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ABSTRACT

Hyper-redundant snake-like serial robots are of great interest due to their application in search and rescue
during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature
of these robots is the presence of a large number of redundant actuated joints and the associated well-known
challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance
for point bodies, non-redundant serial robots with a few links and joints and wheeled mobile robots has been
extensively studied and several mature implementations are available. However, obstacle avoidance for hyper-
redundant snake-like robots and other extended articulated bodies is less studied and is still evolving. This paper
presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-
redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the
motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in
the environment. The algorithm is purely geometric in nature and it is shown that the motion in free space and
in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development
and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom
planar hyper-redundant robot moving in a known obstacle field.
Keywords: Hyper-redundant robots, motion planning, obstacle avoidance, optimization, 12-link planar robot

1 Introduction
In an earthquake or similar disaster situations with debris and narrow passages, the application of hyper-redundant

snake-like robots are being increasingly explored for search and rescue as humans and other robots are less effective in these
environments [1]. Likewise, in medical robotics, tools and techniques from research in hyper-redundant robots are being
increasingly used in developing advanced actuated endoscopes and virtual surgery simulators where tasks such as suturing
or motion of flexible arteries need to be shown in a realistic manner [2]. Finally, in the animation of flexible objects such as
a string, hair and flexible hoses, the flexible object is discretized into a large number of rigid objects and, again, techniques
used for motion planning in hyper-redundant robots are used [3]. This paper deals with the development and experimental
validation of an algorithm for realistic and efficient motion planning of hyper-redundant serial robots in free space as well as
in the presence of obstacles where these obstacles are avoided by the entire robot.
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1.1 Problem statement
Given an n-link hyper-redundant snake-like robot (n ≫ 6 in 3D & n ≫ 3 in 2D) and a desired path for the head to follow

through a field of smooth, implicitly defined obstacles, plan the motion of the entire robot with obstacle avoidance.

1.2 Comparison with existing algorithms
The classical problem of obstacle avoidance for point bodies has been studied in depth and many solutions have been

proposed. The review paper by Hwang et al. [4] contains a good overview of the methods and tools available for this prob-
lem. Some of the methods include mapping obstacle information onto a precomputed space ( [5, 6]), using graph theoretic
constructions [7], potential field techniques ( [8–10]), Voronoi diagrams [11], artificial neural networks [12], polyhedral
interference detection based on computational geometry [13], reinforcement learning algorithms [14], dynamic program-
ming [15] and optimal control ( [16–19]). However these methods do not explicitly address the extended and articulated
nature of the hyper-redundant snake robot’s physical structure.

For general hyper-redundant manipulators, the standard approaches for motion planning are based on the pseudo-inverse
of the Jacobian and its variants, including the task-augmented Jacobian and the extended Jacobian methods ( [20, 21]).
Another approach to motion planning involves mapping the obstacles into the configuration space of the robot and then
determining a feasible path through configuration space to accomplish the task at hand ( [22–24]). A discrete modal sum-
mation approach has been used in reference [25] to constrain the manipulator into obstacle free zones called ”tunnels”. A
follow-the-leader approach for obstacle avoidance has been proposed in reference [26]. These methods essentially divide the
motion planning problem into two distinct phases - one in free space and one in the vicinity of obstacles. Artificial neural
networks [27] and optimal control [28] strategies have also been suggested for motion planning.

The primary drawback of some of these methods is that a significant amount of engineering and algorithmic intuition is
required to formulate the algorithm for motion planning. For example, in the Jacobian-based methods, it has to be ensured
that algorithmic singularities are either not encountered or at least addressed explicitly, which limits the applicability to
well-known environments. In the modal approach, the choice of modal functions is a non-trivial task, where several sets
of modes may need to be defined to span the workspace and a mode switching mechanism implemented to ensure smooth
transitions between modes. Some of these methods are also computationally very expensive. For example, configuration
space methods are generally not computationally feasible for hyper-redundant robots due to the higher dimensionality of the
configuration space. In general, except for the follow-the-leader approach, none of the methods provide intuitive solutions
from the perspective of a human machine interface, which can be a serious drawback during, for example, tele-operation by a
human operator. The follow-the-leader approach, while being effective in the immediate vicinity of an obstacle, is inefficient
in relatively open spaces since it does not minimize the velocity of the links.

