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Modeling of Slip for Wheeled Mobile Robots 

R. Balakrishna and Ashitava Ghosal 

Abstruct- Wheeled Mobile Robots (WMRs) are known to be non- 
holonomic systems, and most dynamic models of WMRs assume that 
the wheels undergo rolling without slipping. This paper deals with the 
problem of modeling and simulation of motion of a WMR when the 
conditions for rolling are not satisfied at the wheels. We use a traction 
model where the adhesion coefficient between the wheels of a WMR and 
a hard flat surface is a function of the wheel slip. This traction model is 
used in conjunction with the dynamic equations of motion to simulate the 
motion of the WMR. The simulations show that controllers which do not 
take into account wheel slip give poor tracking performance for the WMR 
and path deviation is small only for large adhesion coefficients. This work 
shows the importance of wheel slip and suggests use of accurate traction 
models for improving tracking performance of a WMR. 

Index Terms- Wheeled Mobile Robots, Slip, Modeling, Traction, Ad- 
hesion. 

I.  INTRODUCTION 
Wheeled Mobile Robots (WMRs) are generally modeled as non- 

holonomic dynamical systems with its wheels assumed to be rolling 
without slipping. The formulation based on rolling without slip gives 
kinematical mappings between wheel rotation and the position and 
orientation of the WMR. However, rolling conditions are sometimes 
violated in tractive maneuvering of WMRs, predominantly due to 
slipping and scrubbing [3]. In this paper, we use a model for the 
tractive force in terms of the adhesion coefficient, the linear and 
angular velocity of the wheel. The dynamic equations of motion 
are then derived including the effect of the tractive forces. It is 
shown that the equations of motion reduce to that obtained for 
'ideal' rolling when no slip conditions are used. The 'ideal' rolling 
model is used to develop a model based controller. Simulation results 
with a PID controller and the model based controller show that the 
unmodeled slipping results in significant path deviation for the WMR, 
especially when adhesion coefficients are small. Hence, to obtain 
realistic models for maneuvering of WMRs, the rigid body dynamics 
of the WMR needs to be used in conjunction with slipping and tractive 
forces at the wheel-surface contact. 

Previous work in wheeled mobile robot modeling have neglected 
the aspect of wheel slip [I], [2], [19]. Other studies examined WMR 
maneuvering by considering the case when the torque applied does 
not exceed the traction limit [14]. The work presented by Alexander 
and Maddocks [3] predicts the resulting motion of a WMR by 
minimizing a friction functional when scrubbing takes place. Muir 
and Neuman [ l l ] ,  [12] describe methods to detect wheel slip and 
describe corrective measures. 

The modeling of tractive forces developed at the wheel has been 
used for various studies [18], [4], [8]. The model presented here has 
been widely used for automobile dynamic stability analysis [8], [17] 
and for traction control [16]. We discuss the model for wheel slip 
in Section 2. 
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The mechanical configuration of WMRs falls into one of two 
categories - steered-wheeled vehicles and differential-drive vehicles. 
This paper uses the latter category for simulation studies [9]. 

This paper is organized as follows: Section 2 presents the notion 
of wheel slip and wheel dynamics, Section 3 presents the Adhesion 
Coefficient model, Section 4 presents the WMR dynamic model with 
the wheel slip incorporated and control of the WMR is considered 
in Section 5. In Section 6 simulations for a 3 wheeled omni-wheeled 
mobile robot is discussed and in Section 7 we present our conclusions. 

11. WHEEL- SLIP AND SINGLE WHEEL DYNAMICS 

For a conventional wheel, the linear velocity of the wheel center, 
11, and wheel angular velocity, d, are related through the expression, 
1' = r J, where r is the wheel radius. This expression represents 
'ideal' rolling. This relation is a nonholonomic constraint between 
the variables 1 ,  and J. When the wheel rolls with slip this constraint 
is violated. 

