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Abstract 
Equipment panels of a spacecraft are made up of a sandwich composite with aluminium face sheets 

and a honeycomb (HC) core. The honeycomb sandwich plate responds to the launch vibration 

loads subjecting the equipment mounted on it to a high level of accelerations at resonances owing 

to a lower natural damping. Damping particles (DPs) when inserted in the empty cells of a HC 

core improve the damping characteristics and reduce the resonance responses. In this work, we 

present a mathematical model governing the motion of the cell walls, DPs and HC plate under 

dynamic loading. Discrete element method (DEM) has been used to model the dynamics of the 

DPs wherein the contacts are modeled using modified nonlinear dissipative Hertz contact theory 

in conjunction with Coulomb friction. The effect of DPs on the responses at resonances, damping 

and frequency response function (FRF) of the HC plate is obtained. Numerical and experimental 

studies were conducted on a HC plate where a selected portion of the plate was filled with DPs. 

The HC plate was subjected to sine sweep base acceleration at the edges to study the effect of DPs 

on the dynamic characteristic of the plate. The damping ratios and resonance peaks of the lower 



 

four modes of the HC plate, excited up to 1000 Hz, obtained experimentally from the FRF 

measurements and numerically from the DEM model compare well. The damping ratios, response 

at resonances and the FRF profiles are also similar. Significant improvement in damping ratios 

and attenuation of vibration level has been observed.   

Keywords  
Spacecraft structures, particle impact damping, honeycomb sandwich plate, discrete element 

method, and passive vibration control 

Nomenclature 
 

, ,L W t   length, width and  thickness of the plate 

ct   thickness of the honeycomb core 
M,C,K   mass, damping and stiffness matrices 

df , ef  impact damping  and external excitation force vector 
  generalized displacement vector 
R  radius of the circle circumscribing hexagon of the HC cell  

pr   radius of the damping particles 

pn  total number of damping particles 

cn  number of cell filled with damping particles 
  damping ratio 

iq  generalized modal coordinates  

s , b    slave and boundary degree freedoms 

i  modal matrix 

im , ir  mass and radius of particle i  

I i  mass moment of inertia of particle i   

Pi   position vector of the CM of particle i  
g   acceleration due to gravity 
𝚯ሷ  angular acceleration of particle i  
nij  unit vector pointing from pointing from i  to j  

niw   unit vector pointing from particle i  to the center of contact point with wall 
w  

f ij , fiw  force on particle i  due to particle j  or wall w  

ij , iw  indentation  

𝛿ሶ
௜௝ indentation velocity 

nk   Hertz constant 

  natural frequency matrix 



 

*
ijm  equivalent mass  

  Hertz damping constant 

ne  normal coefficient of restitution 
  coefficient of Coulomb friction 

mi , ui   measured and unmeasured coordinates of the i  mode 

1 Introduction 

The sandwich laminates with aluminium face sheets and aluminium honeycomb (HC) core are the 

main structural members of a spacecraft equipment panel that host most of the subsystems. Though 

a honeycomb structure is lightweight making it suitable for the aerospace application, it has low 

damping resulting in high resonance responses. This may be potentially harmful for the mounted 

subsystems. Taking advantage of the porous HC structures, damping could be improved by 

inserting granules called damping particles (viscoelastic, aluminium, steel etc. material) in the 

empty cells (Wang and Yang, 2000; Michon et al., 2013; Koch et al., 2017; Panossian et al., 2004). 

These DPs dissipate the energy of a vibrating system in the form of heat, elastic wave and sound 

by collision among the particles and with cell walls. This technique requires no extra hardware or 

design modification, and it is simple and effective in wide frequency range and harsh environment. 

The impact damping technology has been used in vibration mitigation problem in civil structures 

(Lu et al., 2012), space shuttle and aerospace structures (Yao and Chen, 2013; Moore et al., 1995; 

Knight et al., 2013; Ahmad et al., 2016), oscillatory saws (Heckel et al., 2012) and automobiles 

(Duvigneau et al., 2016). Conventionally, DPs are filled in drilled holes (Xu et al., 2005; Xu et al., 

2004) or a container filled with DPs are attached to the vibrating structures. The parameters 

involved in impact damping problem such as packing fraction, mass ratio, clearance, material and 

dimension of the DPs and enclosure, nature of vibration environment has been extensively studied 