An interesting approach, called obstacle aided locomotion, has been used in reference [29, 30] wherein the obstacles
are used to generate reaction forces for locomotion, thus mimicking natural snakes, and in a sense obviating the problem
of obstacle avoidance. Some of the recent papers also deal with the problem using Rapidly Exploring Random Tree (RRT)
algorithm [31] and hybrid of RRT and Motion Primitives(MP) algorithm [32]. However, these algorithms are partly stochastic
in nature and cannot guarantee asymptotic optimality. Moreover it also, assumes that the final pose of the robot is known a
priori, which need not be the case always.

In reference [3], the authors have proposed an intuitive and computationally inexpensive motion planner based on the
tractrix curve [33] for free space motion. It is shown that the algorithm has the interesting property of attenuating motion
of the links as one traverses from the head to the tail, and, as a result, the motion appears more natural. In this follow up
paper, obstacle avoidance is incorporated using a constrained Lagrangian formulation. The algorithm is computationally
efficient as it breaks down the obstacle avoidance problem for the n-degree-of-freedom (DOF) hyper redundant manipulator
to n obstacle avoidance problems for 1-DOF rigid links. It is also shown that in free space, the motion is along the link and
in the vicinity of the obstacle the link moves along the local normal to the obstacle surface.

The paper is organized as follows. Section 2 explains the constrained Lagrangian formulation of the obstacle avoidance
problem for an extended body. Section 3 presents numerical simulation results illustrating the motion of a hyper-redundant
robot with 12 links in a plane and another hyper-redundant robot with 40 links in 3D space. In section 4, a prototype 12-DOF
hyper-redundant robot is described and experimental results are presented and discussed. Finally, the conclusions and scope
for further enhancement of this work are presented in section 5.

2 Constrained Lagrangian formulation
In this section, we present the details of the optimization based approach. We first present in brief, the formulation and

a general result for an arbitrary curve, one end of which is given a prescribed motion in free space. Next, the results for a
single straight rigid object is given and it is shown that the motion of the distal end traces a classical curve, called the tractrix,
when the proximal end (head) is moved along a straight line (see [3]). To incorporate the obstacles in the optimization
based approach, additional constraints are added and this requires the boundary of the obstacles to be modeled by smooth
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differentiable functions. In this work, we model obstacles as super-ellipses or super-ellipsoids and this is described in this
section. Finally, the motion planning problem for an n−link hyper-redundant robot is formulated and general theoretical
results are presented.

2.1 Formulation for a curve
Consider a planar curve of length L, parametrized by its arc length s, with one of its ends given a prescribed motion. The

objective is to find the motion of the curve which minimizes a velocity based metric subject to the constraint that the length
of the curve is preserved.

The curve at any instant t can be written in terms of a spatio-temporal parametrization as

C : (Tx(t)+ x(s, t),Ty(t)+ y(s, t)) (1)

The terms (x(s, t),y(s, t)) define the curve configuration relative to the perturbed tip, i.e., the curve configuration when viewed
from a moving coordinate system attached to the perturbed tip. Note that, in this proposed parametrization, the functions
x(0, t) = 0 and y(0, t) = 0 at any instant t. This is due to the fact that at s = 0 (leading end), the absolute displacements are
completely specified by the predefined functions (Tx(t),Ty(t)). For the infinitesimal displacement from time t to t +∆t, the
”distance/velocity”( [3]), between the two curves can be defined as

L2 :
∫ L

0

√(
dTx

dt
+

∂x(s, t)
∂t

)2

+

(
dTy

dt
+

∂y(s, t)
∂t

)2

ds (2)

The above represents an L2 metric based on the velocity.
We also wish to impose the constraint that the length of the curve is preserved during the motion, which we instantiate

by requiring that the sum of all changes in segment lengths is zero, and this can be written as

∫ L

0

√(
∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

−1

ds = 0 (3)

It may be noted that the total length of the curve is preserved and there can be local expansion or contraction.
The above problem is then posed as a constrained Lagrangian optimization problem as follows.

