better computer implementation.

This paper is organized as follows: In section 2, we present a review of the equations of
RFDA for a tree structured, rigid, multi-body system. In section 3, we explain motivation
for the new derivation. In section 4, we present our method of obtaining equations of RFDA
for a two noded tree. The details of the method are worked out in section 5. Section 6
extends the method to a general tree structure. We conclude in section 7.

2 Review of equations of recursive forward dynamics

The figure 1 shows the topological representation of a tree structured multibody system.
Each node represents a rigid body and a line connecting two nodes represents the joint
between the rigid bodies. The nodes are appropriately numbered. The joint between a
node and its parent receives the same number as that of the node.

1We have used the term coordinates to mean the quantities that independently and completely describe
a subset or all of the rigid bodies making up a multibody system.
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Figure 1: A typical tree structure

If y is absolute coordinates 2 for a n-noded multi-body system, then we can partition it
as y =

[
yT

0 yT
1 . . . yT

n

]
T , where yi describes 3 the rigid body i.

The constraint equation due to joint j, between body j and its parent i is represented
as

Qjẏi + Gj ẏj = νj (1)

If j is the root node, then the constraint equation has the form

Gj ẏj = νj (2)

The differentiated form of equation (1) is

Qj ÿi + Gjÿj = γj (3)

where γj = −Q̇jẏi − Ġjẏj + ν̇j. In [Haug, 1989], there is a detailed discussion on finding
constraint equations in terms of absolute coordinates, for different kinds of joints.

Joint coordinates (also called relative coordinates) are also used to describe the multi-
body system. If q represents the joint coordinates, then it can be partitioned as q =[
qT

0 qT
1 . . . qT

n

]
T , where qi represent vector of joint variables of joint i. For example,

if ith joint is revolute joint, then qi could be one dimensional vector containing joint angle
[θi].

The absolute and joint coordinates are related. If body i is the parent of body j, then
the relation is represented as

ẏj = Bj ẏi + Hj q̇j + cj (4)

One of the ways to obtain the above relation is given in Appendix A. The differentiated
form of the equation (4) is

ÿj = Bjÿi + Hj q̈j + dj (5)

where dj = Ḃj ẏi + Ḣj q̇j + ċj. In [Bae and Haug, 1987] there is a detailed discussion on
finding the above equations for revolute and translational joints.

2The symbol y actually represent coordinates stacked in the form of a vector.
3The coordinates could be pseudo-coordinates. So ẏi could be familiar translational and angular veloci-

ties, while yi itself is symbolic.
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The equation of motion for the unconstrained body i in terms of absolute coordinates
yi, is given by

M iÿi = f i (6)

The mixed differential-algebraic equation (after differentiating constraints appropri-
ately) for the constrained tree structured multibody system has the form.





M j ÿj + GT

j λj = f j −
∑

k:j=P(k)

QT
k λk

Gjÿj = γj − QjÿP(j)




 , j = 0, . . . , n (7)

where P(i) denote parent of node i, and k : j = P(k), indicates all k which has j as its
parent.

Given time t, y, and ẏ, M j , f j ,
4 Gj , Qj and γj could be found for j = 0, . . . , n. So the

equation (7) is essentially a set of linear equations in the unknowns ÿ and λ. The purpose of
forward dynamics algorithm is to find ÿ, given t, y, and ẏ. One straight forward method to
solve equations (7) is by using methods such as Gaussian elimination or LU decomposition.
This straight forward method has O(n3) complexity.

The O(n) recursive algorithm for forward dynamics of branched multibody system has
two steps

1. Going from terminal bodies to root, forming new equations at parent nodes, along
the way.

2. Going from root to terminal bodies, solving for ÿj of each of the nodes j, along the
way.

Step 1 : The new equation that is formed at a node, say j, is given by

{
M̂ j ÿj + GT

j λj = f̂ j

Gjÿj = γj − QjÿP(j)

}
, (8)

with the constraint part corresponding to node j remaining unchanged. In this paper, it is
the first part of equation (8), that is referred to as the equations of RFDA for node j.

In reference [Lubich et al, 1992], the following expression for M̂ j and f̂ j has been de-
rived.

M̂ j = M j +
∑

k:j=P(k)

QT
k

(
GkM̂

−1

k GT
k

)−1
Qk (9)

f̂ j = f j +
∑

k:j=P(k)

QT
k

(
GkM̂

−1

k GT
k

)−1(
γk − GkM̂

−1

k f̂k

)
(10)

4There may be problems where f j may depend linearly or nonlinearly on λ. Those situations arise when
dry friction is modeled into the equations. We will not consider such cases here.
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An alternate expression for M̂ j and f̂ j is given in [Lubich et al, 1992], [Bae and Haug, 1987]
and [Featherstone, 1983]. The expressions are as given below

M̂ j = M j +
∑

k:j=P(k)

BT
k

(
I − M̂kHk

(
HT

k M̂ kHk

)−1
HT

k

)
M̂kBk (11)

f̂ j = f j+∑

k:j=P(k)

BT
k

(
I − M̂kHk

(
HT

k M̂kHk

)−1
HT

k

)(
fk − M̂kdk

)
(12)

where Bk, Hk and dk are as given in equation (5).
Step 2 : The equation (8) could be solved for ÿj and λj if ÿP(j) (corresponding to parent
of j) is known. However if j = 0 (root), then the term QjÿP(j) doesn’t exist (since root
doesn’t have parent). So initially for j = 0, ÿj could be solved. Once ÿ0 is known, step by
step ÿj for all the descendant nodes j could be solved. This constitute the second stage of
the recursive algorithm.

M j is positive definite for all j = 0, . . . , n. The term
∑

k:j=P(k)

QT
k

(
GkM̂

−1

k GT
k

)−1
Qk

in equation (9) is positive or positive-semi definite. Thus M̂ j is also positive definite.

Similar comments could be shown to hold true for M̂ j in equation (11) also. With M̂ j

being positive definite for j = 0, . . . , n, the terms
(
GkM̂

−1

k GT
k

)−1
and

(
HT

k M̂kHk

)−1
are

defined only if Gk is full row rank and Hk is full column rank. We assume that Gk is full
row rank. This assumption also ensures that Hk is of full column rank (see equations (60)
and (61) ). Further, the assumption Gk being full row rank for k = 0, . . . , n, would render
constraint Jacobian in the overall system equation (7), to be of full row rank and the
existence and uniqueness of ÿ and λ as solution to equation (7), follows form Constrained
Dynamic Existence Theorem [Haug, 1989].

In this paper, we present a new approach to derive equations of RFDA. Our approach
involves finding new coordinates with special properties. This is described next.

3 Motivation

In this section, we consider a two noded multibody system described in [Featherstone, 1983]
and, using intuition, give coordinates of RFDA for it. We also consider a two noded planar
multibody system with revolute joint and realize that finding coordinates of RFDA is not
straight-forward. Finding coordinates of RFDA for general multibody system has been the
motivation for the new derivation given in section 4.