(Vinayaravi et al., 2013; Masri and Caughey, 1966; Masri, 1970; Duncan et al., 2005; Gharib and 

Ghani, 2013). Very limited studies, mostly experimental, are available in literature on honeycomb 

treated with DPs. (Wang and Yang, 2000) carried out an experimental study on HC beams with 

solder balls as DPs. They reported a reduction of vibration response without damaging the cells 

and bonding. A similar study was conducted by (Michon et al., 2013) with hollow viscoelastic 

balls as DPs. They obtained the parameters of an equivalent viscous damper and used the 

equivalent model to predict the response of cantilever beam. They obtained the damping as a 



 

function of the filling ratio and excitation frequency and reported significant improvement in the 

damping of the second mode of the beam. 

A highly constrained system of DPs in the HC cells of the vibrating plate, where the particles and 

cell level interaction and its impact on the damping and the overall FRFs, have not been studied in 

detail. In this paper, the dynamics of DPs is modeled using discrete element method (DEM). The 

equations of motion of the cell walls are obtained by transferring the motion of the center of the 

cell, obtained from finite element model of the plate, to the walls assuming the planes defining the 

wall of the cells are rotating and translating as rigid planes. The forces, normal and tangential, 

involved in particle-wall contact is modeled by Hertz nonlinear dissipative model and Coulomb 

friction, respectively. A HC plate with edges under base excitation was considered for the 

numerical and experimental study. The FRFs obtained experimentally and numerically were 

compared. After validating the model, parametric study with respect to mass ratio and location of 

the filling area on the FRFs and damping is studied.  

This paper is organized as follows: in section 2, we present the mathematical formulation of the 

discrete element method couple with plate dynamics. In the third section, the experimental setup 

and results are presented and compared with numerical predictions. Finally, in section 4, we 

present our conclusions. 

2 Mathematical formulations 

A honeycomb (HC) sandwich plate is made up of aluminium face sheets and HC core. The global 

coordinate system { }XYZ with its origin at the geometric center of the plate and the local 

coordinate system { }x y z at the geometric center of a cell is shown in Figure 1. 

 



 

 

Figure 1. Honeycomb plate with coordinate systems 

A finite element model of the HC plate is made in the ANSYS® software. The plate is discretized 

using a layered shell element 181 and the finite element mesh is shown in Figure 2a. The HC core 

is assumed orthotropic and the elastic constants of the core are obtained experimentally from the 

coupon level tests. Three tests, namely flatwise test, plate shear and three point bending tests are 

carried out on the coupon cut out from the same panel to estimate the mechanical properties. The  

test procedures and methods of estimation is described in reference (Kee Paik et al., 1999).   The 

HC plate is meshed in such a way that some of the nodes are essentially placed exactly at the sensor 

locations so that the responses obtained from finite element analysis and from the experiments 

could be compared.  

Special consideration in meshing is given to the areas of the HC where the core is filled with DPs. 

In this study, only the strategically chosen areas (Koch et al., 2017) of the plate are filled to 

minimize added mass (see Figure 2), and are chosen to be near the anti-node of the targeted mode 

where the displacement and velocities are maximum. The filled areas are seeded with nodes in 

such way that some of them are placed at the center of the cells and the displacements and the 

velocities of the nodes can be used to get the motion of the planes defining the walls of the cell. 

Furthermore, the motion of the walls of the neighboring cells are assumed to be similar as the 

formulation is for a plate having a dimension of a typical equipment panel used in spacecraft – the 

panel is much larger than the cell. Moreover, the damping forces arising from the impacts of the 

DPs in a cell can be assumed acting at the center-node of the cell. As the dimension of the cell is 

of few mm (compared to the plate, which is of the order of meter), same force can be assumed 

arising from the neighboring cells also and acting on the representative node. In Figure 2(b), the 



 

neighboring cells and a representative node, node-19, where the sum of the damping forces arising 

from the neighboring cells is assumed acting, are shown. As a consequence, the impact damping 

force resulting from the immediate neighboring cells are assumed to be identical and hence the 

calculation of the dynamics of the DPs and the resulting forces for each honeycomb cell is not 

required. Here in this work, we propose to use a plate of size 1.4 m x 1.3 m (typical size of a 

spacecraft equipment panel) with damping patches of dimension 250 mm x 250 mm. Each such 

patch would contain around 2400 cells and each representative node is surrounded by six cells as 

shown in Figure 2.   

