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Abstract

In modern spacecraft with the requirement of increased accuracy of payloads, the on-orbit
structural dynamic behaviour of spacecraft is increasingly influencing the design and perfor-
mance of spacecraft. During the integrated spacecraft testing of one of the satellites, a strong
coupling between rotating momentum wheels and an earth sensor was detected. This resulted in
corruption of the earth sensor data at certain wheel speeds. This paper deals with the dynamic
coupling problem of a rotating momentum wheel with its support brackets affecting other sub-
systems of spacecraft. As part of this investigation, extensive modal tests and vibration tests
were carried out on the momentum wheel bracket assembly with wheels in stationary and ro-
tating condition. It was found that effects of gyroscopic forces arising out of rotating wheels are
significant and this aspect needs to be taken into account while designing the mounting brackets.
Results of analysis and tests were used to redesign the bracket leading to significant reduction
in the interaction and associated problems. A procedure for design of support structure using a
low-order mathematical model is also shown.

1 Introduction

The effect of on-orbit structural dynamics on the performance of sensitive payloads are becoming

increasingly important in the design of large, modern, complex, spacecraft. The source of vibratory

disturbance on a spacecraft and its effects are well documented (see, for example, [1, 2, 3, 4, 5]). Vi-

bratory disturbances can arise from rotating elements such as momentum wheels, reaction wheels,

gyros, and solar array drives. In addition, elements like antenna-pointing mechanisms, and cryo-

coolers can also cause disturbances. This paper concentrates on the disturbances arising out of ro-

tating components, in particular, those arising from momentum wheels. A momentum wheel (MW)

is used for spacecraft attitude control and consists of a heavy rotating disk or wheel [6]. Even though

the momentum wheels are very accurately balanced statically and dynamically, the high speed of

operation (≈ 4500 to 5400 RPM), causes dynamic disturbances to the spacecraft [8, 9, 10, 11, 12].
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While the dynamic forces imparted to the spacecraft are insignificant from structural dynamic con-

siderations, it is important from the point of view of disturbance to sensitive instruments. Examples

are scanning earth sensors, very high-resolution radiometers, and high-resolution remote sensing

camera [7, 12]. Some natural modes of these components may fall in the operating range of the

momentum wheel speeds. The interaction of the rotating wheel and the mounting bracket, greatly

alters the nature of disturbances itself. The focus of this paper is on the dynamic coupling be-

tween the momentum wheel and the supporting structure (bracket) which has not been adequately

studied in literature.

There are two common configurations of momentum and reaction wheels. In the first type,

the rotating disk or the flywheel is floating [14]. The mounting interface of the floating flywheel

momentum wheel is on the outer rim as shown in figure 1. The mounting area on the spacecraft in

this case is large. In the second type, the flywheel is attached to the base of the wheel assembly.

This has smaller mounting interface area as shown in figure 2. This paper deals with the popular

type 2 configuration shown in figure 2.

Figure 1: Wheel with large mounting interface diameter [14]

Extensive work has been reported on mathematical modeling of wheel disturbances. These

models are either empirical or analytical [11, 12, 13]. Some of these models are derived from

experimentally measured forces transmitted by momentum/reaction wheel at different rotational

speeds. The forces and moments are measured by using a force plate. Davis et al., [8] have

proposed steady state models of disturbances due to reaction wheels in the Hubble Space Telescope.
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Masterson [14, 15] has developed an empirical and analytical disturbance model for reaction wheel

using measured data. These mathematical models are used in spacecraft jitter analysis. In the

work by Masterson [14, 15], the configuration of momentum wheel of the type shown in figure 1

is used. The effect of coupling of the wheel rotation and the structural dynamics of wheel-housing

bracket is not brought out. Elias [18, 19] has studied the interaction of momentum wheel with

space structure, for the configuration shown in figure 2, using impedance techniques including

the gyroscopic terms. However, the influence of gyroscopic terms on the structural dynamics of

momentum wheel mounting bracket is not brought out in this case also.