3.1 Featherstone’s example

This system has been described in [Featherstone, 1983]. It is a planar system where the
body 1 slides on the horizontal rail fixed to the base and the body 2 slides on a the vertical
rail fixed to the body 1.
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Figure 2: A simple example given in [Featherstone, 1983]

3.1.1 Absolute coordinate - equations of recursive algorithm

Since the two bodies can only translate, take absolute coordinates to be y =
[
yT

1 yT
2

]T
,

where y1 =
[
rx1

ry1

]T
, y2 =

[
rx2

ry2

]T
. The two constraints on this coordinate are

ry1
= 0 and rx2

− rx1
= 0. The mixed differential algebraic equations for the system has

the following form.

node 1 :

[
m1 0
0 m1

] [
r̈x1

r̈y1

]
+

[
0
1

]
λ1 =

[
fx1

fy1

]
−

[
−1
0

]
λ2 (13a)

[
0 1

] [
r̈x1

r̈y1

]
=

[
0
]

(13b)

node 2 :

[
m2 0
0 m2

] [
r̈x2

r̈y2

]
+

[
1
0

]
λ2 =

[
fx2

fy2

]
(14a)

[
1 0

] [
r̈x2

r̈y2

]
=

[
0
]
−

[
−1 0

] [
r̈x1

r̈y1

]
(14b)

The equations RFDA associated with node 1 is the first part of equation (8). Using equations

(9) and (10) to calculate M̂1 and f̂1, we get

[
m1 + m2 0

0 m1

] [
r̈x1

r̈y1

]
+

[
0
1

]
λ1 =

[
fx1

+ fx2

fy1

]
(15)

3.1.2 Coordinates of RFDA

We form a new coordinate by retaining the absolute coordinate of body 1 and replacing
the absolute coordinate of body 2 by the joint variable ry2

. The new coordinate ȳ =[
rx1

ry1
ry2

]T
is related to the absolute coordinate y, by the following relation.




ṙx1

ṙy1

ṙx2

ṙy2


 =




1 0 0
0 1 0
1 0 0
0 0 1







ṙx1

ṙy1

ṙy2



 (16)
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The constraint for the new coordinate is ṙy1
= 0. The equation of motion in terms of new

coordinate is



m1 + m2 0 | 0
0 m1 | 0
− − − −
0 0 | m2







r̈x1

r̈y1

−
r̈y2


 +




0
1
−
0


 λ1 =




fx1
+ fx2

fy1

−
fy2


 (17)

We notice that the mass matrix in the above equation of motion is block diagonal. Further,
by comparing equation (17) with equation (15), we see that the equations corresponding to
the first block is same as equations of RFDA. Thus the coordinates ȳ, defined in equation
(16) is the coordinates of RFDA for the node.

In the next subsection, we seek coordinates of RFDA for a two noded planar system
with revolute joint.

3.2 Planar two rigid body system with revolute joint

Figure 3 shows two planar rigid bodies connected by a revolute joint. x−y axes, with origin
O, represent global reference frame. x̂j − ŷj axes, with origin Oj represent local frame fixed

to body j. rj =
[
xj yj

]T
is vector

−−→
OOj , expressed in global coordinate. φj is angle from

x̂j to x. s′Pj

j =
[
s′

Pj

jx
s′

Pj

jy

]T

represent vector
−−−→
OjPj , expressed in local coordinate x̂j − ŷj.

Similar conventions apply for body k also. We proceed on the same lines as previous
subsection.

j

k

x

x

x

y

O

rj

rk

Oj , (xj , yj)

Ok, (xk, yk)

x̂j

ŷj

x̂k

ŷk

φj

φk

Pj , Pk

s
Pj

j
s P

kk

Figure 3: Two planar rigid bodies with a revolute joint at point Pj = Pk.

3.2.1 Absolute coordinate - equations of recursive algorithm

We take absolute coordinates for the system to be y =
[
yT

j yT
k

]T
, where yj =

[
xj yj φj

]T

and yk =
[
xk yk φk

]T
.

The constraint equation is

rk + A(φk)s
′Pk

k − rj − A(φj)s
′Pj

j = 0 (18)
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where A(θ) =

[
cos θ − sin θ
sin θ cos θ

]

The differential equations and constraints associated with each node are – {M j ÿj = f j−

QT
k λk}, for node j, and {M kÿk + GT

k λk = fk, Gkÿk = γk −Qkÿj}, for node k. Gk, Qk

and γk could be evaluated using the constraint equation (18) (Qk =

[
−1 0 sinφjs

′Pj

jx
+ cos φjs

′Pj

jy

0 −1 − cos φjs
′Pj

jx
+ sinφjs

′Pj

jy

]
,

Gk =

[
1 0 − sinφks

′Pk

kx
− cos φks

′Pk

ky

0 1 cos φks
′Pk

kx
− sin φks

′Pk

ky

]
) . Let, M j =




mj 0 0
0 mj 0
0 0 Jj



, Mk =




mk 0 0
0 mk 0
0 0 Jk



,

f j =
[
fjx fjy τj

]T
and fk =

[
fkx

fky
τk

]T
.

The equations of RFDA, associated with node 2 has the form

M̂ j ÿj = f̂ j (19)

M̂ j and f̂ j are calculated using equations (9) and (10). The explicit expression for M̂ j(1, 1)

is given below. Rest of the elements and the elements of f̂ j could be easily obtained using
any symbolic math software.

M̂ j(1, 1) = (−2m2
ks

′Pk

kx
s′

Pk

ky
sin(2φk) + m2

k(s
′Pk

kx
)2 cos(2φk)+

m2
k(s

′Pk

kx
)2 + 2mjJk + 2mkJk + 2mjmk(s

′Pk

kx
)2 + 2mjmk(s

′Pk

ky
)2+

m2
k(s

′Pk

ky
)2 − m2

k(s
′Pk

ky
)2 cos(2φk))/(2Jk + 2mk(s

′Pk

ky
)2 + 2mk(s

′Pk

kx
)2)

3.2.2 Coordinates of RFDA

We look for a coordinates having the characteristic that the equation of motion of the planar
system has a block diagonal mass matrix, with equation corresponding to one block same as
equation (19). It is not easy to find such a coordinate. The trick of forming new coordinate
by appending absolute coordinate of parent with the joint variable doesn’t work here. For
example, consider the coordinate ȳ =

[
xj yj φj θk

]
where θj = φk − φj is the joint

angle. This coordinate is related to absolute coordinate by the relation



ẋj

ẏj

φ̇j

ẋk

ẏk

φ̇k




=







1 0
0 1
0 0








0
0
1








0
0
0





[
1 0
0 1

]
T22 T23

[
0 0

]
1 1







ẋj

ẏj

φ̇j

θ̇k


 (20)

where T22 = A
(
φj + π

2

)
s′Pj

j − A
(
φj + θk + π

2

)
s′Pk

k and T23 = −A
(
φj + θk + π

2

)
s′Pk

k .

The new coordinate is consistent with the kth joint constraint and the equation of motion
would be of the form M̄ ¨̄y = f̄ . Explicit expression for M̄ and f̄ could be obtained using
first principles such as generalized d’Alembert’s principle or using equation (64) . Some of
the elements of M̄ are M̄(1, 1) = M̄(2, 2) = mj + mk, M̄ (1, 2) = M̄(2, 1) = 0.

It turns out that, M̄ is not block diagonal and equation (19) cannot be seen as a part
of the equation, M̄ ¨̄y = f̄ .
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3.3 Motivation for new derivation

If one were to think equations of RFDA given in equation (8), as a part of equations of
motion, then natural questions would be on the left out part of equations of motion and
the coordinates associated with equations of motion. We have seen that these questions
are not straight forward to answer even for simple two noded planar system with revolute
joint. Addressing these questions for a general multibody system has been the motivation
for the new derivation of this paper. Moreover answer to these questions gives insight into
the RFDA, a cornerstone algorithm in multibody dynamics.