Min I
x(s,t),y(s,t)

:
∫ L

0

∫ T

0

√(dTx

dt
+

∂x
∂t

)2
+
(dTy

dt
+

∂y
∂t

)2
dtds

Subject to

Λ(t) : A =
∫ L

0

(√(∂x
∂s

)2
+
(∂y

∂s

)2
−1

)
ds = 0 (4)

Data : x(s,0),y(s,0),Tx(t),Ty(t),x(0, t) = 0,y(0, t) = 0

where Λ(t) is the Lagrangian multiplier corresponding to the length-preserving constraint. Following the calculus of variation
approach, the Lagrangian L for the above optimization is given as I+Λ(t)A. Writing out the corresponding Euler-Lagrange
equations [34, 35] and solving gives the following expression

∂
∂s y(s, t)
∂
∂s x(s, t)

=
d
dt Ty (t)+ ∂

∂t y(s, t)
d
dt Tx (t)+ ∂

∂t x(s, t)
=

∂
∂t (Ty (t)+ y(s, t))
∂
∂t (Tx (t)+ x(s, t))

(5)

The extreme left-hand side of (5) is the spatial derivative or the slope at a given s and t and the far right-hand side is the
temporal derivative or the velocity vector for a given s and t. This implies that for the curve, the L2 metric as defined in
equation (2) is minimized if the velocity vector at any (s, t) is along the instantaneous tangent to the curve at that point. In
addition, during this minimizing motion, the total arc length of the curve is preserved.
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2.2 Formulation for a rigid link
For a single straight rigid link, the velocity minimizing motion is along the link. For simplicity, if the input perturbation

is chosen to point along the X axis and the perturbed end lies on the X axis initially, the perturbation functions in equation (5)
take the form:

d
dt

Tx(t) = 1, Ty(t) = 0 (6)

Since the curve (x(s, t),y(s, t)) is a straight line, we have

x(s, t) = a(t)s, y(s, t) = b(t)s (7)

and since the length of the curve L is preserved, we get

√
(aL−0)2 +(bL−0)2 = L ⇒ a2 +b2 = 1 (8)

Furthermore, by assuming that the straight rigid link is vertical at t = 0, we get a(0) = 0 & b(0) = 1. Substituting these in
equation (5) and simplifying, we get the equation for curve traced by distal end as follows.

x(L, p) =p−L tanh
( p

L

)
, y(L, p) = L sech

( p
L

)
(9)

The above parametric equations represent the classical curve called tractrix [36].

n

(n− 1)
j

5

4

3

2

1
Tx, Ty

Fig. 1: Motion planning for a generic hyper-redundant robot

2.3 Motion planning for a hyper-redundant robot
Consider an n-link hyper-redundant robot as shown schematically in figure 1. For the prescribed motion (Tx(t),Ty(t))

of the leading end of the first link (point 1), equation (9) can be used to obtain the motion of the point 2. It may be noted
that the point 2 is also the leading end of the second link and using equation (9), together with appropriate co-ordinate
transformations, we can obtain the location of point 3, which is also the leading end of the third link. Proceeding in a similar
manner, we can obtain the motion of all points 4,5, . . . , j, . . . ,(n−1),n. Once the locations of all the points are known, we
can obtain the vectors between points i−1, i and i+1, and by taking a dot product, obtain the rotations at all the n−1 joints.
This is the tractrix based algorithm. More details of the tractrix based resolution of redundancy, such as extension to spatial
3D motion, can be obtained from references ( [33], [2], [3]). We list some of the main features of this resolution scheme.
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1. As shown in above mentioned references, the motion of the distal end of a link is less than or equal to the motion given
at the near end. As a result the velocity attenuates as one travels down the serial chain away from the end where the
prescribed motion is given.

2. As shown in reference [3], if the direction of the prescribed motion is not changed, as time progresses, the velocity
vector of the distal end aligns with the direction of the prescribed motion.

3. The tractrix based algorithm has a complexity of O(n) where n is the number of links.

The first two features impart realism to the motion of a extended flexible object discretized by n rigid links or in a hyper-
redundant serial robot and the last feature results in real-time and efficient motion planning and rendering. We extend the
tractrix based algorithm to motion planning in the presence of obstacles in this work. The obstacles are added as constraints
in the optimization and in the following section, we present an approach to mathematically model obstacles as smooth and
differentiable functions thereby making them amenable to the optimization based approach.