 

 

Figure 2. (a) Finite element mesh (b) Placement of node at the center of the cell 

 
The governing finite element equations of HC plate are given as  

 𝐌𝛘ሷ ൅ 𝐂𝛘ሶ ൅ 𝐊𝛘 ൌ 𝐟௘ ൅ 𝐟ௗ (1) 

The assembled displacement vector   consists of the nodal displacement vectors

[ ]T
x y zu v w     where the displacements u  and v  are along the L -direction (X-axis) 

and W -direction (Y-axis) of the core, respectively, while w   is along the out of plane normal 

direction. The angular rotations [ ]T
x y z   are defined as ቂ𝜕𝑢

𝜕𝑥ൗ 𝜕𝑣
𝜕𝑦ൗ 𝜕𝑤
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்
. Equation 

(1) can be partitioned for base excitation problem as follows (Wijker, 2004)  

 ൤
𝐌௦௦ 𝐌ୱ௕
𝐌௕௦ 𝐌௕௕

൨ ൜
𝛘ሷ ௦
𝛘ሷ ௕

ൠ ൅ ൤
𝐂௦௦ 𝐂௦௕
𝐂௕௦ 𝐂௕௕

൨ ൜
𝛘ሶ ௦
𝛘ሶ ௕

ൠ ൅ ൤
𝐊௦௦ 𝐊௦௕
𝐊௕௦ 𝐊௕௕

൨ ቄ
𝛘௦
𝛘௕

ቅ ൌ ൜
𝐟௦

௘

𝐟௕
௘ൠ ൅ ቊ

𝐟௦
ௗ

𝐟௕
ௗቋ   (2) 

(a) (b)



 

where the subscripts s  and b  denote the slave and boundary degree of freedoms (dofs), 

respectively, and the base acceleration is enforced on the b dofs. The first part of the equation (2) 

is given as  

 𝐌௦௦𝛘ሷ ௦ ൅ 𝐂௦௦𝛘ሶ ௦ ൅ 𝐊௦௦𝛘௦ ൌ 𝐟௦
ௗ ൅ 𝐟௦

௘ െ ሺ𝐌ୱ௕𝛘ሷ ௕ ൅ 𝐂௦௕𝛘ሶ ௕ ൅ 𝐊௦௕𝛘௕ሻ (3) 

The equation (3) can be written in the modal space using the transformation  qi i i  , where the 

modal matrix i  is obtained from the eigenvalue problem: 2( ) 0 K Mii ik ii ik  , invoking the 

orthogonality relation with respect to mass and stiffness matrix and assuming 𝐂௜௕𝛘ሶ ௕ ൌ 𝟎 as a 

consequence to diagonalizable viscous damping, as 

 𝐪ሷ ௜ ൅ 2𝜁𝛀𝐪ሶ ௜ ൅ 𝛀𝟐𝐪 ൌ 𝚽௜
்൫𝐟௜

ௗ ൅ 𝐟௜
௘൯ െ 𝚽௜

்ሺ𝐌௜௕𝛘ሷ ௕ ൅ 𝐊௜௕𝛘௕ሻ (4) 

In equation (4), the damping particle force f d
i is the only unknown. Evaluation of force vector f d

i  

resulting from the impact of damping particles against the walls of the honeycomb cell requires 

the knowledge of the motion of the particles as well as the walls of the honeycomb cell. The 

equations of motion of the particle i  that is in contact with 1n  number of neighboring particles and 

2n  points with cell walls can be written as 

 𝑚௜𝐏ሷ௜ ൌ െ𝑚௜𝐠 ൅ ∑ 𝐟௜௝ ൅ ∑ 𝐟௜௪
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௝ୀଵ                         (5) 
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The indentations during impact, ij  and iw , are illustrated in Figure 3. 

 



 

 

Figure 3. Parameters in a particle-particle and particle-cell wall impact phenomenon 

Equations (5) and  (6) involve the particle-wall contact force fiw  which requires expressions for 

the position of cell walls where the damping particles are filled in. Let the geometric center of a 

cell of the honeycomb plate, at location[ ]i ix y , undergoes deflection w  and rotations[ ]dw dw
dx dy . 

Then the equation of planes defining the deformed walls, as shown in Figure 4, can be written as: 

 

 

Figure 4. Deformation of the walls of a honeycomb cell. 
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Planes 3 and 4 
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Planes 5 and 6 
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 Equations (7) - (10) are with respect to a frame of reference attached to the geometric center of 

the cell. The cell walls undergo translation and rotations equal to the geometric center of the cell. 