4 The new derivation of equations of RFDA

In this section, the derivation is explained for a two noded tree structure. In section 6, the
derivation is extended to a general tree structure. The nodes of the tree are numbered as -
k and j. k is considered as terminal node and j is its parent and the root node. There is
joint k between nodes k and j, and joint j between root node j and global reference frame.

Equations of RFDA for terminal node k is nothing but equation of motion with respect
to absolute coordinates of node k. Hence the absolute coordinates of terminal node itself is
the coordinates of RFDA for the node. Following are the steps in the derivation of equations
of RFDA for node j.

Step 1 : Coordinates having free and constrained partitions with block diago-

nal mass matrix -

Find coordinates ỹk =
[
ỹT

kc
ỹT

kf

]T

, describing the rigid body k, and satisfying fol-

lowing properties.

Property 1: ˙̃ykc
should be fully determined by ẏj and ỹkf

should not be constrained
in any way by parent coordinates. Equivalently, if the constraint equation due
to joint k is represented in terms of yj and ỹk as

Qkẏj +
[
G̃kc

G̃kf

] [ ˙̃ykc

˙̃ykf

]
= ν̃k (21)

then G̃kc
is nonsingular square matrix and G̃kf

is zero matrix. As a result, the

way ẏj determines ˙̃ykc
, is given by

˙̃ykc
= Skẏj + ak (22)

where Sk = −G̃
−1
kc

Qk and ak = G̃
−1
kc

ν̃k.

If coordinates satisfy above property, then we say that it has free and constrained
partitions.

Property 2: ỹk describes the rigid body k and we can write equation of motion of
body k in terms of ỹk. The mass matrix should be block diagonal corresponding

9



to the partitions ỹkc
and ỹkf

. In other words, the equation of motion in terms
of ỹk should be of the form

[
M̃kc

0

0 M̃ kf

] [¨̃ykc

¨̃ykf

]
+

[
G̃

T

kc

0

]
λk =

[
f̃kc

f̃kf

]
(23)

Example 1: In the Featherstone’s example (see figure 2), the coordinates y2 describ-
ing body 2, satisfy all the above properties.

It has the partition y2 =
[[

rx2

] [
ry2

]]T
, with the following features.

1) The constraint equation for joint 2 is of the form (see section 3.1.1)
[
−1 0

] [
ṙx1

ṙy1

]
+

[[
1
] [

0
]] [[

ṙx2

]
[
ṙy2

]
]

=
[
0
]

and
[
ṙx2

]
is determined by the equation

[
ṙx2

]
=

[
1 0

] [
ṙx1

ṙy1

]

2) The equation of motion for body 2, with respect to y2 is,

[[
m2

] [
0
]

[
0
] [

m2

]
] [[

r̈x2

]
[
r̈y2

]
]

+
[[

1
]

[
0
]
]

λ2 =

[[
fx2

]
[
fy2

]
]
. Clearly the mass matrix is block diagonal.

Example 2: Consider the planar system with revolute joint shown in figure 3. The

usual coordinates for body k, yk =
[
xk yk φk

]T
, does not have a partition that

satisfy the property 1 of step 1, even though the mass matrix is diagonal (see M k in
the section 3.2.1).

Consider another set of coordinates ȳk =
[[

xPk yPk
] [

φk

]]T
, defined by the relation

ẏk =







1 0
0 1
0 0








s′Pk

kx
sin φk + s′Pk

ky
cos φk

−s′Pk

kx
cos φk + s′Pk

ky
sin φk

1











[
ẋPk

ẏPk

]

[
φ̇k

]



 (24)

From the definition, it should be clear that
[
ẋPk ẏPk

]T
is the velocity of pivot point

P k of body k (see figure 3).

The constraint equation in terms of ȳk is (using equation (62)),

Qk




ẋj

ẏj

φ̇j



 +

[[
1 0
0 1

] [
0
0

]]



[
ẋPk

ẏPk

]

[
φ̇k

]


 =

[
0
0

]

where Qk is given in section 3.2.1. Clearly , ȳk satisfy the first property stated above
.

The mass matrix for body k in terms of ȳk is ( using equation (64))




[
mk 0
0 mk

]
−mkA(φk + π/2)s′Pk

k

−(mkA(φk + π/2)s′Pk

k )T Jk + m2
k(|s

′Pk

k |2)


 (25)
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where A(θ) is described in section 3.2.1. The mass matrix is not block diagonal and
the property 2 is not satisfied.

Thus even in specific example as above, it is not straightforward to come up with
coordinates satisfying both properties. In section 5 we deduce coordinates satisfying
both the properties for a general system.

Step 2: Form new coordinates describing both nodes- Define new coordinates
[
yT

j ỹT
kf

]T

as 


ẏj
˙̃ykc

˙̃ykf



 =




I 0

Sk 0

0 I




[

ẏj
˙̃ykf

]
+




0

ak

0



 (26)

This coordinate describes the entire system consisting of two rigid bodies with a joint
between them. We later see that this is the coordinates of RFDA for node j.

Step 3: Obtain equations of motion in terms of coordinates of step 2 - For writ-
ing the constraint and equation of motion in terms of above coordinates, we make use
of equations (62) and (63), with coordinate transformation given by equation (26).
This requires that we know the constraint equation and equation of motion in terms

of
[
ẏT

j
˙̃yT

k

]T
=

[
ẏT

j
˙̃yT

kc

˙̃yT
kf

]T

. These are as given below.

Gjẏj = νj, Qkẏj + G̃kc
˙̃ykc

= ν̃k




M j 0 0

0 M̃kc
0

0 0 M̃kf








ÿj
¨̃ykc

¨̃ykf



 +




GT

j

0

0



 λj +




QT
k

G̃
T

kc

0


λk =




fk

f̃kc

f̃kf





The above equations are consequence of equations (2), (6), (21) and (23).

After coordinate transformation through equation (26), the constraints (after remov-

ing redundant constraints) and equation of motion in terms of
[
ẏT

j
˙̃yT

kf

]T

, becomes

Gjẏj = νj (27)
[
M j + ST

k M̃ kc
Sk 0

0 M̃kf

] [
ÿj
¨̃ykf

]
+

[
GT

j

0

]
λj =

[
fd

f̃kf

]
(28)

where fd = f j + ST
k f̃kc

− ST
k M̃ kc

(ȧk + Ṡkẏj).

Step 4: Recognize that equations of RFDA is part of the equations of motion

- For the two noded tree structure, first of equations (8) for node j (i.e equations of

RFDA), would be of form M̂ j ÿj + GT
j λj = f̂ j. The rows of matrix equation (28)

associated with yj , i.e,

(
M j + ST

k M̃kc
Sk

)
ÿj + GT

j λj = f j + ST
k f̃kc

− ST
k M̃kc

(ȧk + Ṡkẏj) (29)
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is essentially the equations of RFDA associated with the root node of two noded

multibody system. Thus coordinates
[
yT

j ỹT
kf

]T

, defined in step 2, is the coordinates

of RFDA for node j. Further the only constraint on
[
yT

j ỹT
kf

]T

, given in equation

(27), corresponds to the second of equations (8).

Illustration: We now illustrate the steps 2, 3 and 4 for Featherstone’s example.