To determine wheel slip between the wheel and a hard surface, it 
is assumed that the surface does not deform during traction but the 
wheel may undergo deformation at the contact patch. The wheel slip, 
A, can be defined as 

X = ( H  - d*) /I) (1) 

where, d* is defined as P / I .  with units of radsec, and is the wheel 
angular velocity in,radsec. The value of !/ is d' when J* > H and 
is i when J* < H .  

It may be observed that -1 5 X 5 1. For 'ideal' rolling, when 
d* = i ,  the wheel slip X is zero. When the linear velocity is zero, 
X = 1, and this represents the condition of wheel angular acceleration 
and rolling in place. The skid condition is characterized by zero 
angular velocity while the vehicle possesses a linear velocity. In this 
case X = -1. 

To represent the combined effects of rolling and slipping, the 
tractive forces of the wheel have to be introduced. The translational 
and rotational dynamics of a wheel of radius r ,  mass -\Itc,, and 
moment of inertia about the wheel center . I t c , ,  can be written as 

where, Ft, is the tractive force developed at the wheel contact, .i: 
and H are the linear and angular acceleration of the wheel center, 
respectively, and T is the torque applied at the wheel axle. The above 
equations of motion for a single wheel undergoing rolVslip motion 
may be expressed in the state space form. Using the state vector, 
x = { . I ,  I . .1 '2 .  .r 1 .  .I' I } ' , to represent the Cartesian position, linear 
velocity, angular rotation and angular velocity, respectively, we can 
write (2) as 

or compactly as, 

( 3 )  
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It can be observed that the translational and rotational dynamics for 
a wheel undergoing rolVslip motion are coupled through the tractive 
force Ft. It should be noted that the torque, T ,  is the only external 
independent input to this dynamical system. 

For this system to be locally controllable (see Isidori 
[lo], Spong and Vidyasagar [15]), the following vectors 
{g. u d ~ ( g ) .  n d $ . ( y ) .  - , t d ' ; , ( ( / ) }  ~ should be linearly independent.' 
One can show that t r d :  (g) becomes a zero vector if Ft is constant. 
Hence for the vectors t o  be linearly independent, the tractive force 
Ft should be at least a C '  continuous function in .I'.L and .VI, which 
are the linear and angular velocities of the wheel. In the next 
section a traction model including the effects of wheel roll/slip 
will be described. 

111. ADHESION COEFFICIENT MODEL 

The adhesion coefficient [I61 has also been referred to as the 
"friction coefficient" for wheel rolling [SI, and generally used as a 
measure to determine the adhesivity or sticking between two surfaces. 
The tractive force, Ft ,  is generally obtained by the product of the 
adhesion coefficient and normal force at the point of contact. The 
adhesion coefficient is a function of the wheel dynamics and tractive 
conditions. It depends on quantities such as linear velocity of the 
wheel, the angular velocity of the wheel and the surface roughness 
in qualitative and quantitative aspects. Various models have been 
proposed for the tractive force, F f ,  in literature [4], 1181, [8]. Unruh 
[I81 uses a model where the adhesion coefficient is assumed to be 
constant while Allen and O'Massey [4] assume a model where the 
adhesion coefficient is a function of the linear velocity. These models 
are useful only when the wheel is locked and the vehicle is skidding. 
We have used the traction model as proposed by Dugoff et al. [8]. 
The models presented here are for longitudinal wheel traction force. 