From the knowledge of deflection and slope of the geometric point of the cell and position of the 

DP, the local indentation can be calculated by computing the distance from the center of the 

particles to cell walls ( see the detailed mathematical procedure in (Ahmad et al., 2017)).  

The impact forces are evaluated as follows: let there are n  number of particles in the cell j  that 

is at the location [ , ]j jx y   and a particle i  is exerting a force f d
iw  on the walls of the cell then the 

total force on cell walls due to n   particles can be written as 

 
1

( , )
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 f f
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j iw j j
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The force vector f d
i in equation (4) is obtained from the assemblage of nodal force vectors f d

j  

The contact force between particle-particle or particle-wall consists of normal and tangential 

components is given as  

 = +f f fn t
ij ij ij   (12)                         

Since low velocity impact is involved among the DP and particle – wall, an elastic dissipative 

nonlinear model for the normal component can be used. In this work, the model proposed by Tsuji 

et al. (Tsuji et al., 1992)  and in vibrations problems by (Saeki, 2005; Fang et al., 2007)  is used. 

The expression for the normal component f n
ij  is given by  
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where 𝛿ሶ

௜௝
௡  is the normal relative velocity of the center of particle i  with respect to the center of 

particle j  and the equivalent mass *
ijm  in equation (13) is defined as 

 * 

i j

ij
i j

m m
m

m m
  (14)                         

  is the damping constant and a nonlinear function of the normal coefficient of restitution ne (Tsuji 

et al., 1992), given as 
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The elastic Hertz's constant nk  for spherical impacting bodies and sphere-plan wall is given in 

(Stronge, 2004). The simplest and most efficient approach to model the tangential contact force is 

to use the Coulomb’s law of sliding friction (Johnson, 1985).  Coulombs law has been used by 

many researchers in DEM for predicting vibration responses (Saeki, 2005; Saeki, 2002; Olson, 

2003; Lu et al., 2010; Lu et al., 2012; Fang et al., 2007) and the Coulomb force is givens as 
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 The method for computing relative tangential component t
ijV  can be found in (Ahmad et al., 2017).  

The equations of motion of the HC plate and DPs, equations (4) - (6), are solved simultaneously 

using Runge-Kutta method in MATLAB software. The DEM formulation described above 

assumes that the motion of any particle is affected by its immediate neighborhood contacts only.  

This require very small integration time step, at least one order less than the period of contact, and 

in this work, a time step 10-6s is used. The local vibrations of the cell walls are ignored since the 

stiffness of local indentation is much higher than the bending stiffness of the cell wall. (Lu et al., 

2010) reported that a frequency ratio of greater than 20 is appropriate to represent a stiff barrier 

whereby the compliance of the barrier can be ignored.  

 

 

 

 



 

3 Experimental works and comparisons 

3.1 Test setup and specimen 

The HC plate with aluminium face sheets and core with geometric and material properties given 

in Table 1 was used in the experimental work. The plate is equipped with 13 accelerometers (make: 

Brüel & Kjær, Model: 4517-002, sensitivity approximately 10 mV/g) is shown in Figure 5(a).  

 

 

Figure 5. (a) Honeycomb sandwich plate, (b) The HC plate mounted on LBP of the 
electrodynamic shaker 
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The accelerometers are strategically placed to capture the lower modes of the plate. The edge of 

the honeycomb plate is fixed to a vibration fixture with M6 bolts passing through the especially 

design inserts embedded in the plate. The vibration fixture plate has a cutout in the central portion 

to allow the out-of-plane motion of the HC plate. The vibration fixture plate is mounted on the 

load bearing platform (LBP) of an electrodynamic shaker (LDS-V994, force rating 289.1 kN) as 

shown in Figure 5(b). A 250-channel data acquisition system (DAS) from Spectral Dynamics® 

was used for acquiring the acceleration data from the 13 accelerometers mounted on the backside 

of the plate as shown in Figure 5(a). Two patches of dimension 250 mm x 250 mm is marked on 

the HC plate using a paper tape. These are the areas where DPs are filled individually or together, 

depending on the modes to target. Acrylic damping particles are chosen for experimental study 

whose properties are given in Table 2(a) and 2(b). The metallic and heavy damping particle are 

ruled out because not only they add large amount of mass to system (resulting in significant change 

of the system itself) but they may also damage the cell walls of a honeycomb, which are made of 

0.7µm thick aluminum foil. Another reason for choosing acrylic-damping particles is its 

temperature stability and lesser out gassing effect – the outgassing effect is crucial as materials 

tends to evaporate in extremely low-pressure environment of space. Each patch covers 2400 

hundred cells of honeycomb core which when filled fully, 100%, contain 86400 damping particles. 

