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Abstract

In this paper, we present a new method to study and design isotropic spatial parallel ma-
nipulators. We construct the Jacobian matrices of linear and angular velocities symbolically
and analyse them. The isotropy of the angular velocity and that of the linear velocity are
treated in a decoupled manner using an algebraic formulation that lead to eigenproblems of
certain symmetric matrices. The criteria for isotropy in the individual cases, as well as their
combination are expressed in closed-form in terms of the minimum number of algebraic equa-
tions. The proposed method is applied to the design of isotropic 6-6 Stewart platforms having
semi-regular hexagonal top and bottom platforms. Symbolic expressions for two different fam-
ilies of isotropic configurations are obtained. Several mechanically feasible configurations are
presented demonstrating orientation, position, and combined kinematic isotropy. Methods
are presented for designing a manipulator for combined isotropy with partially specified posi-
tion and orientation, and for determining the isotropic configurations of a manipulator with
a given geometry. The sensitivity of the isotropy conditions with respect to variation in the
configuration parameters is studied numerically using the example of an existing manipulator.

1 Introduction

Dexterity of manipulation is one of the most important aspects of kinematic design of a manipulator.
Various measures of dexterity have been proposed in the literature, which can be broadly categorised
as local or at a given configuration, and global or over the entire workspace or subsets thereof. The
local measures of dexterity involve the properties of the linear velocity Jacobian of the manipulator
end-effector (denoted by J,), and the properties of the associated wvelocity ellipsoid. Yoshikawa
quantified the manipulability of a robotic mechanism as the volume of the velocity ellipsoid [1]
defined as det J,J.. Salisbury studied the sphericity of the velocity ellipsoid via the condition
number, Ko(Jy) 2 Omaz(Jv)/Omin(Jo), Where o(-) denotes one of the singular values of a matrix [2].
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The manipulator reaches optimal dexterity locally at a configuration if the condition number of
its Jacobian matrix is unity at that configuration. A survey of the local measures of dexterity
can be found in [3]. Early measures of global dexterity concentrate mostly on the size of the
dexterous workspace defined to be the subset of the workspace that can be reached with all possible
orientations [4, 5]. Local measures based on the condition number have also been extended to global
measures by integrating over a normalised volume of the workspace [6, 7]. More recently, Park and
Brockett introduced a coordinate-free measure of global dexterity via the concept of kinematic
distortion [8].

In this paper, we study the design of spatial parallel manipulators for optimal dexterity using
the concept of local isotropy. For spatial manipulators, the orientation isotropy is analysed by
considering the Jacobian matrix J, which maps the actuator rates to the angular velocity, and
the position isotropy relates to the Jacobian matrix J, which maps the actuator rates to the linear
velocity. The isotropy of the combined Jacobian, J = (J;Jy), is termed as spatial isotropy [9].
Physically, these conditions imply that the manipulator end-effector can translate and/or rotate with
equal ease in all spatial directions. This situation is extremally opposite to singularity, wherein
the manipulator end-effector cannot translate and/or rotate in certain directions in spite of full
actuation. In the reference [9] the authors point out that apart from optimizing dexterity, isotropy
also leads to the minimum relative error in the velocity maps.

It is generally difficult to obtain the conditions of isotropy using the condition number s, directly,
as it requires the Jacobian matrix and its singular values in closed symbolic form. Due to the obvious
computational difficulties, this approach has been applied only to the simplest of serial chains [12].
Researchers have also used the Frobenius norm (see, e.g., [10]) to calculate condition numbers
without having to calculate the singular values first [11]'. However, to the best of our knowledge,
there are no reported application of this approach to parallel manipulators. Isotropy of parallel
manipulators, in particular isotropy of Stewart platform manipulators (SPM’s) has been studied
numerically using the condition number criterion in reference [13]. In reference [14], the authors
suggest a restructuring of the Jacobian matrix of a parallel manipulator, and identify its properties
at an isotropic configuration. A similar formulation has been used to identify the spatially isotropic
configurations of a Stewart platform [15]. Tsai and Huang study the isotropy conditions of the
wrench transformation matriz J T in order to derive certain isotropy generators which lead to
spatial isotropy [16].

The inherent kinematic constraints of a parallel manipulator, such as an SPM, introduce further
difficulties in obtaining an isotropic configuration which is mechanically valid, i.e., which obeys the
kinematic constraints of the manipulator, and is also mechanically feasible. It is possible to obtain
isotropic configurations which are not mechanically feasible [14]. Recently, Tsai et al. have reported
families of spatially isotropic configurations of SPM’s, which are mechanically infeasible [16]. There
seems to be no control over the architecture or configuration of the manipulator in their formulation,
and in particular, it may be verified easily that the numerical results presented by them lead to
manipulators whose top and and bottom platforms are not even convex polygons?. This fact,
combined with awkwardly high base to height ratios (about 25 : 1), ruins the practical importance
of these designs.

'In this paper, the condition number used follows the definition of ks.

2This is due to the fact that the isotropy generators, whose intersection with two different horizontal planes define
the top and bottom platforms respectively, are not restricted to form the edges of a convex polyhedron. In fact,
these are allowed to be nearly, or exactly horizontal.



It is also possible to obtain a spatially isotropic configuration which is kinematically singular, and
one such example may be found in reference [14]. Indeed, there are other examples in the literature,
where the singularity aspect has been ignored, thereby leading to an infeasible set of isotropic
configurations. Su et al. present numerically obtained optimal designs for the semi-regular Stewart
platform manipulator (SRSPM), with geometrically similar top and bottom platforms [17]. As
noted by several authors (see, for example [18, 19]), such a manipulator is architecturally singular,
i.e., it is singular over the entire task space, SFE(3), and therefore has little practical importance in
the context of isotropy. A list of issues with the present state of literature in the area of isotropy
can be found in reference [20].