Figure 2: Wheel with smaller mounting interface diameter [16]

The present work is based on the extensive experimental and theoretical studies done on momen-

tum wheel brackets of a geo-stationary spacecraft developed by Indian Space Research Organization

(ISRO). During integrated spacecraft testing of the spacecraft, it was found that MW operations

at certain speed ranges were significantly affecting the earth sensor1 output. Extensive tests were

conducted to understand the nature of modes of spacecraft excited during the rotation of the mo-

mentum wheel. It was found that the frequencies measured with a stationary MW did not match

the results with a rotating momentum wheel, implying a significant coupling between the rotating

momentum wheel and the supporting brackets. Major contribution of this paper is the analysis

of the coupling between the momentum wheel and the bracket. Design of the bracket, based on

1The earth sensor gives the deviation of spacecraft with respect to earth in terms of roll and pitch angular
rates. It consists of a scanning mirror mounted on a flexure. The flexure has definite natural modes which are
measured/estimated earlier.
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the analysis, which resulted in the disturbances being shifted outside the operating range of the

momentum wheel, is also of interest to spacecraft designers.

This paper is organized into five sections. In section 2, the details of the configuration of the

momentum wheel and the experimental data are presented. In section 3, details of the mathematical

models and results of numerical analysis are given. The effect of changing different parameters of

the bracket is also studied. The use of the results of analysis in section 3 for design modifications

of the bracket are discussed in section 4. The experimental results on the modified bracket are

discussed in section 4. Conclusions are given in section 5.

2 Momentum wheel configuration and experimental studies

In a typical three-axis stabilized communication spacecraft, two-momentum wheels and one reaction

wheel are used for attitude control [23]. The momentum wheels (MW) are attached to the spacecraft

structure using brackets. In one of the geo-stationary spacecraft developed by ISRO, the wheel

mounting bracket consisted of an aluminum honeycomb sandwich plate and a machined part,

attached to the central thrust cylinder. A circumferential stiffener positioned near the MW bracket

attachment area [16] further stiffens the thrust cylinder locally. The aluminum honeycomb sandwich

plate and the machined bracket constituted the wheel mounting bracket (see figure 3 and figure 4

for details ).

2.1 Tests and observations

During integrated spacecraft tests, large errors were observed in the roll rate of the scanning

earth sensor. These errors were seen only in specific speed ranges. To troubleshoot this problem,

vibration responses were measured near the earth sensor. Figure 5 shows the acceleration response

plot. Corresponding earth sensor rates are given in figure 6 for wheel speeds from 3000 RPM to

5400 RPM with a speed variation at the rate of 6 RPM/sec. The abscissa in the figure 6 represents

the time in minutes and the ordinate represents the error measured by the earth sensor in degrees.

This clearly indicates, as the rpm changes, the error detected by the earth sensor changes and is

in tune with that of acceleration response of the momentum wheel bracket. This gives the relation

between the rpm, momentum wheel bracket response and error detected by earth sensor. It is clear

from the plot (figure 5) that the maximum response at the earth sensor location occurs at 4320

RPM (72Hz). Waterfall plot of the acceleration response near earth sensor clearly showed peak

response occurring at around 72Hz. As higher harmonics were not present, it was clear that the

response was due the unbalance in the momentum wheels. Beating phenomenon was also observed,

as the two wheels are operating nearly at equal speeds. Earth sensor data also showed the effects
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Figure 3: Schematic of Spacecraft with Earth Sensor and MW Bracket

on the roll error (see figure 6). These observations clearly indicated that the disturbances from the

wheel caused the error in earth sensor output.