The mass of the damping particles under each patch is 427 grams, which is 10.7% of the 4.004 kg 

plate mass. The total mass of the DPs is to be limited to around 20% as the main purpose of using 

the HC plate in spacecraft and aerospace applications is to reduce the structural mass. Therefore, 

damping particles are added at discrete locations where modal displacement and velocities of 

targeted modes are maximum.   

 

 

 

 

 

 

 

 

 



 

Table 1. Material and geometric properties of honeycomb plate 

Properties  Units 

Face‐sheet 

(AA 2024 
T3) 

Honeycomb core 

(CR 3/16‐5056‐0.0007‐P‐
32) 

Length, L   mm  1400  1400 

Width, W  mm  1300  1300 

Thickness  mm  0.25  25.4 

Density  kg/m3 2800  32.1 

Young's modulus  N/m2  72 x 109  10000 xx yy zzE = E E  

Poisson’s ratio    0.33  0.3  yzxy xz    

Shear modulus  N/m2  ‐ 
8

8

10000

0.89 10

1.85 10



 

 

xy

yz

xz

G

G

G

 

Diameter of inscribing circle of hexagonal 
cell 

mm  ‐  4.76 

 

Table 2(a). Properties of damping particles 

Properties  Units  Aluminum  Acrylic 

Radius  mm  ‐  1 

Density  kg/m3  2850  1180 

Young's modulus  N/m2  70 x 109  2.84 x 109 

Poisson’s ratio  ‐  0.33  0.402 

 

Table 2(b) Properties of damping particles 

Material pairs  ‐  Coefficient of sliding friction  Normal restitution coefficient 

Acrylic – acrylic  ‐  0.096  0.70 

Acrylic – aluminium  ‐  0.14  0.70 

 
 



 

3.2 Modal survey test  

A modal survey test was done on the HC plate without DPs to obtain the modal parameters such 

as damping ratio, natural frequencies and modal vectors. The edges of the plate were subjected to 

a linear sine sweep of constant amplitude with frequency sweeping from 10 Hz to 1000 Hz. 

Accelerometers mounted on the HC plate, see Figure 6, are located in such a way that they capture 

the lower modes of the plate.  

 

Figure 6. Accelerometers (1Z-13Z) on HC plate 

The acceleration measurements were performed with a sampling rate of 12.8 kHz, well above the 

Nyquist criterion, as we are interested in frequencies up to 1000 Hz. The FRF estimation was 

carried out with the parameters as follows: resolution - 0.5 Hz; window – Hanning. The FRFs from 

the 13 accelerometers are given in Figure 7. The sensor 1Z, at the center of the HC plate, is seen 

responding significantly to all modes excited under the bandwidth of interest and has the highest 

response for all the excited modes. Figure 7 shows that only four modes within 1000 Hz are well 

excited. The frequencies and damping ratios of these modes are listed in Table 3. 

 



 

 

Figure 7. Experimental FRF of HC plate without DPs 

Table 3. Frequencies and damping ratios of HC plate without DPs  

Mode description Frequency

(Hz) 

Damping ratio (experimental) 

Mode-1 162.7 0.0227 

Mode-2 541.4 0.0142 

Mode-3 601.3 0.0158 

Mode-4 884.5 0.0098 

 



 

The measured mode shapes are obtained by expanding the measured dofs on the entire finite 

element domain by expansion using mass and stiffness matrix (EMS) method. In this method, the 

finite element mass and stiffness matrices are partitioned into measured mi  and unmeasured ui

dofs of mode i  and using the measured natural frequency i  as  (Friswell and Mottershead, 2013)  

 2 0
      
       
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M M K K
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



  (17) 

Equation (17) can be can be rearranged and solved for unmeasured coordinates as (Friswell and 

Mottershead, 2013): 

 
12 2

           M K M Kui mi uu uu mi um um mi      (18) 

The solution of equation (18) along with measured dofs form the complete modal vector that can 

be projected on ANSYS grid to get the experimental modes shapes. The mode shapes obtained 

experimentally by the method discussed above and from the normal mode analysis carried out in 

ANSYS software with all edges fixed is given in Table 4. The layered shell element, shell 181, 

was used from the ANSYS element library with free meshing and smart sizing 3 option. The Block 

Lanczos eigen value problem solver was chosen for modal analysis. Large numbers of modes of 

the plates are obtained in the modal analysis as given in Table 4, in comparisons to the modes, 

which were excited when HC plate was subjected to the same base excitation of all the four edges. 