2.4 Obstacle modeling
Given any sphere (or it’s topological equivalents) C ∈ Rn, n > 1, by Jordan-Brouwer theorem [37], Rn\C has precisely

two components, interior (I ) and exterior (E) with boundary C . In 3D space, any topological sphere partitions the spatial
points into interior set (I ), exterior set (E) and boundary set (S ) based on the value of the map f (P) : R3 → R, whose
zero-level set is the implicit representation of the obstacle boundary (i.e. f (P) = 0). Mathematically, we have

E = {P| f (P)> 0},I = {P| f (P)< 0},C = {P| f (P) = 0} (10)

Smooth obstacles with differentiable implicit boundary representations can be incorporated as constraints in the optimization
problem and solved using classical gradient-based algorithms. In case multiple obstacles O j, 1 ≤ j ≤ m are present, each
with an exterior E j, the intersection of all the individual exteriors gives the permissible space for motion planning, namely

E =
m∩

j=1
E j. Hence, the statement of the optimization problem, including obstacle avoidance, is as follows.

Min I
Pi+1(t2))

:
(

∆(Tx + xi+1)
)2

+
(

∆(Ty + yi+1)
)2

Subject to

λi :
√
(xi+1(t2)− xi(t2))2 +(yi+1(t2)− yi(t2))2 = L

β j : f j(P)> 0 ∀ j ∈ [1,m]

Data : Pi(t1),Pi+1(t2),Tx(t1),Ty(t1),P1(t1) = (0,0)T

∀i ∈ [1,n−1] & ∀ t1 ∈ [0 . . .T ], t2 = t1 +∆t

(11)

In this paper, the obstacle shapes are restricted to smooth and differentiable super-ellipsoids ( [38, Chapter 18], [39]) of the
form:

(( x
a1

) 2
ε1 +

( y
a2

) 2
ε1
) ε1

ε2 +
( z

a3

) 2
ε2 = 1

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1
(12)

For various values of the parameters ε1,ε2,a1,a2,a3, equation (12) generates a family of shapes which includes circles,
ellipses, rectangles, cylinders, cuboids, cubes, ellipsoids, spheres etc. Some of these with their associated parameters are
shown in figures 2 and 3. Note that ε1 = p2/q2, ε2 = p1/q1. Obstacles in the environment can be modeled using a combina-
tion or union of one or more of these shapes. In simulations and experiments described in sections 3 and 4, we have grown
the obstacles using Minkowski sum [22] based on the link length of the robot. As already known in geometry, the Minkowski
sum (also known as dilation) C of two sets of position vectors A and B in Euclidean space is formed by point-wise sum of
each vector in A to each vector in B, i.e., the set

C = A+B = {a+b|a ∈ A,b ∈ B} (13)
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ǫ1 = 1, a = b
ǫ1 = 1, a > b
ǫ1 =

1

3
, a < b

Fig. 2: Analytic 2D obstacles generated as super-ellipses

(a) p1
q1

= 1, p2
q2

= 1 (b) p1
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= 1
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p2
q2

= 1 (c) p1
q1

= 1
5 ,

p2
q2

= 1
5 (d) p1

q1
= 1, p2

q2
= 1 (e) p1

q1
= 1

3 ,
p2
q2

= 1 (f) p1
q1

= 1, p2
q2

= 1
7

Fig. 3: Super-ellipsoids((a),(b) and (c) are scaled uniformly & (d), (e) and (f) are scaled non-uniformly)

In our case, A is the set of position vectors of all points lying on the link for all possible orientations of the link relative to
the trailing end and B is the union of interior and boundary of the obstacle being considered. For a link of length L and angle
θ, these may be expressed as

A = {(l cosθ, l sinθ)|0 ≤ l ≤ L,0 ≤ θ ≤ 2π}
B = {P| f (P)≤ 0}

(14)

2.5 Optimization formulation for a hyper-redundant robot
As shown in reference [3], the optimization of the articulated chain (in free space) is equivalent to the iteration of the

tractrix curve equations to a single link at a time. Hence, we consider the case of a single link and without loss of generality,
consider a single obstacle with boundary represented by implicit function f (x,y) = 0. These assumptions simplify the 2D
variational problem (4) to

Min I
x(t),y(t)

:
∫ T

0

√(
Ṫx + ẋ

)2
+
(

Ṫy + ẏ
)2

dt

Subject to

Λ(t) : A = x2 + y2 −L2 = 0
Ω(t)≥ 0 : B = f (x,y)≥ 0
Data : x(0),y(0),Tx(t),Ty(t)

(15)

Applying the Euler-Lagrange equations on the augmented Lagrangian L = I +Λ(t)A−Ω(t)B and simplifying, we get