Adhesion CoefJicient Dependent on Wheel Slip 

In the model proposed by Dugoff et al. 181, the tractive force, F t ,  
is a function of wheel slip, A(see Section 2). The tractive force, Ft ,  
is given by /trfAY, where p ,  is the adhesion coefficient and S is the 
normal reaction. 11.  depends on the wheel slip, A, which in tum is 
a function of linear and angular velocities of the wheel. The tractive 
force developed is then formulated as 

Ft = I /  ( A )  S (4) 

The relation between the adhesion coefficient, p n ,  and wheel slip, 
A,  depends on the nature of the surface and the wheel material [8]. 
A typical relationship is shown in Fig. 1 which shows the change 
in adhesion coefficient, p ", for acceleration and braking conditions. 
This curve has been proposed and verified by Dugoff et al. [8]. 
For a given surface and wheel material, it has been observed that 
though the quantitative characteristic of the curve may change, it 
matches qualitatively for different surfaces. Of particular significance 
is the peak value p n p p O k  (shown in Fig. I) ,  which is present for the 
acceleration and braking regions, with A taking positive and negative 
values, respectively. 

The adhesion coefficient, p r , ,  shows a rise and then a fall with 
increasing wheel-slip, A,  where 0 5 1x1 5 1. The stable region is 
represented by the portion of the curve that shows an increase in the 
/ t n  with increase in A .  In this portion, the tractive forces that can 
be sustained increases with the wheel-slip due to the increase in p ,  . 
The fall of p, ,  beyond the peak pop( , , l .  results in instability since the 
tractive force reduces with increasing slip [16]. 

' t r t l ,  (!/) - denotes the Lie Bracket of the two vector fields f & t j  with - -  - 
t t i / : . (y)  = [ . f . r , t l ~ - -  I ( ( / ) ]  - and i i d ' ; . ( $  = - 0. 
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Fig. 1. i t  versus X curve. 
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Fig. 2. An Omni-wheel. 

It was observed in Section 2, that the controllability of a wheel is 
ensured if the tractive force model, F f ,  is at least C1 continuous in .1'2 

and .I' I .  The present adhesion coefficient model based on wheel-slip 
satisfies this criterion and also enables the representation of combined 
rolling and slipping in the wheel. In view of the above mentioned 
factors this adhesion coefficient model was used in the simulations. 

The lateral tractive force model for the wheel is not considered 
here, because the WMR considered in this work is a differential drive 
vehicle with omni-wheels. However, lateral tractive force can also be 
considered along similar lines [8], [17]. 

IV. WMR DYNAMIC MODEL WITH WHEEL SLIP 

The omni-wheel has freely rotating barrels at the periphery and the 
axis of rotation of the barrels are at an angle to the axis of rotation 
of the wheel. Thus, they have two degrees of freedom as opposed 
to conventional wheels which have one degree of freedom [ I ] ,  11 11. 
We consider a planar WMR with three omni-wheels and with barrels 
inclined at 90" to the wheel axis [9]. To ensure that the wheel always 
has two degrees of freedom, we consider a wheel having two layers 
of barrels as shown in Fig. 2. The kinematic and dynamics of WMRs 
(assuming no slip) with more than three wheels and with barrels 
inclined at other angles can also be derived [I] ,  [2]. 

For the planar WMR with three omni-wheels placed at an angular 
separation of 120", shown in Fig. 3, one can find the relationship 
between the wheel variables and the Cartesian variables by using 
the no slip condition at the three wheels. Let the wheel rotational 
speeds, { H I .  H ? .  4.1 }, be denoted by i, the wheel sliding speeds, 



I zn IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I ,  NO. I ,  FEBRUARY 1995 

x G  

x3 

Fig. 3 .  WMR with coordinate frames and forces 

{ m l .  (TZ. m ~ } ,  be denoted by E. Since the motion of the WMR is in 
a plane, the velocity of any point G' (origin of the body fixed frame 
{ G ' } )  on the WMR, with respect to a fixed coordinate system, can 
be described by two components, { 1.1 . 1 L }, and the angular velocity 
of the WMR can be described by a single component \E normal to 
the platform. It may be noted that {I  . I 2 }, as shown in Fig. 3, are 
along -Yc;f and I;;( axes, respectively. We denote {I  -1. I >. g} by 
- I ? .  It can be shown [l], that f and the Cartesian variables, E, are 
related by 