In order to study the problem corresponding to 72Hz frequency, the responses at various points

on the momentum wheel bracket were measured with only one wheel rotating (from 3000 RPM

to 5400 RPM). Responses obtained during these tests were similar to that obtained earlier for the

two-wheel case. Experimental modal analysis was performed, with excitation at several locations on

the bracket/momentum wheel. Figure 7 shows typical plot of frequency response function. It was

very clear from these results, that the mode corresponding to 72 Hz was not excited in the modal

tests. This was further confirmed by the experimental modal analysis. The 72Hz mode appeared

only when momentum wheel was rotating, and was traced to whirling of momentum wheel/bracket.

The whirling mode of wheel and bracket was made clearly visible using a stroboscope synchronized

with the momentum wheel rotation speed. Originally, the wheel-mounting bracket was designed so

that its modes are away from the critical modes of the scanning earth sensor. However, the whirling

effect altered the modes of the bracket and made it coincide with one of the modes of the scanning

earth sensor, leading to large error in the output of earth sensor.
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2.2 Results of experimental modal analysis

Experimental modal analysis (EMA) was carried out to validate the finite element model shown in

figure 8. For EMA, the MW bracket with MW is mounted on spacecraft. The bracket is excited

using an electro-dynamic shaker. The frequency response functions are obtained by monitoring

12 locations along three orthogonal directions on MW bracket. The frequency response functions

(FRF) are then processed with the modal parameter estimation algorithm in I-DEAS c© Test soft-

ware [21] to extract mode shapes. The first two mode shapes are shown on the right-hand side of

figure 9.

3 Analytical studies

To understand the effect of rotation of the momentum wheel on the structural dynamics, a finite

element model of the bracket with wheel was generated using MSC NASTRAN c©. Figure 8 gives the

finite element model of the bracket with the wheel. Wheel is modeled as lumped mass and inertia

placed at its centre of gravity linked to the mounting points on the bracket by rigid links. A special
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Figure 5: Acceleration response near earth sensor location
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Figure 6: Error data (pitch and roll rates) from earth sensor

DMAP (Direct Matrix Abstraction Program) [20] sequence is added to the MSC NASTRAN c©

deck to include the effect of momentum wheel rotation. The mounting bracket along with the

momentum wheel is modeled and is clamped at the six mounting interfaces points with spacecraft.

The mounting interface flexibility of spacecraft main structure is not taken into account in this

analysis. The finite element model contains 560 elements (QUAD4, lumped mass) and 4224 degrees
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Figure 7: FRF from modal test measured on momentum wheel bracket

of freedom. The material properties for the face sheets, honeycomb core is taken from the material

database. The wheel properties correspond to mass 8.1 kg, Jx = Jy = 0.06972 kgm2, and Jz =

0.12763 kgm2 [16]. The eigenvalue problem is solved first to obtain the natural frequencies without

the effect of the of the momentum wheel. The left-hand side of figure 9 gives the first of two modes

obtained from FEA, and, as observed by comparing the left- and right-sides of figure 9, there is a

reasonable match between the FEA and the EMA results. Though neglecting interface flexibility

may affect the modes involving the main structure, the basic structural dynamics arising out of

local bracket deformations is captured in the FE model.

The mathematical model with wheel rotational effects is then studied. The complex eigenvalue

analysis for this case was carried for different rotational speeds. Whirling of the MW with the

bracket is clearly seen from the animated mode shapes. This confirmed that the gyroscopic forces

generated by the rotating momentum wheel affects the structural dynamics of the bracket. The

Campbell diagram for this case is plotted to bring out the change of natural frequency with respect

to RPM. Figure 10 shows the Campbell diagram obtained from the complex eigenvalue analysis.

The Campbell diagram shows that the first three modes of MW and bracket change with the rotation

speed. A modal transient analysis (to obtain response at the same location as measured during

8



Mass of MW

Honeycomb panel

Aluminium
Bracket

Figure 8: Finite element model of momentum wheel bracket

experiment) was carried out to identify the bracket mode excited due to the counter clockwise

rotation of the wheel. The lowest mode gets excited due to rotation of the wheel and imparts

significant interface forces on the spacecraft. The nature of the transient response was found to be

very similar to that obtained from experiments on the spacecraft (see figure 5). A comparison of the

frequencies obtained from FEM and EMA is given in Table 1. The difference in the frequencies for

the first three modes between FEM and EMA is due to the difference in boundary conditions used

FEM and EMA. During experimental modal anaysis, the MW bracket was fixed to the spacecraft.