Apart from the issues of kinematic constraints and singularities, there are other significant
theoretical problems in studying isotropy of SPM’s:

e The lack of symbolic expressions for the Jacobian matrices: For spatial parallel manipulators
such as the SPM’s, it is generally very difficult to obtain the angular and linear velocity
Jacobian matrices. To bypass this problem, various alternative formulations for kinematic
isotropy have been proposed, which do not need J,,, J, explicitly. However, such schemes
are also inherently restricted to subsets of SE(3), and fail to explore the entire task space.
For example, in [15], two matrices A, B multiply the output and the input rates of a Stewart
platform manipulator respectively, and when they are both isotropic the manipulator is said
to be in an isotropic configuration. However, as we show later in this paper, isotropy of B
eliminates the possibility of obtaining a configuration showing combined isotropy?®.

e The lack of a natural length scale of SE(3): Even when the Jacobian matrices are available
symbolically, their use in isotropy analysis is complicated due to the fact that the Jacobian
elements are not dimensionally homogeneous — the entries corresponding to the angular and
linear velocity differ by a length scale. Therefore isotropy of the Jacobian J can change by a
simple change of the units. Researchers have tried to circumvent this problem using length
scales (see, for example [21, 14]) relevant to a given problem. However, in theory, the group
of rigid-body motions, SE(3), does not admit any natural length scale [22, 23], and therefore
the choice of such a scale, Ls, can never be unique, and/or globally applicable.

The length scales used in literature can be classified in two groups: (a) intrinsic, and (b)
extrinsic. The scales used in [14, 15] fall in category (a), and they are defined such that if J,,
J, were isotropic individually, their singular values would attain the same numerical value.
In particular, in such cases, the final expression of L; would reduce to Ly = Z((j:)), i.e., the
scale itself is a function of the final solution. In category (b), the scale is suggested by the
designer explicitly, and it is not necessarily a function of the elements of J, and J,. The
choice of such a scale is motivated by the geometry of the problem, and can affect the end
results obtained. Pittens and Podhorodeski [13] explain the significance of such scales, and

use the radius of the top platform of an SRSPM as L, to study its isotropy.

To overcome the difficulties mentioned above, we study the individual Jacobian matrices, J,,,
and J, for their isotropy. We also define a combined isotropy where the matrices J, and J,
are isotropic individually. However, their singular values are not necessarily equal. The notion of

3The isotropy of B requires that the all the legs of the manipulator have equal length. We shall see in section 4.1
this is quite restrictive.



combined isotropy avoids the problems of length scale and is a subset of spatial isotropy. We use
symbolic computations extensively to obtain the J, and J, matrices in closed-form, by inverting
the wrench transformation matrix for the top platform. The formulation can be applied to study
isotropy of manipulators of any architecture, whose forward velocity maps are available in terms of
the actuator rates alone.

In this paper, we apply our formulation to study the isotropy of the semi-regular Stewart platform
manipulator. The motivation of studying this particular class of SPM’s derives mainly from its
wide-spread usage in the industry, such as in commercial flight simulators (e.g., CAE 500 Seri),
parallel machine tools [24], attitude fine tuning platform for large radio telescopes [17] (see [25]
for an interesting list of applications of this manipulator in industry, research, and entertainment).
We identify two families of isotropic manipulators, the first of which encompasses those reported
in [14, 15]. We show that combined isotropy of J,, J,, cannot occur within this family, and study a
more generalised family of configurations. In this case, we obtain closed-form solutions for isotropy
in orientation, position, and combined sense. We show symbolically that no kinematically feasible
configuration exists within this family which demonstrates spatial isotropy. We also present methods
to obtain combined isotropy in an existing SRSPM, and to design an SRSPM for partially specified
position and orientation. The theory developed in this paper is illustrated by several examples.

The organisation of the paper is as follows: in section 2, we discuss the formulations for distri-
bution of linear and angular velocities, and derive the conditions for position, orientation, spatial
and combined isotropy. In section 3, we present the conditions for isotropy of an SRSPM in terms
of closed-form algebraic equations. In section 4, we present two sets of closed-form solutions to
these equations, leading to corresponding families of isotropic configurations. In the next section,
we present the methods for obtaining the combined isotropy configurations of an SRSPM of given
geometry, and also the design process for combined isotropy at partially specified position and
orientation. In section 6, we study numerically the sensitivity of the isotropy conditions to the
variations in configuration parameters around the isotropic configurations. Finally, we present the
conclusions and discuss the scope of future work in section 7.

2 Isotropy conditions of a manipulator

In this section, we derive the isotropy conditions of a general manipulator from its forward velocity
maps. First, we describe the mathematical formulation for analysing the distribution of angular
and linear velocities of the manipulator. We follow the differential-geometric approach presented
in [26], and reduce the problem of velocity distribution (instantaneously at a given configuration)
to eigenproblems of symmetric matrices. The conditions for linear and angular isotropy are then
derived in terms of algebraic equations involving the coefficients of the characteristic polynomials
associated with the above eigenproblems.

2.1 Formulation of the velocity distribution and isotropy

We assume in the following that the angular velocity w and the linear velocity v, are available
via linear maps of the actuated joint rates 0 € R" alone, where n is the degree-of-freedom of the
manipulator. In the context of parallel and hybrid manipulators, this means that the passive joint
rates have been eliminated in obtaining the velocity Jacobian matrices, and we can write w and v,



in terms of the respective equivalent Jacobian matrices as

w=4J wé
vy, = J,0 (1)
The extremal values of the linear and angular velocity, subject to a constraint ||| = 1, can be
obtained from the two eigenproblems below:
g = )0 (2)
g,vé = )\,,,0 (3)

where g = JLJ, and g, = J-J,. It is obvious from equations (2,3) that A = o2(J,) and
Ay = 0%(Jy). The eigenvalues also signify the squares of the extremal values of ||w|| and ||v]|
respectively under the constraint ||@| = 1:

2
A= lwll,

2
Ay = [|oll,

where ||w||,, ||v||, equal the half of the three principal axes of the ellipsoids of angular, and linear
velocity respectively [26]. Clearly, the eigenvalues A\ )\, are nonnegative. However, at the most
three of the eigenvalues are nonzero in each case, as the rank of J, or J, cannot exceed three.
If dim(g) = n with n > 3, at least (n — 3) eigenvalues of g are zeros, and we can write the
characteristic equation of g with real coefficients a; as:

/\2+a1)\—|—a2 n=2
0=< A+ a A2+ as) + a3 n=3 (4)
A3+ a N2+ apA+a3) n >3

The characteristic equation of g, has exactly the same form as above. However, in order to distin-
guish it from equation (4), we use the notations b; for the coefficients, and A, for the eigenvalues
for this case.

Identification of the extremal values of ||w|| and ||v|| leads to a natural description of isotropy.
When the three \,’s are equal and nonzero, the linear velocity ellipsoid [26] reduces to a sphere and
we get the condition for the isotropy of linear velocity. Similarly, isotropy of angular velocities would
require that the eigenvalues A are all equal. This implies that the nontrivial roots of equation (4)
should be equal, and not all of a, as, ag can be zero.