where, r is the omni-wheel radius and L, .  i = 1.2.3 are the 
distances of the omni-wheel contact point from G'. The [ R ] matrix 
relates f and and is analogous to Jacobian matrix in manipulators. 
The relationship between the sliding velocity of the omni-wheels, CJ, 

and the Cartesian velocities has been presented by Agullo er al. [l]. 
When the platform is rolling without slipping it has 3 degrees of 

freedom. However, when the rolling constraint is not satisfied, the 
WMR system has six degrees of freedom described by { I-, @ } 
and {HI. H a .  H:T}. This is because the 0's and 1-1. I >. Q are not 
related through the kinematic relations for 'ideal' rolling shown in 
(5) .  

Let C: be the center of mass of the WMR. The frame {G} is 
aligned to the frame { G' } and has coordinates ( P  I .  p.2 ) with respect 
to { G' } as shown in Fig. 3. The velocity of the center of mass, with 
respect to a fixed frame, can be written as 

(6)  = {I ;  - % P a .  I ,  + % PI  }'I. 

Let -U,, be the mass of the WMR, I,, be the moment of inertia of 
the WMR about 2 axis, I, the moment of inertia of each wheel about 
its axis, and t' the radius of each omni-wheel. The kinetic energy of 
the WMR is given by the wheel rotational energy, and the WMR 
translational and rotational energies. The kinetic energy contribution 
of the barrels on the omni-wheel are neglected. The Lagrangian for 
the WMR is given as 

Using the Lagrangian formulation, we can derive the equations of 
motion for WMR systems as 

${%}-% =F,. ,j = 1  . . . . .  G 

where, C, is the Lagrangian of the WMR given in (7), q t .  i = 1. .... G 
is the set { S. I-. \E. H I  . $2. 0.r } of generalized coordinates, and ;F 
are the generalized forces. 

The generalized forces corresponding to 0 , .  i = 1.2.3 are 
T, - F t L r ,  i = 1.2.3 (see (3)). To obtain the generalized forces 
for (X. I-. 9), we have to write the F t , .  i = 1.2.3 acting at the 
wheels along the Cartesian degrees of freedom. This can be done by 
use of the matrix [ R 1'' [2] .  Hence the six generalized forces can 
be written as 

; F = { t . [ R ] '  ( F 1 , . F l , . F l , ) " . ~ I  - F t , t . .  T J - F ~ , ~ .  r : < - F f 3 t * } .  
(9) 

The dynamic equations of motion for the WMR, including the 
effects of wheel slip, can be written as shown at the bottom of this 
page or compactly, 

It may be noted that to arrive at the above equations, we have taken 
{ G} and { G' } to be coinciding, i.e., e l  = P Z  = 0, I -1 = P I ,  1-2 = 62 
and L I  = L Z  = L.3 = L.  It may be noted that the term % [ I) ] 1 
arises because I -1 and I are components along the moving -Y(;, and 
I;;! axes and not along axis of the fixed coordinate system. 

We can make the following observations from the dynamic equa- 
tions of motion. 

The individual wheel dynamics are coupled with the WMR 
dynamics through the tractive forces. The ideal rolling condition 
is not used. 
The only input to this model of the WMR are the wheel torques, 
T, . i  = 1.2.3. 
The above equations of motion can be reduced to the equations 
of motion derived using the no slip conditions. This is shown 
below. 
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The wheel dynamics alone are given by ( 1  1). Multiplying (1 1) by 

[ R I '  [ I ] B + [ . \ f ] l i + \ i r [ C ) ] 1 = [ R ] ' 1 .  (12) 

The no-slip condition is given as i,= [ R ] 1. Since [ R ] is a 
constant matrix, we obtain, = [ R ] 1, and on substituting them in 
( I  2) and rearranging, we recover the WMR ideal dynamic equations 
(see Agullo et al .  [2]). 