In the finite element analysis, the stiffness contribution from spacecraft at the interface of MW

bracket with spacecraft is not incorporated. However, it is seen that the mode shapes match well

as seen in figure 9.

Table 1: Comparison of frequencies

Node No. Freq(Hz) from FEM Freq (Hz) from EMA

1 67.69 52.94

2 76.58 63.32

3 130.4 80.12

It is thus clear that the rotation of the momentum wheel affects the amplitude of disturbance

indicated by response of the wheel and bracket. This in turn causes higher response at other
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spacecraft locations. At critical speeds, the response of the spacecraft is high. The low damping in

the bracket also contributes to the higher response problem.

Mode 1
Frequency 67.69Hz

Honeycomb Panel

Aluminium
Bracket

MW Lumped Mass

Deformed Shape

(a)

Mode 1
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(c)

Mode 2
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(d)

Figure 9: Mode shapes from FEM and EMA

3.1 Lower-order mathematical model of bracket and momentum wheel

As discussed earlier, momentum wheel - earth sensor interaction can make the attitude rates er-

roneous and the requirement is to minimize this interaction. Minimizing interaction can be done

in many ways. One approach is to make the stiffness of the bracket very low so as to make it

behave as an isolator. Another approach is to shift the whirling frequency of the bracket (during
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rotation of momentum wheel) well above the operating speed range of the wheel. The first option is

structurally not feasible, as the wheel bracket has to withstand the high launch loads. The second

option requires a redesign of the bracket and is easily feasible. The second option was chosen by

us.

In order to redesign the existing wheel bracket, a lower-order model, which captures the essential

design parameters and dynamic characteristics, is first derived. This is especially useful to avoid

use of a large finite element model of the wheel-bracket for the iterative design process. This

lower-order model is also useful for the spacecraft level studies.
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Figure 10: Campbell diagram from FEM analysis of momentum wheel bracket

The bracket consists of a honeycomb panel supported on two sides. It is connected to the central

thrust cylinder – one side is directly connected and other side by a machined aluminum member.

This bracket is modelled as a six-degree-of-freedom spring connecting wheel with spacecraft (shown

in figure 3 and figure 4). For this study the MW can be considered as a rigid mass, with specified

static and dynamic unbalances. The wheel is elastically supported at the 6 mounting interface points

by linear springs. The mass of mounting bracket assembly is small compared to the wheel mass and

hence is neglected. The three linear spring stiffness are denoted by kxi
, kyi

, kzi
, i = 1 · · · 6, and the

rotational stiffnesses about three mutually perpendicular axes are denoted by kmxi
, kmyi

, kmzi
, i =

1 · · · 6. These are shown schematically in figure 11. The inertia properties are the mass, m, and

mass momentum of inertia, Jx, Jy , Jz with respect to the reference axes and at the centre of mass.

The angular speed of the wheel is denoted by ω in radians/sec. The static unbalance is caused
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by the offset of centre of mass of the wheel from the axis of rotation and is modeled as mass, ms,

located at a radius, rs. Misalignment of the principal axes of inertia of the wheel with respect to spin

axis leads to dynamic unbalance. This is modeled as two equal masses, md, placed diametrically

opposite at a radial distance, rd, and axial distance, h, from the wheel mass centre.
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Figure 11: Momentum wheel mounting bracket modeled as springs

The equation of motion of the wheel-bracket combination is derived using Lagrange formulation

and these can be written in a compact form as

[M] {ẍ} + [G] {ẋ} + [K] {x} = F (1)

where the 6×1 vector x denote the generalized variables corresponding to the 6 degrees-of-freedom

(dof) (x, y, z, θx, θy, θz)
T , and the mass matrix and the gyroscopic matrix are as given below.