It may be noted here that the coefficients a;,b; can be computed in closed-form as described
in Appendix A. The nontrivial roots of equation (4) can also be obtained explicitly in terms of a;
using Sridhar Acharya’s and Cardan’s formula for the quadratic and cubic cases respectively [27].
However, it is not required to compute the roots explicitly in order to obtain the conditions for
isotropy from their equality. Instead, those conditions can be easily formed as algebraic equations
in the coefficients q; etc. as follows.

For the case n = 2, we equate the discriminant to zero and obtain the following condition:

a2 —4day =0 (5)



For the case n > 3, we consider the nontrivial cubic part of equation (4):
N4+ a A’ +a)+a3 =0 (6)

Using the standard transformation

a

A=z—— 7
-2 (7
the cubic is reduced to its standard form:

24+ Pz+Q=0 (8)

where

3as — a? 2a3 — 9aiay + 27a3
p="2""%" o= 9
3 ’ 27 )

Clearly if P = @ = 0, then z = 0. Using equation (7) the roots of equation (6) are obtained as:

/\i:—%, i=1,2,3 (10)

Therefore, the conditions for the cubic to have all roots equal are

3a;— a2 =0 (11)
2&? — 9(1,1(1,2 + 27&3 =0 (12)

For the purpose of symbolic computations, the second condition in equation (12) can be simplified
using the first in equation (11) to arrive at an equivalent set of conditions:

3ay —al =0 (13)
27a3 — ab =0 (14)

The conditions for equal ), isotropy can be obtained in the same fashion. In the following, we list
down the conditions for the different types of isotropy considered in this paper.

2.2 Conditions for different types of isotropy
We consider three cases of isotropy in the following:

A. Orientation (w-isotropy): J,, alone is isotropic.

B. Position (v-isotropy): J, alone is isotropic.

C. Combined: Both J, J, are isotropic.

It may be mentioned that the case C above along with the additional condition J.J, = 0 has been
termed as spatial isotropy [9]. We use the term combined to emphasise the difference of our results
from others. We also show in section 4.2.4 that this additional condition cannot be satisfied in a
non-singular class of configurations of the SRSPM showing combined isotropy.
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Case A: Conditions for w-isotropy

As described above, the conditions in this case are:

a?—4day =0, n=2 (15)
and for n > 3:

30,2 — CL% =0 (16)

27a3 —a® =0 (17)

Case B: Conditions for v-isotropy

Following the derivation of w-isotropy conditions above, the conditions for v-isotropy may be written
as:

b2 —4by =0, n=2 (18)
and for n > 3:

3by — b7 =0 (19)

27b; — b3 =0 (20)

Case C: Conditions for combined isotropy

In this case, we have w-isotropy and w-isotropy simultaneously. The conditions that apply in this
case are simply the union of the conditions in cases A and B. We reproduce them below for the
sake of explicit reference:

For n = 2,

a% —4a9 =0
b2 — 4by =0 (21)

and for n > 3:

3a;— a2 =0

27a3 — a3 =0
3by — b =0 (22)
27by — b3 =0

3 Isotropy conditions of an SRSPM

In this section, we apply the theory developed in section 2 to formulate the isotropy conditions
of an SRSPM. In addition to its wide-spread technical applications mentioned earlier, the other
motivations to choose this manipulator as our example are: (a) it is probably the most well-studied
spatial parallel manipulator (see section 1 for some of the references) (b) no feasible configuration
of any Stewart platform manipulator demonstrating combined isotropy is reported in literature to
the best of our knowledge.



3.1 Description of the manipulator geometry and kinematic constraints

bg

(a) The manipulator (b) Bottom platform

Figure 1: Geometry of the Stewart platform manipulator

The manipulator along with the frames of reference used is shown in figure 1(a). The bottom
platform, shown in figure 1(b), has the legs arranged in a circle, with each pair lying symmetrically
on either side of three axes of symmetry in the plane. The axes are %” apart from each other, while
the adjacent pair of legs have an angular spacing 2v,. Without any loss of generality, we scale the
radius of the circumcircle of the bottom platform, 7, to unity, thus eliminating one parameter from
all subsequent analysis, and rendering all other length parameters used in this paper dimensionless.
The top platform geometry is similar, except that the radius of its circumcircle is r;, and a leg
spacing 2vy;.

The kinematic constraints defining the manipulator are written in the task-space variables. The
center of the top platform is described in the base frame as p = (,y,2)T. The top platform
orientation is described by the matrix R € SO(3), where R = R,(¢)R,(0.)R,(0,)*. The loop-
closure equations are written as

p—i—Rai—bi—lisi :0, 221,,6 (23)

where [; denotes the length of the ith leg and a;, b; locate the leg connection points with respect to
the platform centers in respective frames (see figure 1(a)), and s; denotes the ith screw axis along
the respective leg.

3.2 Formulation of the velocity Jacobian matrices

Differentiating equation (23) with respect to time, we obtain

Vp + Rai - liSi - l,Sz = O, 1= 1, ceey 6 (24)

“In this paper, we denote the rotation about the X axis through an angle 6 as R, () etc.
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where v, = p. Note that s; is a unit vector, ‘pherefore 8; = w; X 8;, where w; is the space-fized
angular velocity of the ith leg. Also note that Ra; can be written as

R(R"R)a; = (RR")(Ra;) = w, X (Ra,)
where w,, is the space-fixed angular velocity of the top platform [22]. We rewrite equation (24) as

Vp + Wy X (Raz) — lzsz — lzwz X 8; = 0, 1= 1, ,6 (25)
Equation (25) involves both active and passive (unactuated) joint variables, and the passive variables
appear explicitly in s; alone. Therefore, we take a dot product of the above equation with s; to
eliminate all passive variables, and obtain:

8;-vp + 8 -w, X (Ra;) = I, i=1,..,6 (26)

Substituting for s; from equation (23), equation (26) can be cast in the matrix form as

(H(Ra) x (b)) X(p+ Ra, — b)) (1)
éEERGZ; x Ep - bZ;;T égp + Ra, — Q;T !
;((Ras) x (p—b3))" ©(p+Ras—b3)" | (w,\ _ | s
g((R(M) x (p — by))T g(p_}_ Ra, — by)T (’Up> - 5:4 (27)
é((Ra@) x (p — bs))" %(P + Ras — bs)" s
\E((Ras) X (p — bﬁ))T E(p —+ RaG - bG)T Kl6)

The 6 x 6 matrix on the left-hand side of equation (27) may be easily recognised as the transpose
of the wrench transformation matriz for the top platform [19]. Denoting it by H”, we can express
the linear and angular velocities as