Ṫx + ẋ = R
(

Ω(t)
∂ f
∂y

−2Λ(t)x
)

(16a)

Ṫy + ẏ = R
(

Ω(t)
∂ f
∂x

−2Λ(t)y
)

(16b)
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where R is the radius of curvature of the trailing end trajectory and Ω(t) and Λ(t) are the Lagrange multipliers. From
the above equations, we can see that the velocity spans a half space defined by the linear combination of obstacle outward
normals and a vector along the link. This is illustrated in figure 4. In the absence of obstacles, the velocity of the trailing
end is along the link – this is the classical tractrix curve solution. In the presence of obstacles, the velocity of the trailing
end is not along the link but lies in the half-space thereby ensuring obstacle avoidance. The exact direction of the velocity
depends on the relative magnitudes of the Lagrange multipliers but the magnitude of the velocity is higher in areas where the
trajectory direction changes rapidly (small R) and vice-versa. The overall workflow of the algorithm has been summarized

(Ṫx, Ṫy)

O
Obstacle

Velocity Half Space

Link

f(x, y) = 0

−→
N =

(
∂f
∂x

, ∂f
∂y

)
−→
S = (x, y)

f(x, y) ≤ 0

Fig. 4: Span of calculated link velocity solutions

as a flowchart in figure 5.

Yes

current link
≤last link?

Is

No

Initialize link 1
as current link

Stop

Start

Leading end=Head of Link 1
Initialize

i=1

Yes

Derive tail end motion of
current link from optimality
criteria of eq.(14)(∆P T )

Input motion vector
P in = ∆V i

Displace head of current link
by the P in

Leading end
fully traversed

Has the

trajectory?
(i > n)

into n incremental vectors(∆V n)
Discretize leading end trajectory

Initialize obstacle field,
Link length, # links,
Initial robot config.,
Leading end trajectory

i → i+ 1
No

P in = ∆P T

current link→current link+1

Fig. 5: Flowchart of motion planning algorithm with obstacle avoidance
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4

5

6

Fig. 6: Trajectory for 2D simulation with snapshot locations and initial configuration of the robot

3 Numerical simulation results
In this section, we present the results of numerical simulation1 carried out for a chosen hyper-redundant robot. The

leading end of the hyper-redundant robot is moved along a generic trajectory in two- and three-dimensional space in the
presence of obstacles. In all the simulations, without loss of generality, the initial configuration of the robot is chosen to be
a straight line.

In the two-dimensional (2D) simulation, the hyper-redundant robot consists of 12 rigid segments connected by revolute
joints yielding a system with 12 degrees of freedom. The leading end is moved along an arbitrarily chosen trajectory (shown
in figure 6). As mentioned earlier, the obstacles are modeled as super-ellipses or as combination of super-ellipses. Along
the path, six arbitrary snapshot locations are chosen. The initial configuration (at snapshot 1) of the hyper-redundant robot
is shown in black colour. The configuration of the hyper-redundant robot at each of the 6 snapshot locations of the leading
end are shown in figure 7. As seen here, the obstacles are avoided and motion is minimized as one moves away from the
leading end of the flexible object. In other words, tractrix motion is followed in obstacle free spaces and the algorithm
automatically switches to obstacle avoidance once the objects are encountered. The plots of three joint angles (head, tail and

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

Fig. 7: Motion snapshots for 2D simulation

middle link) for the 2D simulation are shown in figure 8(a). The time shifted behavior of the three plots (indicated at the
labeled peaks) indicate the delay for each moving link to encounter a spatially fixed obstacle and avoid it. The jump in joint
angle which results in obstacle avoidance is due to the positive spike in Lagrange multipliers in the vector Ω(t) which acts

1All simulations were done using the fmincon routine in Matlab [40] on a Pentium quad core PC with 16Gb RAM running Linux OS.
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No. # of links(n) Execution time(s)

1 6 154.87

2 12 317.77

3 30 715.61

4 50 1172.30

Table 1: Variation of execution time with number of links

like a kinematic repulsion similar to the virtual forces in an artificial potential based method. These spikes are shown for
all links for obstacle 2 (elliptical) in figure 8(b). Clearly, on correlating figures 8(a) and 8(b), it is seen that in the vicinity
of obstacle, the Lagrange multiplier Ω is non-zero and hence the obstacke constraint is active. This confirms the derived
theoretical results in the optimization procedure.
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Fig. 8: Simulation parameter plots