[M ] =



















m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Jx 0 0
0 0 0 0 Jy 0
0 0 0 0 0 Jz



















(2)
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[G] =



















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −ωJz 0
0 0 0 ωJz 0 0
0 0 0 0 0 0



















(3)

The 6 × 6 stiffness matrix [K] is given by



















∑

kxi
0 0 0

∑

kzi
zi −

∑

kxi
yi

0
∑

kyi
0

∑

kyi
zi 0 −

∑

kyi
xi

0 0
∑

kzi

∑

kzi
yi −

∑

kzi
xi 0

0 −
∑

kyi
zi

∑

kzi
yi (∗)1 −

∑

kzi
xiyi −

∑

kyi
xizi

∑

kxi
zi 0 −

∑

kzi
xi −

∑

kzi
xiyi (∗)2 −

∑

kxi
yizi

−
∑

kxi
yi

∑

kyi
xi 0 −

∑

kyi
xizi −

∑

kxi
yizi (∗)3



















(4)

where the summation is over i = 1 to 6 and the terms (∗)1, (∗)2 and (∗)3 are given as
∑

(kyi
z2

i +

kzi
y2

i + kmxi
),

∑

(kzi
x2

i + kxi
z2

i + kmyi
), and

∑

(kxi
y2

i + kyi
x2

i + kmzi
), respectively.

The right-hand side forcing term Fis given by

F =



































−msrsω
2 sin(ωt)

msrsω
2 cos(ωt)
0

mdrdhω2 cos(ωt)
mdrdhω2 sin(ωt)

0



































(5)

where msrs and mdrdh represent the static and dynamic unbalance respectively as explained earlier.

It is seen that the forcing terms on the right-hand side of the equations correspond to both the

translations and rotations and are harmonic functions with a frequency equal to the wheel speed.

It is also clear that the matrix [G] changes with rotational speed.

3.2 Numerical analysis

In order to have a good initial estimate of the stiffness of each spring used in the lower-order

model, component mode synthesis [22] is adopted. The basis for this reduction method is the

transformation matrix known as Craig-Bampton coordinate transformation. This reduces the finite

element stiffness matrix into an assembly of an interface stiffness matrix and diagonal modal stiffness

matrix. The initial estimate for the stiffness for each spring here is based on the interface stiffness

matrix. A brief review of the component mode synthesis following the approach by Craig and

Bampton [22] and its application to arrive at the spring stiffnesses in the lower-order model of the

bracket is given here.
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The equations of motion of a general dynamical system without damping is given by

[M ] {ẍ} + [K] {x} = F (6)

In the first step, the physical degrees of freedom are separated into a set of non-interface

(interior) coordinates xN and a set of interface degrees of freedom coordinates xI . The matrices

and vectors in equation (6) are then partitioned as

[

MNN MNI

MT
NI MII

] {

ẍN

ẍI

}

+

[

KNN KNI

KT
NI KII

] {

xN

xI

}

=

{

FN

FI

}

(7)

where typically the non-interface forces FN are zero.

Let φNN denote the matrix of fixed-interface modes of the system normalized with respect to

mass matrix. The modes are obtained using a standard eigenvalue solution process with interfaces

fixed using φCN matrix denote the matrix of constraint modes, i.e., the rigid body displacement

vector. The physical degrees of freedom x and modal degrees of freedom can be written as

x ≡

{

xN

xI

}

=

[

φNN φCN

0 I

] {

qN

xI

}

(8)

where qN are the modal degrees of freedom and the matrix
[

φNN φCN

0 I

]

is known as the Craig-Bampton transformation matrix.