(47) -
_ (jw> i, detH #0 (28)

The symbolic expressions for the Jacobian matrices J, and J, can be obtained from equation
(28) when H is non-singular. Note that this step involves the symbolic inversion of a 6 x 6 matrix
with complicated (trigonometric and algebraic) multi-term entries. This requires extensive symbolic
computations on a computer algebra system (CAS). The computational complexity involved is a
well-known problem in the design and analysis of spatial parallel manipulators such as the SPM [25],
and closed-form expressions for the velocity Jacobian matrices are not available in literature to the
best of our knowledge. In this work, however, we perform the inversion explicitly using the computer
algebra system Mathematica [28]. It turns out that the built-in matrix inversion command Inverse
is unable to deliver the result for the present problem in reasonable time. However, using the concept
of classical adjoint of a matrix [10], we can obtain the inverse explicitly as

B adjH"

HT -1 —
(H) det HT

(29)



Attempts to obtain explicit expressions for J, and J,, directly from equation (29), results in memory
overflow (which is 2 GB in our case). To circumvent this problem, we replace the actual determinant
of H by the symbol Dg, and scale the Jacobian matrices to obtain

Jo
GXON _ adica)
o= 30
; = (30)
(3 x 6)

such that J;, = DgJ,, and J; = DgJ,. The isotropy conditions in equation (22) are homogeneous
in the elements of g and g,,, and therefore they remain unchanged if we scale J,, J, by the quantity
ﬁ as long as Dy # 0. In other words, we can use g° = J7J% and g3 = J:" J? instead of g and g,
respectively for the analysis of isotropy. In this process, a lot of memory space and computer time
is saved by avoiding the division by the actual determinant in equation (29) and further symbolic

computations are made possible.

3.3 Formulation of the isotropy conditions

Once the Jacobian matrices J;, and J; are formed explicitly, formulation of the isotropy conditions
can be done easily following section 2.2. We summarise below the computational steps involved for
all the cases A, B, and C of section 2.2:

1. Form the symmetric matrix g° = J%7J?,
2. Form the symmetric matrix g5 = J5TJ3

3. Compute the coefficients of the characteristic equations of g°, g using equation (62) (see
Appendix A).

4. Use equations (21,22) or any subset of the same, as appropriate for the different cases of
isotropy.

4 Closed-form results on the isotropy of an SRSPM

We now describe some closed-form results for the different cases of isotropy of the SRSPM using
the formulation developed in the last section. The isotropy equations constructed therein allow us
to solve the problems of analysis and synthesis within the same setup, in addition to studying the
isotropic configurations in general. In this context, by analysis we mean obtaining the isotropic
configurations of a manipulator with a given architecture, and by synthesis, the determination of
the architectural parameters such that the manipulator is isotropic in a given configuration.

The independent variables involved in the isotropy equations are the position of the top platform
p = (z,y,2)", the orientation variables a, 3, ¢, and the architectural variables r;,7; and ~;. The
natural restrictions on the architectural parameters for mechanically feasible design would be the
following:

e 7; > 14 > 1y where 7,7, > 0 are two prescribed limits. We adopt in this work 7 = 1,71, = 1/4.
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e 7/3 > v,7 > 0. At both ends of these limits, the hexagonal platforms reduce to triangles,
and beyond these limits the leg connection points with the platforms cross over, and the legs
can interfere mutually.

e The moving platform is above the fixed one, i.e., z > 0.

o 7, # . If the platforms are scaled versions of each other, the manipulator becomes architec-
turally singular [18, 19].

Any solution for the architecture within these restrictions would be termed as feasible or valid.
Other mechanical constraints, such as joint limits, leg limits, and physical dimensions of the legs
etc. are not considered in the present work. As a result, we do not impose any ranges on the values
of the position and orientation variables, except z > 0. We start with the following assumptions
which enable us to perform symbolic computations and obtain algebraic expressions:

e [sotropic configurations and corresponding architectures are obtained only for the case when
the manipulator is in its home configuration. The home configuration is defined as z = y = 0,
a = f = 0. In other words, displacement along and rotation about only the Z axis is
considered.

e The leg lengths have special relationships among themselves. We consider two families of
isotropic configurations: family 1 has all leg lengths equal, while family 2 has alternate leg
lengths equal.

These restrictions by no means reflect any limitation of our formulation; relaxing these has only the
effect of increasing the complexity of the problem®. Note also that in the literature [9, 21, 15, 16]
the only configuration studied is a subset of family 1, i.e., all leg lengths are equal. We discuss both
the families in detail below.

4.1 Isotropic configurations: family 1

The restrictions defining family 1 are:
r=y=0,a==0,;=L>0,1=1,...,6
The determinant of H in this case is given by

D — 54r}z3 cos(yp — 1 — @) sin(y, — V1)
H — LG

Therefore the matrix H is singular when one or more of the following conditions hold:
1. The top platform radius r; is zero.

2. The vertical displacement of p is zero, i.e., the top and bottom platform centers coincide.

5Although we do not have a proof, we have not been able to find any other family of isotropic configuration
(namely with all unequal leg lengths or at z,y,a, 8 # 0) for the SRSPM’s studied by us. This is in spite of extensive
searches using various methods.
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3. Top platform rotation is given by ¢ =+, — v, = w/2. This is a singular configuration of the
SPM as reported by Fichter [29], and verified by others [30, 19].

4. The geometry of the top platform is a scaled version of the bottom platform, i.e., v, = .
Under this condition, the manipulator becomes architecturally singular [18, 19], i.e., it is
singular over the entire task-space.

The leg lengths [; can be obtained from the equation (23) as

In the present case, all the lengths are identical, and this results in only the following two distinct
equations among the six above:

L?=1+7+2*>—2r;cos¢
L =147 42" —2r,cos(2y, — 27 — ¢) (32)

Eliminating L between the above two equations, we obtain the single equation defining the kinematic
constraints as

resin(y, — ye) sin(y — 7 — @) =0 (33)
Since 7, sin(y, — ;) = 0 implies singularity as seen above, we have the kinematic constraint as

db=%—1mMm—n+7m ¢€I0,2n] (34)

The two solutions of ¢ define two cases of solutions within family 1.