An interesting observation is that only those modes of the plate where there is an anti-node at the 

center of the plate are excited. This is reflected in both experimental and computed FRFs. Many 

modes listed in Table 4, where there is no anti-node at the center of the plate, were not excited 

even though the resonance frequencies are well within the excitation bandwidth. It is easy to see 

that the mode at 316 Hz cannot be excited. One half of the plate moves in one direction, while the 

other part moves in the opposite direction at this mode. The excitation at the edge excites both 

areas in the same direction (in phase to the shaker). 

  As only thirteen accelerometers were mounted higher modes shapes cannot be uniquely 

established and correlated with FEM modes. The analytical damping matrix is constructed using 

the experimental damping ratios of the first four modes. However, for all other modes used in the 

mode superposition, it is assumed as 0.015.  

 

 



 

 

Table 4. Mode shapes of the HC plate 

FEM 

    

FEM 164.4 Hz 316.1 Hz 339.4 Hz 474.5 Hz 546.2 Hz 

Test 

 

   

 

Test 162.7 Hz    541.4 Hz 

FEM 

    

FEM 595.0 Hz 687.4 Hz 717.6 Hz 846.3 Hz 907.8 Hz 

Test 

 

   

Test 601.3 Hz    884.5 Hz 

 
 
 
 
 
 
 
 
 



 

3.3 Numerical simulations and validations 

The experiments were carried out with DPs filled in an area of 250 mm x250 mm at the center of 

the plate with fill fractions 50%, 75% and 86.1%. The fill fraction is defined as the percentage of 

the volume of a cell filled with DPs. The different fill fractions are shown in Figure 8.     The edges 

of the HC plate are excited with a constant acceleration (0.5 g) sine sweep of bandwidth 10 Hz – 

1000 Hz. Figure 9 – Figure 111 present the computed and experimental FRFs at locations 1Z, 2Z, 

5Z and 10Z for fill fractions of 50 %, 75% and 86.1%, respectively. The locations 1Z, 2Z, 5Z and 

10 are chosen to estimate FRFs as these points lie at the points of maximum response of the 

targeted modes. The FRFs profiles are reasonably similar. However, the deviation in the higher 

frequency range is more, and there is a difference of 24 Hz in the fourth mode. The damping ratios 

of the four modes extracted from the FRFs are given in Table 5. Experimental results show that 

the damping ratios increase with fill fraction until it reaches a maximum in the fill fraction range 

of 75% to 86.1%. However, the computed damping ratios show the maxima at slightly higher fill 

fractions.  

Table 5. The computed and experimental damping ratios with a single filling area at the center 

Fill 
fraction 

Mode – 1 Mode – 2 Mode – 3 Mode – 4 

Exp. Comp. Exp Comp Exp Comp Exp Comp 

0% 0.0227 - 0.0142 - 0.0158 - 0.0098 - 

50% 0.0301 0.0308 0.0230 0.0238 0.0183 0.0206 0.0149 0.0152 

63.9% - 0.0457 - 0.0252 - 0.0223 - 0.0165 

75% 0.0426 0.0505 0.0241 0.0260 0.0212 0.0227 0.0178 0.0172 

86.1% 0.0407 0.0552 0.0235 0.0263 0.0187 0.0230 0.0156 0.0176 

94.4 % - 0.0582 - 0.0261 - 0.0226 - 0.0178 

100% - 0.0558 - 0.0254 - 0.0235 - 0.0176 

 

 

 



 

 

Figure 8. Honeycomb cells filled with damping particle (a) 100 % fill fraction, (b) 75% fill 
fraction and (c) 50% fill fraction 

The error in damping ratios are large when fill fraction is more, it may be due to the fact that the 

as the fill fraction is increased the motion of the DPs are more of inter-granular and rubbing nature 

rather than impact as free space is getting more and more constrained. The friction is the dominant 

dissipation mode at higher fill fractions in the honeycomb system. The Coulombs law of friction, 

which has been used in developing the DEM model, does not take into account the tangential 

compliance and sticking phase of contact phenomenon, which dictates the post-contact dynamics 

and energy dissipation due to friction forces.  