Using this transformation matrix in equation (7), leads to

[

I M̃NI

M̃T
NI M̃II

] {

q̈N

ẍI

}

+

[

Ω2
n 0

0 K̃II

] {

qN

xI

}

=

{

φT
NNFN

φT
CNFN + FI

}

(9)

where

φCN = −K−1

NNKNI

K̃II = KT
NIφCN + KII

M̃II = φT
CN [MNNφCN + MNI ] + MNIφCN + MII

M̃NI = φT
NN [MNNφCN + MNI ]

with M̃NI as the coupling matrix, and K̃II as the interface stiffness matrix.

MSC NASTRAN c© finite element analysis tool was used to perform the component mode

synthesis. The large matrices obtained from the finite element analysis were reduced to matrices

K̃II , M̃II and M̃NI . As there are six constraint points in the finite element model, the interface
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stiffness matrix KII is a 36 × 36 fully populated matrix. All the elements of this matrix are not

used for the initial estimate of stiffnesses used in the lower-order model. Coupled off-diagonal

stiffness terms are neglected for simplicity. From the mode shapes of the finite element analysis

and experimental modal analysis, one observes that the first two modes are anti-symmetric. The

honeycomb panel is free to move in the lateral direction. It is clear, again from the FEM and EMA,

that the mode shape is primarily controlled by kzi
, i = 1 · · · 6 and hence, only the stiffnesses in the

Z direction are chosen for the initial estimate for the lower-order model. The stiffness values used

from the interface stiffness matrix are given in Table 2. It may be noted that there is no unique way

of deciding which stiffnesses to keep. However, as observed in the extensive simulations (discussed

later), the choice of keeping only the Z components of the stiffnesses is adequate for this study.

Table 2: Comparison of stiffness

Stiffness Stiffness in N/m Stiffness in N/m

Nomenclature from Component Mode after iterations

Synthesis

kz1
496528 400000

kz2
288109 200000

kz3
280669 200000

kz4
502330 400000

kz5
622066 350000

kz6
632273 350000

Keeping only the kzi
’s in equation (1), it is observed that the set of six equations in the lower-

order model further reduce to only three equations. These are given as







m 0 0
0 Jx 0
0 0 Jy

















z̈

θ̈x

θ̈y











+







0 0 0
0 0 −ωJz

0 ωJz 0

















ż

θ̇x

θ̇y











+



















6
∑

i=1

kzi

6
∑

i=1

kzi
yi −

6
∑

i=1

kzi
xi

6
∑

i=1

kzi
yi

6
∑

i=1

(kyi
z2

i + kzi
y2

i + kmxi
) −

6
∑

i=1

kzi
xiyi

−
6
∑

i=1

kzi
xi −

6
∑

i=1

kzi
xiyi

6
∑

i=1

(kzi
x2

i + kxi
z2

i + kmyi
)



















=











0
mdrdhω2 cos(ωt)
mdrdhω2 sin(ωt)











(10)

Equation (10) was solved for various values of kzi
, i = 1, 2, ..., 6. For the values of kzi

, i =

1, 2, ..., 6, shown in Table 2, it was found that the Campbell diagram obtained from simulation (see

figure 12) is very close to the Campbell diagram obtained from finite element analysis (see figure 11)
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and the experimentally obtained frequency values (see Table 1). The numerical values used in the

simulations are: mass of the wheel, m = 8.1 kg, inertias Jx = Jy = 0.06972 kgm2, Jz = 0.12763

kgm2, the static unbalance msrs = 0.000072 kg-m, and the dynamic unbalance mdrdh = 3.01

kgm2 [16]. The equation (10) and the parameters listed above constitute the lower-order model

of the momentum wheel and the bracket. This model has been used in redesign studies which is

discussed in section 4.

It may be noted that the six spring stiffness values listed in Table 2 are different from the

component mode synthesis values. This is expected as many spring stiffness terms were dropped

in the simplified model. It may be further noted that even with this very simple model, with only

six stiffness terms, a reasonably accurate prediction of the Campbell diagram was obtained.

Eigenvalue analysis of equation (10) gives three modes for different rotation speeds of wheel.