4.1.1 Casel: o= —v

w-isotropy — In this case, the symmetry of the problem forces two of the A’s to be identical
in equation (4). As a consequence, the w-isotropy conditions given in equations (13,14) share a
common factor. Setting the common factor to zero, we get

2+ 2r2 — 2% — 4rycos(yp — v) =0 (35)

Denoting the solutions for z as z,, the conditions for w-isotropy can be summarised as

20 = £4/2((ry — cos(y — 7))? + sin(7 — 7))
P="%—n

The corresponding (positive) leg-lengths are obtained as

L = /3((r: — cos(y — 72))? +sin®(7 — 7)) (36)

The three equal roots of the characteristic cubic, denoting |[w]||?, are obtained from equation (10)

as

(re — cos(y — 7¢))* + sin® (7 — 1)
2r? sin? (v, — V)

lwll* = A = (37)

12



v-isotropy — Substituting ¢ = 7, — 7, into equations (19,20), it is possible once again to extract
a common factor. Setting the common factor to zero, we obtain

22° —sin’(y, — 7)) =0 (38)
and the manipulator configuration is given by

sin(% - %)

V2

L= \/((Tt —cos(vp — 1)) + gSiDQ(% — V)

2y = E

In this case, we have

o] = (re — cos(y — 72))? + 3 sin® (7, — 1)
3 sin2('yb - %)

Combined isotropy — The expressions of 2, and z, indicate that the solutions are guaranteed
to be real numbers for all real values of r;, v, and ~;. The only difference between these two cases is
in the z-location of the top platform. Therefore the only additional condition for combined isotropy
is simply z, = z,. Substituting the actual expressions of z,, z, from equations(36, 39) respectively,
we get the condition

4(ry — cos(yp — ) + 3sin?(y, — ;) = 0 (39)

This equation can be satisfied only when 7, = 1 and 7, = 74 (75 = 7+; would require r, = —1), i.e.,
the top and bottom platforms are replicas of each other. As noted earlier, this implies architectural
singularity. Further, from the above equations, we get L = 0, i.e., the top and bottom platforms
coincide. This configuration is not of any kinematic interest, and it is the only possible solution in
this case.

4.1.2 Case 2: o=y —Y%+

The results for this case are not qualitatively different from the results of case 1, and we briefly
summarise them below.

w-isotropy

0 = £/ 2((r1 + c08(3 — 1) + sin (3 — 1)

L= \/3((rt + cos(7p — 72))2 + sin® (v, — 1))
(¢ + cos(ys — 71))? + sin?(y, — gt)
2r? sin? (5 — V)

el =X =

13



v-isotropy

sin(% - ’)’t)

V2
L= \/((Tt —cos(y — 7))* + gsinQ(% - ")

(re + cos(ys — 1)) + 3 sin®(y, — 1)

Zy =

2
o]/ = T
Combined isotropy — In this case the condition z, = z, reduces to the equation
4(ry + cos(yp — )% + 3sin® (v, — 1) = 0 (40)
This equation can be satisfied only when r; = 1 and v, = vy + 7(y, = v would require r; = —1).

The top and bottom platforms coincide, and the leg lengths are zero.

4.1.3 Summary: results of family 1

We summarise below the main results of family 1.

e For any given set of architectural parameters (r4, s, ;), there exist only two configurations
(only one with positive z), such that the Stewart platform is w-isotropic or v-isotropic with
all leg lengths equal. Therefore family 1 represents a 3-parameter family of configurations for
w-isotropy and w-isotropy individually.

e All the results, such as the singularity conditions, isotropy conditions are functions of the
parameter ¥ = 7, — 7, and 7, 7 do not appear individually, or in any other combination.
Therefore one of the architectural variables ~,,7; is totally decoupled from the isotropy point
of view, and can be conveniently used optimally for any other index of performance, such as
workspace volume (while maintaining isotropy).

e There are no configurations of kinematic interest at which the manipulator shows w-isotropy
and v-isotropy simultaneously.

These observations motivate further generalisations of the assumptions for family 1, and leads
to family 2 of isotropic configurations.

4.2 Isotropic configurations: family 2

The assumptions for this family of solutions are the same as in family 1, except that in this case,
not all legs are of same length. Instead, the odd numbered legs have identical length L;, and the
even numbered legs have length L, = pL; where p > 0 and in general p # 1. Once again, 7, v
appear only in the group (v, — 7;), and we replace this group by the parameter v below. We treat
v¢ and v as independent variables, and express v, as v, = v + V.
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4.2.1 Singularity conditions and kinematic constraints

The determinant of H in this case is given by

_ 54r}2% cos(y — ¢) sin(7)

D
i Lip?

The numerator is the same as in family 1, hence the singularity criteria remain the same. Further,
p # 0 would be assured if no leg lengths are allowed to reduce to zero.
From equation (23), we obtain only two distinct equations defining the leg lengths:

L} =147+ 2 —2r,cos ¢
PPL? =1+72 4+ 2% — 2r,cos(2y — ¢) (41)

Eliminating L; between the above equations, we get a linear equation in p?, which gives the positive
solution for p as

b= \/(rt — cos(2y — ¢))2 + 22 + sin*(2y — @) L (42)

(ry — cos ¢)2 + sin’ ¢

The corresponding solution of L; is obtained as

Ly = /(e — cos(2y — 9))2 + 22 + sin? (2 — 9) (43)

The expressions for p, L; indicate that there are five free parameters, namely r;,7v,v: ¢ and z,
for which the kinematic constraints are valid. We now search for isotropic configurations within
this 5-parameter family of kinematically valid configurations. First, we establish the conditions for
isotropy in general.

4.2.2 Conditions for isotropy

w-isotropy — The equations resulting from substitution of the expression of p from equation (42)
into w-isotropy conditions (13,14) are found to share a common factor, which can be written as a
polynomial in 2, (2, denotes the vertical displacement of p in this case):

2+l + =0 (44)

where

c1 = —cos(2(y = ¢)) (ri — 2cos(y) cos(y — §)ry + 1)
e = —2cos’(y — @) (r; — 2cos(2y — @)ry + 1) (r] — 2cos(¢)ry + 1) (45)