There is a large dip in the experimental FRFs at location 5Z shown in Figures 8,9 and 10 between 

3rd   and 4th   mode.  The dip in the FRF between the two resonance peaks is called anti-resonance, 

which is formed by superposition of negative region / roll-off region of first peak and positive 

region build up region of the next peak. The magnitude of dip depends on the damping of the 

peaks. A large dip is attributed to lower damping of the peaks. It can be seen in Table 6, the 

damping ratios of experimental FRFs for mode 3rd   and 4th   are smaller than that of the computed 

one except for the case of 75% where both are comparable. This is the reason why there is a smaller 

dip at anti-resonance as compared to 50% and 86.1%. 

The change in the damping ratio for the lower two modes are insignificant with an increase in fill 

fraction after reaching the maxima. For other modes decreases is relatively sharp. One of the 

consequence of this study is that we do not have to fill the honeycomb structure beyond a ceratin 

(a) (b) (c)



 

fill fraction. This can be intuitively explained by the fact that if the fill fraction is very large, there 

is very little momentum exchange and the damping increases only due to Coulomb friction. 

 

Figure 9. Experimental and computed FRFs for 50 percent fill fraction. 
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Figure 10 Experimental and computed FRFs for 75% percent fill fraction. 
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Figure 11. Experimental and computed FRFs for 86.1% percent fill fraction. 

  
Table 6 gives the damping ratio when the damping particles are filled at two places covering an 

area of 250 mm x 250 mm each. The filled areas are at the center and at location (L/3, 0) of the 

plate.  Two tests were conducted with the same sine sweep edge acceleration and for the fill 

fractions 75% and 86.1%. Though the mass of the DPs has increased two times, the change in the 

damping for the mode-2 to mode-4 is less than 15%. An improvement of 19% and 39.1% in the 

damping ratios of the first mode are observed for 75% and 86.1% fill fractions. The FRFs at 

locations 1Z and 2Z are compared with the single area filled with DPs in Figure 12 and Figure 13. 

The FRFs are similar to the case of the single area filled with the reduced first mode.  
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Table 6 : Damping ratios when two areas are filled with DPs  

Fill 
fraction 

Mode – 1 Mode – 2 Mode – 3 Mode – 4 

75% 0.0511 0.0261 0.0206 0.0187 

86.1% 0.0566 0.0265 0.0211 0.0199 

 
 
 

 

Figure 12.  FRF with 75% fill fraction, DPs at two places 

 

 

Figure 13. FRF with 86.1% fill fraction DPs, at two places 
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4 Conclusions 

The vibration attenuation behavior of a honeycomb (HC) plate treated with damping particles is 

studied experimentally and numerically. A mathematical model using discrete element modeling 

captures the coupled dynamics of damping particles (DPs), motion of cell walls of the honeycomb 

core and motion of plate. An HC plate partially filled with DPs and excited at all the four edges 

with constant amplitude sine sweep signal was studied. The coupled equations of motion of 

damping particles and HC plate were solved using numerical method to obtain the damping ratios, 

resonance peaks and FRFs and these are compared with the experimental results. Four modes were 

captured up to 1000 Hz with an error of less than 5% in frequency between the computed and 

experimental values. The damping ratios obtained from computations and experiments are found 

to be matching well for lower fill fractions. However, for higher fill fractions the error is 

increasing. The error in computed values for resonance peaks is higher in larger fill fractions as a 

consequence of the error in damping ratios. The discrete element method (DEM) combined with 

finite element method (FEM) captures the complex coupled dynamics of damping particles and 

HC sandwich structures reasonably well. The correlation between and experimental and DEM-

FEM model in terms of damping ratio and FRFs computed at different points on the plate is 

reasonably good. The DEM-FEM model for the system of damping particles and hexagonal 

honeycomb cell used the large number of parameters related to material and damping particle and 

the HC plate. The future work will be aimed towards determination of parameters of damping 

particle most effective in reducing the peak at resonance, determination of most effective location 

on the host structures for filling the damping particles and size of the area to be used for filling the 

damping particles. The model developed in this work can also be used for arriving at damping law 

for limited choice of parameters.  
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