(13) 

[ R ] , and substituting for r [ R ] &, from (IO), we get 

[:\I*] li + 6 [ C) ] 1 = [ R ] 
where [.\I*] = ([MI + [ R 1"' [I] [ R I). 

rolling equations. 
In this reduced order form, these equations are referred to as 'ideal' 

V. CONTROL OF THE WMR 

The control problem for the WMR may be defined as that of 
guiding the WMR through a desired Cartesian path with specified 
terminal points. In this section, the path tracking performance of the 
WMR under PID control and a model based control using Cartesian 
space feedback is discussed. The Cartesian space feedback may be ob- 
tained either through dead reckoning or referential methods [6]. The 
dead reckoning method uses on-board sensors to estimate the current 
position of the WMR. In the present case, we assume that there are 
on-board sensors such as wheel encoders and accelerometers. 

PID Control 

This control scheme uses the Cartesian space errors to compute the 
wheel torques according to the following PID control law 

- F = Z i , .  ( X d - X ) + I i , ,  (Xd-X)+Ii ,  

where X denotes the vector (S, I-. 9)' and Xd is the desired 
Cartesian space path and ( ) denotes the derivative with respect to 
time. 

The wheel torques, r, are related to the Cartesian force, E, and 
are given as 

r =  [ R I ' - '  E. (15) 

The dynamic model of the WMR is not used in this control scheme. 

Model-Based Control 

The model based control approach seeks to exploit the model of 
the system to be controlled to obtain enhanced performance. The 
fundamental idea in this approach is to use the model of the system to 
be controlled in the control law, such that the resulting error equation 
is decoupled and linear, and is tunable by PID parameters [7]. In this 
section, we investigate the use of the dynamic equations of motion 
derived using the condition of 'ideal' rolling, (13) in the model- 
based control law. One possible rationale for using the 'ideal' rolling 
model is that it is very hard to model adhesion coefficient and other 
nonlinearities of the real system. 

Assuming the availability of Cartesian space feedback and the 
reduced order 'ideal' rolling model, a model-based control law can 
be written as 

- T = n i  + , I  

where, 

(1 = [ R I - '  
, I  = [ R 1 -  ' { \ir [ C) ] 1 } 
- T' = X,/+ Ii, (X</ - XI + Zi,,(X,+ 
x = {S. I-. q/ 

where [ M* ] is given in (13). 

Error Dynamics 

The error dynamics for the WMR undergoing rolling with slip 
under the above model based control law is now presented. By sub- 
stituting the expression for 1, (16). in ( I O )  and (1  1) and rearranging, 
we get 

E ,  + Iia E, + I<,, E ,  = fc/(..  t )  (17) 

where E ,  is the quantity (X,I - X )  and 

f , / ( . . t ) = [ - \ I * ] - '  [ R I '  [ I ] H + r [ R ] '  & ( [ . \ I * ] - '  

- [  JI  I - ' )  - ( [  -\I* I - '  - [ .\I I - ' )  C (18) 

where the quantities in the above equation are defined in Sections 4 
and 5, and C denotes \ir[ C) 1 1 .  

We can consider the error equation as a linear system of second 
order ordinary differential equation subjected to a disturbance f,, ( . . t ). 
The first order representation of this system is given as 

or compactly as 

Y = -[.4]Y + D (  .. t )  (19) 

where, Y = { E v .  E r }  '.. fi,, and fit. are the positive definite gain 
matrices, and D(.. t )  = {U. f,j( .. t ) } " '  is the disturbance. It can be 
assumed that D (  .. t )  is bounded. For stability analysis, consider the 
following Lyapunov function 

(20) v = 1/2 Y"' Y. 