This is plotted as Campbell diagram and the change of natural frequency with respect to the wheel

speed is shown in figure 12. It can be seen that the mode of the wheel splits into negative whirl and

positive whirl. The maximum response occurs when the wheel speed matches the whirl frequency.

In the above condition it is seen that only one of the whirling modes are excited. This greatly

amplifies the response and imparts large disturbance to the spacecraft, which in turn affects the

scanning earth sensor output.
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Figure 12: Campbell diagram from lower-order model
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4 Redesign of the mounting bracket

From equation (10), it is clear that only the θx and θy degrees of freedom influence the gyroscopic

matrix. Hence to raise the whirling frequency beyond the operating range of speed of momentum

wheel (> 5300 rpm), the stiffness corresponding to these degrees of freedom should be increased2.

The stiffness that controls the θx and θy degrees of freedom are kmxi
, kmyi

, i = 1, ..., 6. Keeping

the stiffness values kzi
, i = 1, ..., 6 fixed, the values corresponding to kmyi

, i = 1, ..., 6, were varied

to increase the whirl frequency from 4200 rpm to 5600 rpm.

The final values of stiffness, kzi
, kmyi

, i = 1, ..., 6, which satisfy the requirement are as follows:

kz1
= 400000 N/m, kz2

= 200000 N/m, kz3
= 200000 N/m

kz4
= 400000 N/m, kz5

= 350000 N/m, kz6
= 350000 N/m

kmy1
= 10000 N/m, kmy2

= 0 N/m, kmy3
= 0 N/m

kmy4
= 10000 N/m, kmy5

= 10000 N/m, kmy6
= 10000 N/m

The Campbell diagram corresponding to above values of stiffnesses is shown in figure 13.
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Figure 13: Campbell diagram from modified lower-order model

From the results of analysis of the lower-order model, it is clear that the gyroscopic forces plays

important role in the dynamics of momentum wheel bracket especially when significant angular

deformations are present at the mounting interface. It is also clear that the gyroscopic forces will

affect the modes of the bracket causing whirling especially of those modes, which involve significant

2In this particular case, strengthening any other part of the bracket was difficult due to its design.
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Figure 14: Response of the momentum wheel bracket after design modification

angular motion, viz., the anti-symmetric modes. Based on the results of analysis, it was decided

to fix additional plates on either side of the milled bracket in a way so as to increase the stiffness

kmyi
, i = 1, ..., 6. Although the analysis of the lower-order model and the values obtained for

kmyi
, i = 1, ..., 6 do not have one to one correspondence with the geometry of the added plates,

the lower-order model does indicate the role of stiffening by plates in increasing the critical whirl

frequency.

After the modifications, the whirling frequency was shifted to around 82Hz (4920 RPM) though

the lower order model prediced it as 89Hz 5300 RPM, as seen from the experimental data shown

in figure 14. It was also observed that, this reduced the response near the earth sensor location to

less than 0.1g in the entire operating speed range of 3000 rpm to 5100 rpm compared to about 1.2

g before the modification.

5 Conclusions

This paper deals with the structural dynamic coupling of the rotating momentum wheel with

the mounting bracket and its impact on the sensitive subsystems of a spacecraft. It is clearly

brought out by experiments, finite element analysis and analysis using a lower-order model, that

for the momentum wheel configuration studied, wheel rotation changes the natural frequency of the

mounting bracket altering the frequency and amplitude of wheel disturbance itself. The influence
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of the rotational flexibility of the bracket is clearly brought out as the main factor influencing the

coupling. A simplified low-order mathematical model of the wheel and bracket derived to study the

influence of various stiffness terms is used for re-designing of the bracket. Finally, the changes on

the bracket were finalised, and validated experimentally. The disturbing frequency was found to be

greater than 89 Hz, well beyond the operating range of momentum wheel. It must be stressed that

although similar analysis could be have been done using a detailed finite element model, it would

have been time consuming and expensive. The lower-order model can also be used for simulating

the wheel bracket assembly in the integrated spacecraft.
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