Step 2 Define a new coordinate
[[

rx1
ry1

] [
yy2

]]T
by the transformation




[
ṙx1

ṙy1

]

[
ṙx2

]
[
ṙy2

]


 =




[
1 0
0 1

] [
0
0

]

[
1 0

] [
0
]

[
0 0

] [
1
]








[
ṙx1

ṙy1

]

[
ṙy2

]





Step 3 Equations of motion in terms of the above coordinate is




[
m1 + m2 0

0 m1

] [
0
0

]

[
0 0

] [
m2

]









[
r̈x1

r̈y1

]

[
r̈y2

]



 +





[
0
1

]

[
0
]



 λ1 =





[
fx1

+ fx2

fy1

]

[
fy2

]



 (30)

Step 4 Indeed the first row block of the above matrix equation is same as equations of
RFDA obtained in equation (15).

Thus, given that coordinates of step 1 would be deduced in section 5, we have derived
equations of RFDA in equation (29), based on finding coordinates of RFDA, defined in
equation (26).

5 Finding coordinates of Step 1

In this section we rewrite the properties 1 and 2 of step 1 in section 4 as rigorous linear
algebraic conditions and deduce the relation between ỹk and yk coordinates. This relation
itself defines ỹk. We discuss two methods to deduce the relation.

5.1 Linear algebraic conditions for coordinates of step I

Let ỹk be coordinates having the partition as
[
(ỹkc

)T (ỹkf
)T

]T

. The coordinates be

related to the existing coordinates by the following relation

ẏk =
[
Ẽk D̃k

] [ ˙̃ykc

˙̃ykf

]
(31)

where
[
Ẽk D̃k

]
is non-singular square matrix.

The constraint equation of the joint between body k and j when written in terms of[
(ỹkc

)T (ỹkf
)T

]T

, takes the following form (see equations (1) and (62)).

Qkẏj +
[
GkẼk GkD̃k

] [ ˙̃ykc

˙̃ykf

]
= νk (32)
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The mass matrix in terms of the coordinates
[
(ỹkc

)T (ỹkf
)T

]T

would take the following

form (see appendix (B) 


Ẽ
T

k MkẼk Ẽ
T

k MkD̃k

D̃
T

k MkẼk D̃
T

k MkD̃k


 (33)

Let the dimension of velocity space of body k when it is unconstrained be represented by
pk ( same as the number of components of ẏk). The dimension of row space of Gk be

represented by pkc
. If we require

[
(ỹkc

)T (ỹkf
)T

]T

to be constrained and free partitions

(property 1 of step 1 in section 4), then the following condition should be satisfied.

Condition 1: Columns of D̃k should be basis for the null space of Gk. In other words,
Columns of D̃k should be basis for the orthogonal complement of column space of
GT

k .

This condition would render the term GkD̃k in equation (32) to be zero matrix. Hence ẏkf

is in no way constrained by the parent coordinates. This condition also ensures that the
matrix GkẼk is invertible square matrix and hence ẏkc

is fully determined by the parent

coordinates. Proof to show that GkẼk is invertible square matrix, is given below.
Gk is assumed to be full rank. So it has pkc

rows. The null space of Gk has the dimension
pk−pkc

. (see for example, [Strang, 1998].) From the above condition, the number of columns
in D̃k is pk − pkc

.
[
Ẽk D̃k

]
is assumed to be non-singular square matrix. Hence number

of columns in Ẽk is pkc
. Thus the matrix GkẼk is square.

To prove that GkẼk is non-singular, it is enough to show that there is not a non-zero
vector say v1, such that GkẼkv1 = 0. Suppose there is a v1 such that GkẼkv1 = 0,
v1 6= 0. The vector Ẽkv1 is non-zero (because Ẽk is full rank matrix) and lies in the null
space of Gk. As per condition 1 above, columns of D̃k forms the basis for the null space of
Gk. Hence there is a unique non-zero v2 such that

Ẽkv1 = D̃kv2 (34)

This means non-zero vector
[
vT

1 −vT
2

]T
multiplied with non-singular matrix

[
Ẽk D̃k

]
is

zero. This is a contradiction. Hence there cannot be a non-zero v1 such that GkẼkv1 = 0.

Additionally if the mass matrix corresponding to the partition
[
ỹT

kc
ỹT

kf

]T

is to be

block diagonal (property 2 of step 1 of section 4) then the following condition should also
be satisfied.

Condition 2: Column space of MkẼk should lie in the orthogonal complement of column
space of D̃k.

This condition implies D̃
T

k MkẼk = (Ẽ
T

k MkD̃k)
T = 0. Hence the mass matrix correspond-

ing to the coordinates
[
ỹT

kc
ỹT

kf

]T

would become block diagonal (see equation (33)).

As seen in the example of planar-revolute system, finding the transformation

ẏk =
[
Ek Dk

] [
˙̄ykc

˙̄ykf

]
, (

[
Ek Dk

]
is non-singular) (35)
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which satisfy first condition (i.e, columns of Dk being the basis for the null space of Gk) is
not hard. For the planar revolute system, we extract Ek and Dk from equation (24), as

Ek =




1 0
0 1
0 0



 Dk =




s′Pk

kx
sφk + s′Pk

ky
cφk

−s′Pk

kx
cφk + s′Pk

ky
sφk

1


 (36)

In equation (60) of Appendix A, we give one general procedure of finding Ek and Dk which
satisfy condition 1. Most of the time, one could arrive at E and D by looking at the
geometry of the joint. In the next two sections, given Ek and Dk, we show two different
ways of finding Ẽk and D̃k, which satisfy both condition 1 and condition 2.

5.2 Two approaches to find Ẽk and D̃k.

5.2.1 Method 1

As discussed in equation (35), we can find a matrix Dk whose columns are the basis for
the null-space of Gk. As per condition 1, we require columns of D̃k to be also basis for
null-space of Gk. We may very well take D̃k to be Dk itself. More generally we can take
D̃k to be

D̃k = DkCf (37)

where Cf is any non-singular square matrix of size pkf
× pkf

.

We will now find Ẽk. Condition 2 requires columns of MkẼk to lie in the orthogo-
nal complement of column space of D̃k. This orthogonal complement has dimension pkc

.
However Ẽk is full column rank with pkc

columns and Mk is non-singular matrix. Hence
columns of MkẼk have to be basis for the orthogonal complement of the column space of
D̃k. From the condition 1 (and the Gk is full row rank), columns of GT

k is the basis for
orthogonal complement of column space of D̃k. So we may very well take M kẼk = GT

k ,
or with more generality MkẼk = GT

k Cc where Cc is any pkc
× pkc

non-singular matrix.
Hence

Ẽk = M−1
k GT

k Cc (38)

5.2.2 Method 2

In the example shown in figure 3, we defined coordinates
[
(ȳkc

)T (ȳkf
)T

]T

in equation

(24), such that (ȳkc
) is determined by yj and (ȳkf

) is unconstrained by yj. Figures 4(a),
(4(b)) and (4(c)) shows the displacement of rigid body k due to small changes in each of the
components of these coordinates. For the same system, consider another set of coordinates
defined by

ẏk =








1
0
0



 + αt3




0
1
0



 + βt3 t3








˙̆ykc1

˙̆ykc2

˙̆ykf1


 , where (39)

t3 =
(
s′Pk

kx
sin φk + s′Pk

ky
cos φk, −s′Pk

kx
cos φk + s′Pk

ky
sin φk, 1

)T

14



(a) (b) (c)

(d) (e) (f)

Figure 4: Visualization of various coordinates for body k – (a), (b), (c) indicates small
changes in xPk, yPk, φk respectively as a part of coordinate ȳk (see equation (24)); (d),
(e), (f) indicates small change in components of y̆kc

(see equation (39)) .