It may be seen easily that c; < 0, and hence the discriminant of the above quadratic in 22 is
c? —4cy > 0. Tt can also be seen that one of the solutions for 22 is always positive, and the other
negative. Therefore, we conclude that for any given set of architectural parameters ry,y;, v and
rotation ¢, there exist a unique positive value of z,, and a negative value of equal magnitude such
that w-isotropy conditions are met. These paired solutions correspond to the mirror reflections at

the base plane.
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v-isotropy — In this case also, substituting for p into the v-isotropy conditions (19,20), we obtain
a common zero factor as a quadratic in 22 (2, denotes the vertical displacement of p in this case):

dozi + dlzf, + d2 =0 (46)
where

dy =4(cos(2y — 2¢) + 1) (47)
dy =4(cos(2y — 2¢) + 1)r7 — 2(cos(2y — 3¢) + cos(4y — 3¢) + 3 cos(2y — ¢) + 3cos(¢))ry+
4cos(2y — 2¢) + cos(4y — 2¢) + cos(2¢) — 2
dy =(cos(4y — 2¢) + cos(2¢) — 2)r7 — (cos(2y — 3¢) + cos(4y — 3¢) — 2cos(2y — ¢)—
cos(4y — @) — 2cos(d) + cos(2y + ¢))ry + cos(4dy — 2¢) + cos(2¢) — 2

Real solutions of 22, would exist if d? — 4dydy > 0. In this case, clearly dy > 0, therefore it suffices
to prove do < 0. We find that ds is of the form gor? + qi7; + g2, where go = g2 = (cos(4y — 2¢) +
cos(2¢) — 2) < 0. It can be shown that dy has the same sign as qq if ¢? — 4goge < 0. Indeed,
@ — 4qoq2 = 8(2c0s(27) + cos(2¢) + cos(4y — 2¢) + 2cos(2(y — @)) — 6) sin?(2y — @) sin?(¢) < 0.
Therefore dy < 0, and hence equation (46) has a pair of real solutions in z2. It can be further shown
that under these conditions, one of the roots is always positive, and the other negative, therefore
we have a negative and a positive solution of same magnitude in z,. This shows that there is
a 4-parameter family of solutions for wv-isotropy in the parameters ~;, 7, r; and ¢, and for each
combination of the parameters, v-isotropy occurs at a unique positive value of z.

Combined isotropy — The additional condition for combined isotropy is the same as in family
1: zy = 2z,- In other words, equations (44, 46) should have common root(s). The condition for the
same can be obtained in closed-form by application of elementary elimination theory [31]:

C%d% + 0102d0d1 + C%d()dg - Cldldz + dg + Co (d% - Qdodg) =0 (48)

The common root is obtained as

2 2_d2—d002

=2 = 4
% = g decy (49)

Note that the expression for the common root above is valid iff equation (48) holds. Upon sub-
stitution of the actual expressions of ¢;, d;, equation (48) results in a 6th degree polynomial in ;.
However, it is possible to factor-out the singular term r; sin?(7y) using the monomial-based canonical
form of the expression [19]. The reduced equation is a parametric quintic of the following form:

forS + firy + ford + fari 4+ fari+ f5 =0 (50)

where each of the coefficients f; are functions of the two parameters®: v, and ¢. Recall that the
complex roots of an equation with real coefficients are pairwise conjugate, hence it is ensured that
equation (50) would have 1, 3 or 5 real root(s) for any real combination of -y, and ¢. The number
of real roots can be estimated from the coefficients, using Descartes’ rule of signs or from the

6The expressions of f; have been obtained symbolically, but are not displayed here due to their large size.
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Sturm sequence. However, due to the complicated nature of the coefficients, this can only be done
numerically. It is also possible to ascertain the numerical bounds on the parameters 7, ¢ such that r;
lies within given bounds using interval analysis [32, 33]. The roots themselves can only be obtained
numerically, since it is not possible to solve a general algebraic equation of degree more than 4 in
closed-form [27].

The steps to compute the combined isotropy configurations are the following:

1. Solve equation (50) for a given numeric pair of values (v, ¢).
2. Extract the positive root(s) among the 5 solutions obtained above.

3. For each of the feasible value(s) of r;, compute the value(s) of z from equation (49), and
extract only the positive one(s) from them.

4. Using the valid set(s) of (r, z), compute p, L; from equation (42,43) respectively.
In this way we obtain all the unknowns in the manipulator architecture and configuration. We
demonstrate the procedure with numerical examples below.
4.2.3 Examples of combined isotropy
We choose the free parameters as

2T ™ 2T

r)/b:E: r}/t:E7 ¢:€

The solutions for r; are obtained from equation (50) as
ry = (0.5575, 0.7482, 0.845267 — 0.7585917, 0.845267 + 0.758591¢, 0.8939)
The corresponding values of z from equation (49) are
z = (0.6863, 0.6858:, 0.6955 + 0.3838:, 0.6955 — 0.3838¢, 0.6284)

It can be seen that only the first and the last values in each case are feasible. The corresponding
configurations are shown below in figures 2(a), 2(b).

4.2.4 Spatial isotropy

In this section, we investigate whether family 2 admits any spatially isotropic configuration as
per the definition of Klein and Miklos [9]. This requires combined isotropy, and the additional
condition J,J. = 0. For family 2, we find that

kll k12 0
JoJY = | kg kyp 0 (51)
0 0 ks
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(a) ry = 0.5575, z = 0.6863 (b) 7y = 0.8939, z = 0.6284

Figure 2: Combined isotropy configurations of the SRSPM

where
csc?(7) (sin (27 — @) — p?sin (8)) LT
Fu == 627y
po — €S (1) LT (cos (9) p* + cos (27 = @) = (p* + 1))
12 =
621y
po — 65¢(7) (sin (2y — @) — p*sin(¢)) LT
2= 621y
fr = () s0¢% (7 = @) (sin (27 — ¢) — p*sin (¢)) L1
3= 1227,

It can be seen that the diagonal entries, k;;, share a common factor, (sin (27 — @) — p?sin (¢)).
Setting it to zero, we get,

p=E+/csc (¢)sin (27 — ¢) (52)
Using the positive value of p, we solve for r; from the equation k15 = 0:
re = cos () sec (v — ¢) (53)

We already have the expression of p from the kinematic constraints for family 2 of configurations
(see equation (42)). Setting it equal to the expression in equation (52), and substituting 7, from
equation (53), we can find z as

e = 9)sn(9)
R CED)

Using the expressions of p,r; and z (positive value) from equations (52, 53, 54) respectively in the
w-isotropy equations (13,14), we find that both of these are satisfied when we have

(54)

™
p=7%7 (55)
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The conditions for v-isotropy (equations (19,20)) are found to be satisfied when we have
1 + cot(y) cot(¢) =0 (56)

The above condition implies that ¢ = 4= 7, which defines a singularity as noted earlier.
It is therefore conclusive that no non-singular configuration showing spatial isotropy is achievable
within family 2 configurations of the SRSPM.