Differentiating with respect to time, we get 

For asymptotic stability $ < 0, and we require 
i; = Y"' Y = Y" (-[.4]Y + D )  

IlYll > ll[.41r1 DII. (21) 

The above condition implies that the ordinary differential equation 
will be asymptotically stable if the state vector, Y, is of sufficient 
magnitude ( greater than 11[.4]-' 011) to ensure that V is negative. 
Since D (  . . t ) is assumed to be bounded, the above equation suggests 
that llYll is bounded and will approach II[.-I]-' Dll as t tends to 
infinity. The analysis also suggest a possible limit cycle behavior 
since if Y < II[.4]-' Dll then the system may be unstable. The 
errors in WMR path tracking is clearly determined by the quantity 
11[-4]-' Dll, and to reduce path deviation II[.4]-' Dll must be made 
small. One way to make II[.4]-' Dll small is by choosing large Zi,, 
and I<,. which leads us to the (not surprising) conclusion that we 
can expect better performance from our controller by using larger 
gains. We can also reduce II[.4]-' D /I by ensuring that D( .. t )  is 
close to zero. 

For D ( . . t )  to be zero, we must have 

- F, = l / r  ([A\I*]- '  - [A\I ] - ' ) - '  [E?']-' 

.{([-\I*]- '  - [ A I I ] - l )  C - [.\I*]-' [ R 1'  [ I ]  H } .  (22) 

We can make the following observations from the above equation: . For the disturbance D (  .. t )  to be zero, a minimum tractive force 
has to be developed ensuring rolling without slip. A higher 
adhesion coefficient ensures larger resulting in less slipping of 
the wheel and better Cartesian path tracking. This is observed 
in the simulations. 
Instances when the tractive force, 5, generated is insufficient 
may arise, resulting in a nonzero value for the disturbance, 
D ( . .  t ) .  This is the cause of roll/slip motion at the wheel and 
hence WMR path deviation. 

I' 
/ 
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In general, the expression for f d (  .. t )  may also contain extemal 
forces acting on the WMR. In such a situation, the required 
tractive force, 5, is even larger and may not be sustained by 
the wheel and surface. This may result in WMR path deviation. 
This situation occurs during skidding. 

From the above analysis, we can infer that for smaller WMR path 
deviation we have to use higher gains or ensure sufficient tractive 
force. 

VI. SIMULATION 
In this section, we illustrate the effects of wheel slip on the 

motion of a single wheel and on WMR path tracking. In particular, 
we show that for a single wheel as the adhesion coefficient is 
increased conditions closer to ‘ideal’ rolling prevail. For the WMR, 
the performance of PID control is not satisfactory, and the use of 
‘ideal’ rolling model, in model based control, is justified only for 
high values of adhesion coefficients, i.e., when conditions are closer 
to ‘ideal’ rolling. 

For the purpose of simulation, the adhesion coefficient model was 
represented using the pnpPnA as a parameter. Typically, a peak value 
of the adhesion coefficient, p n p c u l .  is chosen to represent the surface 
roughness. X c , p r n l .  is chosen to be f0.15. For X = f l ,  i t , ,  was 
chosen to be O.GG p i l p e a l . .  The p n  versus X curve is approximated 
by straight lines in the different regions and is given as 

I /  = ( A  - 0.15) !!Ye!& + //<,,,,“, . -0.15 < X < 0.15 
0.15 

0.4 

8 
* 0.2 
2 
L 

0.1 

0 
0 

Norm lin. vel., (rad/=) 
(b) 

0.5 1.0 
Wheel slip 
(4 

Fig. 4. Single wheel simulation. 

- / / “ p e * A .  -0.15 2 X 2 -1.00. 
0’34/r“ p e a l .  

// = - ( A  + 0.15) 
0.85 

The differential equations of motion were numerically integrated 
for obtaining simulation results. The equations were found to be 
“stiff’ [13], especially for the cases where near rolling conditions 
were present. We used a ‘‘stiff’ ODE solver based on the backward 
difference formula in [13]. 