In the second simulation, the motion planning of a hyper-redundant robot is done for an arbitrarily chosen three-
dimensional (3D) motion of the leading end. Here too, the initial configuration of the object is chosen as a straight line.
The hyper-redundant robot is assumed to have 40 rigid segments with two degree-of-freedom joints connecting consecutive
segments. The leading end is subjected to an arbitrarily chosen motion discretized into steps of 0.2 length units and the total
motion is for 400 steps. The trajectory is generated in an obstacle field with 7 obstacles modeled as super-quadrics (figure
9(a)). It can be seen that the extended body avoids obstacles optimally by grazing them tangentially (figures 9(b)-9(h)). This
demonstrates the efficacy of the algorithm. Finally, table 1 shows the execution times for the 3D simulation when the number
of links in the hyper-redundant robot are increased. It can be observed that the simulation time increase approximately lin-
early with the number of links (n). This is expected since, in free space, the tractrix based algorithm is of linear complexity
and the deviation from the tractrix based algorithm only occurs when the link is near an obstacle.

4 Experimental results
To illustrate the algorithms developed in the above section, we fabricated a serial hyper-redundant robot. The hyper-

redundant robot consists of an 12-links as shown in figure 10(a). It has single degree-of-freedom revolute joints connecting
each adjacent pair of links. The axes of all joints are parallel to the vertical and thus allowing only planar motion of each
link. Each link additionally is supported on a powered wheel to enable overall forward mobility of the mechanism and at
each instant the position and orientation of the head in the XY -plane is specified. Each link consists of a bracket for the two
motors, one for the body joint and the other for the wheel motor, as seen in figure 10(b). The link length, measured from
one body joint to the next, is 85 mm. The links were fabricated using a 3D printing machine and the wheels are mounted
alternately on either side of the robot.

The joints are driven by standard Futaba S3003 RC hobby servos while the wheels are driven by SpringRC SM-S4303R
continuous rotation (CR) hobby servos. The servos have a 3-wire interface, with one wire each for positive supply, negative
return and command input signal. The servos feature an integrated closed-loop controller to maintain the position/speed
according to the command input pulse, thus making a compact actuator ideal for this purpose. On the flip side, the 3-wire
interface of the servos does not permit higher level monitoring of the motor position or speed, thus reducing the possibility
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(a) Trajectory with snapshot loca-
tions and initial configuration

(b) Snapshot at 1 (c) Snapshot at 2 (d) Snapshot at 3

(e) Snapshot at 4 (f) Snapshot at 5 (g) Snapshot at 6 (h) Snapshot at 7

Fig. 9: Motion snapshots for 3D simulation

(a) Experimental 12-DOF hyper-redundant robot (b) Close-up of joint and wheel assembly of the experimental
robot

Fig. 10: Experimental prototype

of effective higher level motion control. The servos take a command position in the form of a pulse-width modulated (PWM)
pulse with a nominal time period of ∼ 30 ms. For the S3003 servos, a pulse width of ∼1 ms corresponds to the −90◦ position
and a pulse width of 2 ms corresponds to the +90◦ position, with the motor centered at 1.5 ms. For the SM-S4303 servos,
the motor is at rest at a commanded pulse width of ∼1.5 ms. Higher pulse widths cause a clockwise rotation while lower
pulse widths cause counter-clockwise rotation, with the speed varying approximately with pulse width. The CR servos were
calibrated to determine the relation between pulse width and motor speed and motors with near linear pulse-speed relation
were used. These motors were distributed along the length of the body to maintain the balance of the robot when it moves
along a straight line. A custom designed PIC18F252 micro-controller-based board is used to generate the command pulses
for all the 12 joint servo motors. An identical board is used to control the wheel motors. Both the boards also have an RS232
serial interface port to communicate with a PC.