4.2.5 Summary: results of family 2

The main results of family 2 of isotropic configurations are the following:

e An SRSPM of any architecture defined by the set r;, v;, v; has a 1-parameter family of solutions
in the parameter ¢ for the w-isotropy, and v-isotropy respectively. The possible configuration
is unique for each set of the 4 parameters in either case, and the z locations differ in general
in the two cases.

e [t is possible to attain w-isotropy and w-isotropy simultaneously in the class of Stewart plat-
forms considered. Family 2 represents a 3-parameter family of solutions in the parameters
v, ¢ and ;. However, while v; is a free parameter in this context, not all combinations of the
other two lead to real or feasible solutions.

e There exists no spatially isotropic SRSPM within the family 2 of configurations which is
non-singular.

5 Design of an SRSPM for combined isotropy

In the previous section, we have studied isotropic configurations in an SRSPM. In this section, we
discuss two important design problems: (a) synthesis of an SRSPM for combined isotropy at a given
location and orientation, and (b) obtaining the combined isotropy points of an SRSPM of a given
architecture. We show that both the problems can be solved within the family 2 of configurations
described in the previous section.

5.1 Synthesis of an SRSPM for combined isotropy at a given position
2o and orientation ¢

In this case we assume that the top platform location and orientation have been completely specified
by 2z, = 2y = 29 and ¢ = ¢y in conjunction with the assumptions defining the family 2. The task
is to obtain ~ and r; such that the manipulator is isotropic in the combined sense.

We start with the w-isotropy equation (44) and the wv-isotropy equation (46). Substituting
the actual expressions of ¢;,d; from equations (45,47) in these equations, and rewriting them as
polynomial equations in r;, we get a quartic and a quadratic respectively:

gors + i1y + gory + gsTi + g4 =0
hoTt2+h1Tt+h2:0 (57)
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The common root of these two equations can be explicitly written in terms of the coefficients g;, h;
as

. ha(g2hi — g1hohi + go(hf — hohg)) — higga
t

= H8
g3hi — g2hihy + h3(g1ho — goh1) — hoha(g1ho — 2g0h1) (58)

Equation (58) gives the correct expression for the common root in r, when the resultant of the
two equations in (57) with respect to 7, vanishes [31]. The resultant is a complicated expression
involving trigonometric terms in vy, and algebraic terms in zo. We convert it into a polynomial with
explicit coefficients using symbolic computation. The result is a 44th degree polynomial in ¢. Using
the monomial-based canonical form again, we factor out the term ¢* from the polynomial, thereby
reducing its degree to 40.

Extracting the real values of ¢ such that the corresponding values of v are within the prescribed
limits, we compute r; from equation (58). For every r;, > 0 within the specified range, the free
parameter 7, can be chosen as convenient, and the architecture of the manipulator can be completely
prescribed. We illustrate this synthesis procedure with an example below.

5.1.1 Example of combined isotropy at a given configuration

We choose the configuration as zp = 1/2, ¢o = 7/2, and the free architectural parameter as
v = m/18. Corresponding to these values, there are 18 real solutions for ¢, of which, however,
only one turns out to be feasible. The corresponding values of v and r; are 0.4997 and 0.7790
respectively. The configuration is shown in figure 3.

Figure 3: Isotropic configuration of the SRSPM at a given configuration

5.2 Isotropic configurations of an SRSPM of given architecture

In this section, we solve the problem complementary to the above synthesis procedure, i.e., we find
out the isotropic configurations of an SRSPM of given geometry. In this case, the manipulator
geometry is completely specified in terms of the architectural variables, r;,y and ;. We need to
find the configuration variables z and ¢ such that the conditions for combined isotropy are met.
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This type of analysis is very useful for determining the optimal working configurations of existing
manipulators.

We refer to the condition for combined isotropy in equation (48), which is a function of ¢
alone. We convert this equation into a polynomial in v = tan(¢/2) following the steps mentioned
in the previous section. In this case we end up with a 22-degree polynomial in u. For each of the
feasible values of ¢ arising from the solutions for u, the corresponding value of z can be computed
uniquely from equation (49), thereby completing the definition of the manipulator configuration.
We demonstrate the solution procedure with two examples below.

5.2.1 Examples of combined isotropy in existing SRSPMs

Example 1: Based on the INRIA prototype. In this example, the geometry of the top and
bottom platforms are taken to be the same as the INRIA prototype (data adopted from [34]).
However, the top platform is mobile in our case, and all the lengths are scaled such that the radius
of the bottom platform is unity. The resulting architectural parameters of this manipulator are as
follows:

ry = 0.5803, v, =0.2985, v =0.6573

and therefore v = —0.3588. The manipulator is shown in figure 4(a) below in a reference configura-
tion, where z =y =0, z = 1, and R = R,(7), such that the corresponding axes of symmetry in the
two platforms are vertically aligned. The isotropic configurations are shown in figures 4(b)-4(e).

Example 2: Based on the University of Harbin prototype We obtain the combined isotropy
configurations of the University of Harbin prototype in this case (see [24] for details). The reduced
architectural parameters are

ry = 0.8939, 7, = 0.4189, ~, = 0.1745, v = 0.2443

We show the reference configuration of the manifold in figure 5(a), and the set of isotropic config-
urations in figures 5(b)-5(e).

6 Sensitivity of the isotropic configurations to variations in
the configuration parameters of the moving platform

The isotropic configurations discussed and obtained in this paper are local, i.e., at a configuration.
From the point of view of actual application of an SRSPM, the local isotropic configurations are
of limited use— ideally, we would like to have isotropy or near-isotropy condition over an extended
region in the workspace. In other words, robustness of the isotropy condition to small changes
in architectural parameters is a desired property. In this section, we present a few representative
numerical results describing the departure from isotropy behavior with variations in the configu-
ration parameters defining isotropy. The configuration space of an SRSPM is the 6-dimensional
manifold SE(3), and hence we can only visualise the variations in different sections of SE(3). In
the following discussion, we present 3 different combinations of configuration variations:

e Variation in z,y: The top platform remains in a single horizontal plane, and retains its
orientation.
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e Variation in z, ¢: The top platform remains horizontal and is located directly above the origin.
It is allowed to rotate only about the Z axis.

e Variation in 6,,6,: The location of the top platform remains unchanged, while it is rotated
about the orientation at its home position. In this case the orientation of the moving platform
is given by R,(¢)R;(6;)R,(6,) in the fixed reference frame.