The change in the system due to infinitesimal change in
[
y̆T

kc
y̆T

kf

]T

is shown in figures

4(d), 4(e) and 4(f). From these figures, it may be noted that δy̆kc1
(or δxPj ) is still deter-

mined by δyj. The point P k has small displacement in x-direction if and only if there is
small change in y̆kc1

. Similar arguments holds for y̆kc2
. From these figures it is also clear

that y̆kf1
is still no way constrained by the parent body. (It could however compensate for

the extra rotation due to δykc
.) Thus

[
y̆T

kc
y̆T

kf

]T

defined in equation (39) also has the

partition into constrained and free parts.
The generalization of above concept is as follows:

If
[
ȳT

kc
ȳT

kf

]T

is a coordinates for body k, defined by

ẏk =
[
Ek Dk

] [
˙̄ykc

˙̄ykf

] [
Ek Dk

]
is non-singular (40)

such that ȳkc
and ȳkf

are the constrained and free partitions of ȳk,
5 then another coordi-

nates say y̆k =
[
y̆T

kc
y̆T

kf

]T

defined by

ẏk =
[
Ek + DkA Dk

]
[

˙̆ykc

˙̆ykf

]
, A any compatible matrix. (41)

also has the constrained and free partitions (y̆kc
and y̆kc

).
To prove the above generalization, we should show that

[
Ek + DkA Dk

]
is non-

singular and columns of Dk is the basis for the null-space of Gk (See condition 1 in sec-
tion 5.1).

Proof :
[
Ek Dk

]
is a full column rank square matrix. For a column of a matrix, if we

add linear combination of other columns of the matrix, then the column rank is unchanged.

5Appendix A shows how to find such an Ek and Dk.

15



Hence
[
Ek + DkA Dk

]
is full column rank square matrix or non-singular matrix. Since[

ȳT
kc

ȳT
kf

]T

defined in equation (40) has partition into constrained and free part, Dk satisfy

condition 1 given in section 5.1, i.e, columns of Dk are the basis for the null-space of Gk.
We now show that we can find a special matrix Ãk such that Ẽk = Ek + DkÃk and

D̃k = Dk, while satisfying condition 1, also satisfy condition 2. From condition 2 we have

D̃
T

k MkẼk = DT
k M k(Ek + DkÃk) = DT

k M kEk + (DT
k MkDk)Ãk = 0

Dk is full column rank and Mk is positive definite. Hence DT
k MkDk is also positive

definite and (DT
k MkDk)

−1 exists. So we can write

Ãk = −(DT
k MkDk)

−1DT
k MkEk (42)

Ẽk = Ek + DkÃk = Ek − Dk(D
T
k MkDk)

−1DT
k M kEk (43)

D̃k = Dk (44)

Thus we have obtained Ẽk and D̃k satisfying both conditions 1 and 2. The expressions are
in terms of Ek and Dk (see equation (35)).

To summarize, if we know coordinates ȳk =
[
ȳT

kc
ȳT

kf

]T

, satisfying property 1 of step

1 and its relation ẏk =
[
Ek Dk

] [
˙̄ykc

˙̄ykf

]
with yk, then the coordinates ỹk =

[
ỹT

kc
ỹT

kf

]T

satisfying both properties of step 1 in section 4 is defined by ẏk =
[
Ẽk D̃k

] [ ˙̃ykc

˙̃ykf

]
, where

Ẽk and D̃k are as in equation (38) and (37) or (43) and (44). If the constraint equation
corresponding to joint k and the joint variables are known, then Appendix A gives the
procedure to find Ek and Dk.

5.3 Simplification of equations of RFDA to standard form

The coordinates ỹk discussed in step 1, is now defined as ẏk =
[
Ẽk D̃k

] [
˙̃ykc

˙̃ykf

]
, where Ẽk

and D̃k, is given by equations (38, 37) or (43, 44). G̃kc
, ν̃k, Sk, ak, M̃ kc

, M̃ kf
, f̃kc

and

f̃kf
, in equations (21), (22) and (23), assume the following forms : G̃kc

= (GkẼk), ν̃k =

νk, Sk =
(
−(GkẼk)

−1Qk

)
, ak = (GkẼk)

−1νk, M̃kc
= Ẽ

T

k MkẼk, M̃kf
= D̃

T

k MkD̃k,

f̃kc
= Ẽ

T

k (fk − M k(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

)), f̃kf
= D̃

T

k (f k − Mk(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

)).
Substitution of above terms in equation (28) and further simplification by using the

expressions for Ẽk and D̃k in equations (38) and (37), we get

[
M j + QT

k (GkM
−1
k GT

k )−1Qk 0

0 CT
f DT

k MkDkCf

] [
ÿj
¨̃ykf

]
+

[
GT

j

0

]
λj =

[
f j + QT

k (GkM
−1
k GT

k )−1(γk − GkM
−1
k fk)

CT
f DT

k (fk − M k(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

))

]
(45)
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In equation (66) of Appendix C.2, we show that QT
k (GkẼk)

−T Ẽ
T

k Mk(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

+

Ẽk(Ṡkẏj + ȧk)) = QT
k (GkM

−1
k GT

k )−1γ. Rest of the simplifications in the equation (45) is
straightforward.

In equations (43) and (44), we had obtained alternate expression for Ẽk and D̃k, in
terms of Ek and Dk of equation (35). In Appendix A, one way to obtain Ek and Dk is
given (see equation (60)), along with its relation with Bk, Hk and ck (see equation (61).
Using equations (43), (44), (60) and (61), we get yet another simplification as -

[
M j + BT

k (I − MkHk(HT
k MkHk)−1HT

k )MkBk 0

0 DT
k MkDk

] [
ÿj

¨̃ykf

]

+

[
GT

j

0

]
λj =

[
f j + BT

k (I − MkHk(HT
k MkHk)−1HT

k )(fk − Mkdk)

DT
k (fk − Mk( ˙̃

Ek
˙̃ykc

+ ˙̃
Dk

˙̃ykf

]
(46)

where dk = Ḃkẏj + Ḣkq̇k + ċk, with Bk, Hk and ck as given in equation (61). Details of
simplification of equation (46) is presented in Appendix C.3.

Note that if j and k (k treated as terminal node) are the only two bodies of the multibody

system, then equation (8), with equations (9) and (10) used for M̂ j and f̂ j, is same as yj

part of the equation (45). Similarly, equation (8), with equations (11) and (12) used for

M̂ j and f̂ j , is same as yj part of the equation (46). We recall that equations (9) and (10)
are presented in reference [Lubich et al, 1992], and equations (11) and (12) are presented in
[Lubich et al, 1992], [Bae and Haug, 1987] and [Featherstone, 1983]. Thus we have reduced
the equations of RFDA obtained by our method into standard form found in literature.

5.4 Visualization of coordinates for planar revolute joint example

5.4.1 Coordinates of step 1

For the planar revolute joint system, using equation (36) and Mk given in section 3.2.1,
Ãk of equation (42), evaluates to

[
−

mk(sin(φk)s
′Pk
kx

+cos(φk)s
′Pk
ky

)

Jk+mk((s
′Pk
kx

)2+(s
′Pk
ky

)2)

mk(cos(φk)s
′Pk
kx

−sin(φk)s
′Pk
ky

)

Jk+mk((s
′Pk
kx

)2+(s
′Pk
ky

)2)

]
(47)

Let the two elements in the above matrix be represented by α̃ and β̃.
The coordinates ỹk of step 1, is same as the coordinates y̆k, defined in equation (39),

except that α and β are replaced by α̃ and β̃. It turns out that the equation (after replacing
by α̃ and β̃) is non-integrable. Hence ỹk is a pseudo-coordinate for the system. We can
visualize it by examining the changes that body k undergoes, due to small changes in the
components of ỹk. The figures (4(d)), (4(e)) and (4(f)), hold good here also. The rotation
in figure (4(d)), is α̃ times the translation along x-axis. The rotation in figure (4(e)), is β̃
times the translation along y-axis.