Several experiments were conducted for different choices of obstacle placements and paths. The results of one such
experiment are presented below. The experiments were conducted on a planar smooth tiled floor, with known obstacle loca-
tions. Obstacles were chosen from among a set of a rectangular object and circular objects of three different sizes. Different
numbers, shapes, sizes and relative locations of the obstacles were chosen for each experiment. The initial orientation of the
robot was arbitrarily chosen to be a straight line lying along the Y -axis and pointing in the −Y direction. Way-points were
manually chosen for the robot to pass between and beyond the obstacles, after inflating the obstacles suitably to account for
the robot’s width and lin length using Minkowski summing operation.
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Fig. 12: Simulated (top) and actual (bottom) configuration of the robot at steps 45, 65 and 97 of the motion

In these experiments, the path of the robot’s head and the joint configuration of the robot, as the head moves along this
path in discrete steps, are calculated using the algorithm as described in section 2. The sequence of these joint configurations
is then fed to the robot through the PC’s RS232 interface to the PIC18F252 board controlling the joint servo motors. The
wheel kinematics has not been considered in these experiments. The calculated wheel speeds are fed to the robot through
the PC’s RS232 interface to the PIC18F252 board controlling the wheel servo motors. The joint configurations and wheel
speeds are synchronized at each step. The algorithm itself is implemented in Matlab, while the interface to the PIC18F252
boards is implemented in C, both running under Windows XP on an Intel Xeon workstation with 2 GB of RAM.

Figure 11(a) shows a simulated view of the workspace and obstacles, with the calculated path of the robot’s head.
Figure 11(b) shows a plot of three joint angles angles – joints 1 (head), 6 (middle) and 12 (tail) of the snake robot– over the
entire path chosen for the head. It is seen that in the free space, at the start of the path, the motion of the joint angles fall off
towards the tail as predicted by the tractrix based approach. At path points close to the obstacles, all the joint movements are
similar and they are such that the entire body of the snake robot avoids the obstacle.

The top half of figure 12 shows a sequence of snapshots of the simulated robot configuration along the trajectory and the
bottom half shows the corresponding robot configuration (a video clip of the entire motion is also available as supplementary
material associated with this paper). The path consisted of 12 way-points specified manually for the robot head to pass
between the obstacles, with initial and end point orientations specified. The path of the head was calculated by fitting a
spline through the 12 way-points and joint configurations were calculated for 132 steps at a spacing of 25 mm along the
spline, using the optimization algorithm with obstacle avoidance constraints. The calculation of the spline through all the
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way-points took 242 ms and the computation of the joint configurations with obstacle avoidance for each step of movement
took 244 ms on average, with a worst case time of ∼2.23 s for the first step and an average time of 228 ms for subsequent
steps. The joint angles and wheel speeds were further interpolated in 30 steps, for smoothness of motion, before being fed
to the robot. The commands to the robot take approximately 100 ms to be transferred over a slow (9600 bps) serial link. It
may be mentioned that computation times can be improved with code optimization and dedicated hardware.

The main objective of the experiments with the fabricated hyper-redundant robot was to verify the feasibility of im-
plementing the tractrix based algorithm on a physical prototype. It may be noted that the usage of wheels results in non-
holonomic constraints on the wheel-ground contact points of the robot and the wheel slip and other dynamic effects are not
taken into account in the tractrix based algorithm. We have tried to minimize these effects by moving slowly and on a hard
flat floor. One consequence of the wheel slip and other un-modeled dynamics is that the path traced is not exactly the same
as the desired path. Nevertheless, the hyper-redundant robot using the tractrix based motion planning algorithm avoids the
obstacles and the path followed by the prototype is reasonably close to the desired path as seen in figure 12.

5 Conclusions
In this paper, we have presented an efficient optimization-based approach to motion planning with obstacle avoidance for

extended bodies, such as hyper-redundant snake-like robots. Apart from the general theoretical results, numerical simulation
results have been presented for motion of a hyper-redundant robot in a plane and 3D space. Simulation results for a 12-link
snake robot moving in a field of obstacles have been presented. Experimental results from a prototype 12-link snake robot are
seen to be very close to the simulation results and validate the optimization based algorithm. The algorithm is also amenable
to efficient implementation with on-board sensing of the obstacles in real-time. This will form a part of our future work in
this space.

In the present setup, the lack of wheel speed and joint position feedback results in a certain amount of wheel slippage at
certain points in the trajectory. Extensions planned to this work include an in-depth analysis of the Lagrangian multipliers
and also improving the mechanism to reduce slippage in motion.

In this work, the obstacles are represented by smooth, differentiable functions due to the requirement of the gradient
based optimization algorithm used in this work. This is not a serious constraint and one can have piece-wise smooth obstacles
and one can also use other optimization algorithms. These are also some of the planned extensions to this work.
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