In section 5.2, we have seen that the isotropic configurations occur in pairs in a plane, i.e.,
there are two solutions for the rotation angle ¢ such that isotropy conditions are met (see figures
(4(b),4(c)) and figures (4(d),4(e))). We first take a look at the sensitivity to variation in position
around these two configurations, then proceed to study the other variations in the better of the
two. In all of the following analysis, we use the INRIA design for the top and bottom platforms (as
in section 5.2). The measures of deviation from angular and linear isotropy are quantified in terms
of the departure of the condition numbers ko (J ), k2(J ) respectively from unity.

6.1 Sensitivity to =,y

We vary both z,y from —1/2 to 1/2 about the isotropic configuration at x = y = 07. We plot
the quantity d, = kg(J,) — 1 over the above-mentioned range of z,y in figures 6(a), and 6(b)
for the isotropic configurations at z = 1.0669, ¢ = —2.5097 (figure 4(c)), and z = 0.6894, ¢ =
0.4657(figure 4(e)) respectively. In figures 6(c), and 6(d), we plot 8, = ky(J,)—1 for the correspond-
ing cases. The other halves of the paired configurations (see figures (4(b),4(d))) at the same value
of z are not discussed here, as they represent nearly same qualitative and quantitative behavior.
The following observations can be made from these plots:

e The isotropic configuration at x = y = 0 seems to be very stable, as the condition numbers
appear to show convexity about this point.

e The isotropic configuration is the global minima of the deviation within the given range in
each case.

e The sensitivity to z,y is much lower for the case with z = 1.0669 than in the other for both
the angular and linear cases, with condition numbers varying up to 2.1 and 3.3 respectively
in this case, as compared to about 14 and 11 respectively in the other case.

We study the better configuration from the above for the rest of this section. First, we vary the z
location to 0.6 times to 1.4 times of its isotropy value zyg = 1.0669 in steps of 0.2, and present the
sensitivity plots with respect to z,y. Figures 7(a)-7(e) show the contours of d,, with the ‘+’ sign
marking the point z = y = 0. It may be concluded from these figures that for z € [0.6z9, 1.22],
w-isotropy is relatively insensitive to variations in x,y. Figures 8(a)-8(e) show similar trends in the
corresponding contours of .

"As noted earlier in section 3, all the linear dimensions are scaled by the base radius. Therefore z = 1/2 in this
case implies that the top platform center has moved out by half the base radius in the X direction, which is quite
representative as a range for such manipulators.
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6.2 Sensitivity to z,¢

We now study a class of configurations similar to that of family 2, varying only in the z location
and orientation about Z axis. The range of z is chosen to be [zy — 1/2, zo + 1/2], where zy = 1.0669
denotes the height at which isotropy is attained. The range of rotations of the top platform is
chosen to be 10 degrees on either side of the isotropic orientation ¢y = —2.5097. Figure 9(a) shows
the variation of d,, as a surface and figure 9(b) shows the corresponding contours. Figure 9(c),
9(d) show the corresponding plots for §,. The ‘+’ signs on the contours demarcate the respective
isotropic configurations. It may be observed that all of these plots show prominent valleys about the
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Figure 9: Sensitivity to z,¢ at a combined isotropy configuration of the SRSPM with INRIA
geometry

respective isotropic configurations, i.e., for reasonable variations of z and ¢, the isotropy conditions
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are not disturbed much.

6.3 Sensitivity to 6,,0,

In this case we keep the top platform position fixed, and rotate it about X and Y axes by 6, €
[-7/18,7/18] and 0, € [—m/18,7/18] respectively. In figures 10(a), 10(b), we show the contour
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Figure 10: Sensitivity to 6,,6, at a combined isotropy configuration of the SRSPM with INRIA
geometry

plots for deviations from angular and linear isotropy respectively. In figures 10(c), 10(d), we zoom
into the portions 6,6, € [—n/36,7/36] respectively. It can be seen from these figures that the
isotropic configuration at the center is reasonably insensitive to the variations of top platform
orientation within the limits of 5 degrees about the X, Y axis.
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7 Conclusions

In this paper, we have presented a formulation for studying isotropy in spatial manipulators, and ap-
plied it to a class of Stewart platform manipulators. We have derived the symbolic expressions of the
Jacobian matrices corresponding to the linear and angular velocities using symbolic computation,
and analysed them separately for isotropy. We have used the concept of “combined” isotropy, as
opposed to spatial isotropy found commonly in literature. Using symbolic computations, we have
derived two different multi-parameter families of isotropic configurations of semi-regular Stewart
platform manipulators. While the first family can only show either position or orientation isotropy,
the second family can show combined isotropy in a 3-parameter subspace. This family of config-
urations is novel in the sense that there are no established results for combined isotropy for any
Stewart platform manipulator to the best of our knowledge. In addition to the analysis of combined
isotropy in general, we present algorithms for the design of an SRSPM for combined isotropy at a
given configuration (within family 2), and for the determination of the isotropic configurations of
an SRSPM of a given geometry. We also prove that there cannot exist any configuration exhibiting
spatial isotropy as defined in [9] within the two families of configurations discussed in this paper.
The results are expected to help the designers in improving the dexterity of SRSPM’s. Our future
work includes investigating the existence of combined isotropy configurations in more general classes
and/or configurations of Stewart platform manipulators.
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A Symbolic construction of the characteristic polynomial
of a square matrix

The characteristic polynomial of a square matrix A of dimension n is defined as

P,(\) = det(A,, — A)

59
= A"+ A" A A+ ap (59)

However, construction of the polynomial from this definition requires symbolic expansion of the de-
terminant, which is computationally very expensive, and can indeed be prohibitive. Fortunately, we
can compute the coefficients a; above directly using a simple formula derived below from Newton’s
identities.

32



Let sy = Y o A¥, k=1,...,n, where J; is a root of equation (59). Then for k = 1,...,n, Newton’s
identity states that

sk+alsk_1+a28k_2+---+an_181+kak =0, k= 1,...,n (60)

Noting that if Az = Az, then for any positive integer i, we have A‘c = Xa, and that for any
square matrix the trace equals the sum of its eigenvalues, we get the relation

sp=tr(A%), k=1,...,n (61)

Finally, combining equations (60,61) we get an explicit formula for a; as follows:

0y = {_“ (4) el (62

GO (1r (4% + X5 aier (A49) k=2,

The above method involves only the computation of the traces of A, and it is therefore much more
economical than the explicit expansion of the determinant. The complexity of the algorithm can be
further reduced by taking advantage of any special structure of A, such as bandedness, symmetry
or skew-symmetry.
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