5.4.2 Coordinates of step 2 – coordinates of RFDA

Equation (31), gives the relation between yk and
[
ỹT

kc
ỹT

kf

]T

. Equation (26), gives the

relation between
[
yT

j ỹT
kc

ỹT
kf

]T

and
[
yT

j ỹT
kf

]T

. These two relations could be composed
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to obtain the relation between
[
yT

j yT
k

]T
and

[
yT

j ỹT
kf

]T

. For the planar revolute joint

example, such a relation assumes following form –

[
ẏj

ẏk

]
=

[
I 0

−
(
Ek + Dk

[
α̃ β̃

])
Qk Dk

] [
ẏj
˙̃ykf

]
(48)

where
[
α̃ β̃

]
= Ã is given in equation (47), Ek and Dk in equation (36) and Qk in section

3.2.1.
To get a feel for the coordinates of RFDA, figures 5(a), 5(b), 5(c) and 5(d), shows

(highly exaggerated) displacement of the system due to infinitesimal changes in each of the

components of
[
yT

j ỹT
kf

]T

. Also to see how different these coordinates are from standard

coordinates, in figures 6(a), 6(b), 6(c) and 6(d), we have shown the exaggerated displacement
of the system due to infinitesimal change in each of the components of ȳ defined in equation
(20).

(a) δyj1
(b) δyj2

(c) δyj3
(d) δỹkf1

Figure 5: Changes in system due to small changes in the coordinate
[
yT

j ỹT
kf

]T

defined in

equation (48).

The comparison between the two coordinates is summarized as follows.

If, [δȳ1 δȳ2 δȳ3 δȳ4]
T =

[
δyj1 δyj2 δyj3 δỹkf1

]T

, then

1. displacement of body j is same in the corresponding figures for the two coordinates.

2. The corresponding figures differ only in the rotation that the body k undergoes about
the point P k. The rotation of body k in figures 5(a), 5(b), 5(c) and 5(d), are α̃δyj1

,

β̃δyj2
,

((
−s′Pk

kx
sφk − s′Pk

ky
cφk

)
α̃ +

(
s′Pk

kx
cφk − s′Pk

ky
sφk

)
β̃
)

δyj3
, and δỹkf1

, respec-

tively (sφk represent sin φk and cφk represent cos φk). The rotations in figures 6(a),
6(b), 6(c) and 6(d), are 0, 0, δȳ3 and δȳ4, respectively.

In this section we defined the coordinates of Step 1 by the relation given in equation
(31) and gave explicit expressions for Ẽk and D̃k using two methods. First method lead
to equations (37) and (38), while the second method resulted in equations (43) and (44).
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(a) δȳ1 (b) δȳ2

(c) δȳ3 (d) δȳ4

Figure 6: Changes in system due to small changes in the coordinate ȳ, defined in equation
(20).

Kinematic observation was used to motivate second method. We further simplified equations
of RFDA to the form generally found in literature. We illustrated the ỹk coordinates of
step 1, and the coordinates of RFDA [yT

j ỹT
kf

]T , using planar revolute joint example.

6 Generalization to all nodes

Consider any non-terminal node, j, of the branched multibody system. Suppose that for

every child, k, of node j, there are coordinates
[
yT

k ξT
k

]T
, having the following properties

1.
[
yT

k ξT
k

]T
describes the system consisting of node k and all its descendants. In

other words, the relation between
[
yT

k ξT
k

]T
and absolute coordinates of k and its

descendants is of the form



ẏk


ẏh(k,1)
...

ẏh(k,dk)





 =

[
I 0

P k Rk

] [
ẏk

ξ̇k

]
+

[
0

̟k

]
∀k : j = P(k)

where h(i, p) is the pth descendant of node i, with the descendants are arranged in
some order. 6 (P(i) denote parent index of i, and k : j = P(k) denote ‘k is such that,
j is its parent’.) An example for above equation is equation (48), where there is a
single descendant node.

2. Any value for
[
ẏT

k ξ̇
T

k

]T

is consistent with all the joint constraints among body k

and its descendants. The only constraint on the coordinates
[
ẏT

k ξ̇
T

k

]T

, is due to

joint between body k and body j, given by

Qkẏj + Gkẏk + [0]ξ̇k = νk ∀k : j = P(k) (49)

6Descendants of node i can always be arranged in a sequence. For example, the descendants of node 2
in figure 1 can be arranged as - 4, 5, 7, 10, 11, 12. For this order, h(2, 3) = 7.
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3. The equation of motion in terms of
[
yT

k ξT
k

]T
, for the system consisting of body k

and all its descendants, is of the form
[
M̂k 0

0 Λk

] [
ÿk

ξ̈k

]
+

[
GT

k λk

0

]
=

[
f̂k

ηk

]
∀k : j = P(k) (50)

then we claim that we can find coordinates
[
yT

j ξT
j

]T
which has same properties listed

above, i.e 1)
[
yT

j ξT
j

]T
describes body j and all its descendants, 2) the coordinates are

consistent with all the joint constraints between node j and its descendants, and 3) mass
matrix with respect to the coordinates is block diagonal.
Proof: Find Ẽk and D̃k (with

[
Ẽk D̃k

]
being non-singular) that satisfy condition 1 and

condition 2 of section 5.1, with Mk replaced by M̂k. The only property of Mk used in
deriving Ẽk and D̃k in subsection 5.2 was positive definiteness of Mk. M̂k is diagonal block
of the positive definite matrix given in equation (50). Hence M̂ k is also positive definite.
Thus we can use theory in subsection 5.2 to find Ẽk and D̃k, even after the replacement.

Define new coordinates for the system consisting of node k and its descendants, as

[
ẏk

ξ̇k

]
=

[
Ẽk D̃k 0

0 0 I

]


˙̃ykc

˙̃ykf

ξ̇k



 ∀ k : j = P(k) (51)

Since
[
Ẽk D̃k

]
is non-singular, the above transformation as a whole is non-singular.

Under the transformation from
[
yT

k ξT
k

]T
coordinates to

[
ỹT

kc
ỹT

kf
ξT

k

]T

, the only

constraint equation involving
[
yT

k ξT
k

]T
, i.e, equation (49), becomes (see equation (62)

Qkẏj + GkẼk
˙̃ykc

+ [0] ˙̃ykf
+ [0] ξ̇k = νk, ∀k : j = P(k) (52)

(from condition 1 of section 5.1, GkD̃k = 0.) This is the only constraint equation in-

volving
[
ỹT

kc
ỹT

kf
ξT

k

]T

. Hence, both ˙̃ykf
and ξ̇k are kinematically unconstrained. ˙̃ykc

is

determined by ẏj by the following equation.

˙̃ykc
= Skẏj + ak ∀k : j = P(k) (53)

where Sk = −
(
GkẼk

)−1
Qk, and ak =

(
GkẼk

)−1
νk. The above equation follows from

equation (52). The equation of motion of the system consisting of node k and its descen-

dants, written in terms of coordinates
[
ỹT

kc
ỹT

kf
ξT

k

]T

, becomes (see equation (64)

[
M̃kc

0

0 M̃kf

][
¨̃ykc

¨̃
ξk

]
=

[
f̃kc

η̃k

]
+

[(
GkẼk

)T

λk

0

]
∀k : j = P(k) (54)

where Mkc
= Ẽ

T

k M̂kẼk, M̃kf
=

[
D̃

T

k M̂kD̃k 0

0 Λk

]
, ξ̃k =

[
ỹkf

ξk

]
,

f̃kc
= Ẽ

T

k

(
f̂k − M̂ k

(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

))
, η̃k =

[
D̃

T

k

(
f̂k − M̂k

(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

))

ηk

]
.
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Let g(i, p) denote pth child of node i, with the children of node i arranged in some order.
Also let hi represent the number of children of node i. Then, the coordinates

[
yT

j ỹT
g(j,1)c

ξ̃
T

g(j,1) · · · ỹT
g(j,hj)c

ξ̃
T

g(j,hj)

]T

describes node j and all its descendants. The constraints on these coordinates are equation
(52), and the constraint due to joint between body j and its parent, i.e QjẏP(j)+Gj ẏj = νj .

Using the relation (53), we obtain a smaller coordinates
[
yT

j ξ̃
T

g(j,1) · · · ξ̃
T

g(j,hj)

]T

by

the following transformation.




ẏj
˙̃yg(j,1)c

˙̃
ξg(j,1)

...
˙̃yg(j,hj)c

˙̃
ξg(j,hj)




=




I 0 · · · 0

Sg(j,1) 0 · · · 0

0 I · · · 0
...

...
. . .

...
Sg(j,hj) 0 · · · 0

0 0 · · · I







ẏj
˙̃
ξg(j,1)

...
˙̃
ξg(j,hj)




+




0

ag(j,1)

0
...

ag(j,hj)

0




(55)

From the expression of Sk and ak given in equation (53 ), it is easy to see that constraint
equations (52) become redundant under the new coordinates defined above. Let ξj =
[
ξ̃

T

g(j,1) . . . ξ̃
T

g(j,hj)

]T

. Then the only constraint equation on
[
yT

j ξT
j

]T
coordinates is

due to joint between j and its parent can be written as

Qj ẏP(j) + Gjẏj + 0ξ̇j = νj (56)

Analogous to equation (28) the equation of motion in terms of
[
yT

j ξT
j

]T
is obtained below.




M j +

∑
k:P(k)=j

ST
k M̃ kc

Sk 0

0 Λj




[
ÿj

ξ̈j

]
+

[
GT

j λj

0

]
=

[
fdj

ηj

]
(57)

where Λj =



M̃ g(j,1)f

· · · 0
...

. . .
...

0 · · · M̃ g(j,hj)f


, ηj =




η̃g(j,1)
...

η̃g(j,hj)


, and fdj

= f j+
∑

k:P(k)=j

(
ST

k M̃kc
bk

)
.

Thus associated with node j we have found the coordinates
[
yT

j ξT
j

]T
having the required

properties and the proof is complete.
If k is a terminal node, then the coordinates yk trivially satisfies all the properties

mentioned in the claim at the beginning of this section. Now, from the result obtained

above, we can recursively obtain
[
yT

j ξT
j

]T
coordinates for all nodes of tree structure.

Thus associated with each node of the tree structure, we can obtain
[
yT

j ξT
j

]T
coordi-

nates which has the constraint equation as in equation (56) and equation of motion as in
equation (57). The rows of matrix equation (57) associated with yj is the first part of the
equation (8). The constraint equation (56) is the second part of the equation. So we have
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obtained equations of RFDA, based on finding coordinates of RFDA,
[
yT

j ξT
j

]T
, for every

node the tree.
Analogous to simplification from equation (28) to equation (45) or equation (46), we can

show the rows of matrix equation (57) associated with yj simplifies to M̂ j + GT
j λj = f̂ j ,

with M̂ j and f̂j as given in equation (9) and (10) or (11) and (12).

7 Conclusions

In this paper, we derive equations of RFDA using a new method. The method has two
parts, 1) finding coordinates of RFDA, and 2) writing equations of motion in terms of
it and extracting relevant portion of it as equations of RFDA. In section 4, the method
has been described for a simple two noded tree structure, in 4 steps and the non-trivial
coordinates of step 1 has been worked out in section 5. Steps 1 and 2 constitute the
procedure to find the coordinates of RFDA. Steps 3 and 4 are about writing down equation
of motion and extracting relevant portion of it.

The crux of the paper lies in section 5.2, where coordinates required for step 1 is defined.
Two different methods of finding the coordinates has been explained. We use linear algebraic
arguments, motivated by kinematic intuition, to get the coordinates. The originality of the
paper lies here.

We simplified the relevant portion of its equation of motion, in terms of coordinates of
RFDA, to standard form in equations (45) and (46). In section 6, our approach based on
coordinates of RFDA was extended to general tree structure. Different nodes have different
coordinates of RFDA associated with them, which describes the rigid bodies of the node
and all its descendants. The coordinates of RFDA get defined recursively, as in equation
(55) and equations of motion with respect to them are as in equation (57).

This derivation conclusively shows that equations of RFDA are actually part of equations
of motion. More importantly this derivation gives coordinates associated with equation of
motion, as well as left out part of equations of motion. These are significant insights into
RFDA, a important algorithm in multibody dynamics.
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A Coordinate of child body in terms coordinate of parent

and joint variables

Consider body j and k with a joint k between them. The constraint is represented as
Qkẏj + Gkẏk = γk. If there are pkc

rows in the constraint equation and pk represent
the degree of freedom of unconstrained body k, then one can associate joint variable qk of
dimension (pk − pkc

). For example if kth joint is revolute joint then qk = [θk], where θk is
joint rotation angle. If qk is constrained as a function of time, say, q̇ = g(t), then such a
constraint is called driving constraint. Driving constraints have the form 7

Q̄kd
ẏj + Ḡkd

ẏk = ν̄kd
+ Hkd

q̇k (58)

([Haug, 1989] catalogs driving constraint and corresponding Jacobians for standard joints.)
We consider only cases where Hkd

is invertible.
For example, consider planar revolute joint example given in figure 3. The constraint

equation is Qkẏj + Gkẏk = νk, where ẏj , ẏk, Qk and Gk are given in section 3.2.1, and

νk = [0 0]T . The joint driving constraint can be written as φk − φj = θk(t), where θk is

7If the driving constraint is holonomic, then the constraint can be written as Φ̄(yj , yk, qk(t), t) = 0. Its
differentiation gives

∂Φ̄

∂yj

ẏj +
∂Φ̄

∂yk

ẏk = −

∂Φ̄

∂t
−

∂Φ̄

∂qk

q̇k

The above equation is the motivation for equation (58).
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the joint angle. For this driving constraint, Q̄kd
=

[
0 0 −1

]
, Ḡkd

=
[
0 0 1

]
, ν̄kd

= [0]
and Hkd

= [1].
Assume that driving constraints are present in the system so that we can write constraint

equation as [
Qk

Qkd

]
ẏj +

[
Gk

Gkd

]
ẏk =

[
νk

νkd

]
+

[
0

q̇k

]
(59)

where Qkd
= H

−1
kd

Q̄kd
, Gkd

= H
−1
kd

Ḡkd
, and νkd

= H
−1
kd

ν̄kd
. We restrict ourselves to the

cases where

[
Gk

Gkd

]
is invertible. Let

[
Gk

Gkd

]−1

=
[
Ek Dk

]
so that,

[
Gk

Gkd

] [
Ek Dk

]
=

[
GkEk GkDk

Gkd
Ek Gkd

Dk

]
=

[
Ipkc×pkc

0pkc×pkf

0pkf
×pkc

Ipkf
×pkf

]
(60)

Multiplying equation (59) with

[
Gk

Gkd

]−1

and using equation (60), we get

ẏk = Bkẏj + Hkq̇k + ck (61)

where Bk = −(EkQk + DkQkd
), Hk = Dk and ck = (Ekνk + Dkνkd

). Equation (61)
essentially gives coordinate of body k in terms of coordinate of parent body j and joint
coordinate.

B Equations of motion and change of coordinates

Let u be coordinates describing a rigid multibody system. There could be constraints
on u̇. We consider only those constraints that could be expressed in the form Ψu̇ = ν

with Ψ having full row rank. Application of generalized d’Alembert’s principle (see for
example, [Meirovitch, 1970]) to the multibody system leads to equation of motion of form,
Muü = f

u
− ΨT λ. Mu is function of u and t. fu, in general could be function of u, u̇,

t and even λ. However, in this paper we restrict ourselves to cases where fu is function of
u, u̇ and t only.

Consider new coordinates v, having the relation with u as, u̇ = T v̇ + e, where T is full
column rank. The constraint equation in terms of v would be

(
ΨT

)
v̇ = ν − Ψe (62)

When T is non-square (rows > columns), T and e used to define v cannot be arbitrary.
The sufficient conditions on T and e are 1) the equation (62) should be consistent, 2) if nu

and nv represent number of components of coordinates u and v, respectively, then nu−nv

equations in (62) should be redundant. The constraint equation in terms of v̇ is obtained
after removing redundant equations from (62).

The equation of motion in terms of v would be of the form

Mvv̈ = f
v
− (T TΨT )λ, where (63)

Mv = T T MuT , and f
v

= T T

(
f

u
− Mu(ė − Ṫ v̇)

)
(64)
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C Simplifications

C.1 An useful relation

QT
k (GkẼk)

−T Ẽ
T

k Mk(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

+ Ẽk(Ṡkẏj + ȧk))

= QT
k (GkẼk)

−T Ẽ
T

k M k(ÿk − Ẽk
¨̃ykc

− D̃k
¨̃ykf

+ Ẽk(¨̃ykc
− Skÿj))

(see eqns (31) and (22))

= QT
k (GkẼk)

−T Ẽ
T

k M k(ÿk + Ẽk(GkẼk)
−1Qkÿj)−

QT
k (GkẼk)

−T (Ẽ
T

k MkD̃k)¨̃ykf
(see Sk given in section 5.3 )

= QT
k (GkẼk)

−T Ẽ
T

k M k(ÿk + Ẽk(GkẼk)
−1Qkÿj) (65)

( from condition 1 in section 5.1, Ẽ
T

k MkD̃k = 0. )

C.2 Simplifications related to equation (45)

QT
k (GkẼk)

−T Ẽ
T

k Mk(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

+ Ẽk(Ṡkẏj + ȧk))

= QT
k (GkẼk)

−T Ẽ
T

k Mk(ÿk + Ẽk(GkẼk)
−1Qkÿj) (see eqn (65))

= QT
k (GkM

−1
k GT

k )−T Cc

−T CT
c GkM

−T
k Mk(ÿk+

M−1
k GT

k CcC
−1
c (GkM

−1
k GT

k )−1Qkÿj) (see eqn(38))

Cc is invertible. (GkM
−1
k GT

k ) and MK are positive definite.

= QT
k (GkM

−1
k GT

k )−1(Gkÿk + (GkM
−1
k GT

k )(GkM
−1
k GT

k )−1Qkÿj)

= QT
k (GkM

−1
k GT

k )−1(γ) (from equation (3)) (66)

C.3 Simplifications related to equation (46)

Let B̃k = ẼkQk (67)

= EkQk − Dk(D
T
k MkDk)

−1DT
k MkEkQk (see eqn (43))

= −Bk + DkQkd
+ Dk(D

T
k MkDk)

−1DT
k M kBk−

Dk(D
T
k MkDk)

−1(DT
k MkDk)Qkd

(because, from eqn (61), we have Bk = −(EkQk + DkQkd
))

B̃k = −Bk + Dk(D
T
k MkDk)

−1DT
k M kBk (68)

B̃k = (−I + Dk(D
T
k MkDk)

−1DT
k Mk)Bk (69)

It may be noted that

DT
k MkB̃k = −DT

k MkBk + DT
k MkDk(D

T
k MkDk)

−1DkM kBk = 0 (70)

Also, using equations (43) and (60), we get

GkẼk = Gk(Ek + DkÃk) = GkEk + (GkDk)Ãk = I + 0 = I (71)
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C.3.1 Mass matrix related term

QT
k (GkẼk)

−T Ẽ
T

k MkẼk(GkẼk)
−1Qk

= QT
k Ẽ

T

k MkẼkQk = B̃
T

k MkB̃k (see equations (71) and (67))

= B̃
T

k Mk(−Bk + Dk(D
T
k MkDk)

−1DkMkBk) (see eqn(68))

= −B̃kMkBk + 0 (see eqn(70)) (72)

= BT
k (I − MkDk(D

T
k MkDk)

−1DT
k )M kBk (see eqn(69))

= BT
k (I − MkHk(H

T
k MkHk)

−1HT
k )MkBk(from eqn(61), Dk = Hk) (73)

C.3.2 Force vector related term

− QT
k (GkẼk)

−T Ẽ
T

k fk

= −QT
k Ẽkfk (see eqn(71))

= −B̃
T

k fk = BT
k (I − MkDk(D

T
k MkDk)

−1DT
k )fk(see eqns(67),(69))

= BT
k (I − MkHk(H

T
k MkHk)

−1HT
k )fk (from eqn(61), Dk = Hk) (74)

C.3.3 Velocity related term

QT
k (GkẼk)

−T Ẽ
T

k Mk(
˙̃
Ek

˙̃ykc
+ ˙̃

Dk
˙̃ykf

+ Ẽk(Ṡkẏj + ȧk))

= QT
k (GkẼk)

−T Ẽ
T

k Mk(ÿk + Ẽk(GkẼk)
−1Qkÿj) (see eqn(65))

= QT
k Ẽ

T

k Mkÿk + (QT
k Ẽ

T

k M kẼkQk)ÿj (from eqn(71))

= B̃
T

k Mkÿk − B̃
T

k MkBkÿj (see eqns (67) and (72))

= B̃
T

k Mkÿk − B̃
T

k MkBkÿj − (B̃
T

k MkDk)q̈j (B̃kMkDk = 0, eq(70))

= −B̃
T

k Mk(−ÿk + Bkÿj + Dkq̈k)

= −B̃
T

k Mk(−(Ḃkẏj + Ḋkq̇k + ċk))

(from eqn(61), ÿk = Bkÿj + Dkq̈k + Ḃkẏj + Ḋkq̇k + ċk)

= BT
k (I − MkHk(H

T
k MkHk)

−1HT
k )M k(−dk), (see eqn(69))

where dk = (Ḃkẏj + Ḋkq̇k + ċk).
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