Single Wheel Dynamics 

We first present a simple case, where a wheel is subjected to 
a trapezoidal torque profile with the peak adhesion coefficient, 
p n p r a l ,  taking on values of 0.10, 0.30, and 0.80, respectively. The 
different values of peak adhesion coefficient, p , j p c a l . ,  serves the 
purpose of representing surfaces of varying roughness and for a 
low we expect a slipping as well as rolling motion. In 
this simulation, the wheel had a mass, Jf8(  = 2 . 0  kg and radius, 
I’ = 0.30 m. 

Fig. 4(a) shows the wheel slip variation with time. In Fig. 4(b), the 
plot of the normalized linear velocity, I?*, versus angular velocity, 
4, of the wheel is shown. Curves 1, 2 ,  and 3 in Fig. 4(b) represent 
the plots for peak adhesion coefficient, / r n p c , , l . ,  values of 0.10, 0.30, 
and 0.80, respectively. It is observed that the plots deviate from 
the straight line which represents ‘ideal’ rolling. With decreasing 
adhesion coefficient the deviation from ‘ideal’ rolling shows an 
increase. For all the above cases the same trapezoidal torque profile, 
shown in Fig. 4(c), was used. Fig. 4(d) shows the variation of wheel 
slip, A, and the adhesion coefficient p, , .  
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Fig. 5 .  Tracking performance with PID control 
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Fig. 6. Tracking performance with model-based control 

WMR Simulation 

The dynamic model of the WMR with the nonlinear effect of wheel 
slip, (10) and ( l l ) ,  were used in the simulation studies. The PID 
controller and the model based controller were used for simulation. 
The kinematic parameters of the WMR are L = 0 . 5 ~ 1 ,  I* = 0.1m and 
the wheels are at 120” to each other. The WMR dynamic parameters 
are, Alfl~ = 50.0 kg, Z,, = 5.0 kg m2, and Z8 = 2.0 kg m’, i = 1. 2. 3. 

Case 1 - Straight Line trajectory with PID control 
The PID control law, (15), was used in a straight line trajectory. A 

peak adhesion coefficient, p n p , n l ,  value of 0.80 was used. The plot 
of the . I .  and co-ordinates with time are shown in Figs. 5(a) and 
5(b), respectively. The following gains were used in the control law, 
Zi,, = 15.00. IC,. = 2& and Zi, = 0.10. 

It can be observed that the tracking performance is quite poor. 
Case 2 - Circular trajectory with Model Based Control 
The WMR was made to track a circular Cartesian trajectory of 

radius 2 m centered about the origin. Different values of peak adhe- 
sion coefficient, p o p c a l  , 0.80, 0.20, and 0.08, representing surfaces 
of decreasing roughness were taken. The simulation results show 
increasing path deviation with a decrease in the adhesion coefficient 
peak value p r , p <  , 1 1  . This is observed in Fig. 6. Plot 1 is the reference 
trajectory, plots 2, 3, and 4 are for p r 8 p e a l  = 0.80, 0.20, and 0.08, 
respectively. 

To enable comparison of the tracking performance for the different 
simulations (commanded trajectory was a circle of radius = 2m, with 

center at the origin), the maximum radial error, R, , , , , I  , , / I , ,  , given by, 
R, ,.t ,,, ,,,,,_I = t i t u . t . 1  R,,, , - R,, 1 ,  was used. For this case, R,l, .i = 2 
m, and R,, = I d-1, (.I.. 11) is the actual Cartesian position of 
the WMR. Table I shows typical values of R , ,  , ,,, It may be 
observed from Table I that higher peak adhesion coefficient, CC.~,, , ~ ~ ,  
values result in less deviation. 

Other simulations were also performed with varying Zi,, for a given 
peak adhesion coefficient value and improvement in performance was 
observed with increased gain. 

VII. CONCLUSION 

Most dynamic models of WMR do not incorporate the effects of 
wheel slip and traction. In this paper, we have shown that the wheel 
slip can have significant effect on the motion of a wheel, and the 
actual motion of the wheeled mobile robot is very much different 
from that obtained under ‘ideal’ rolling conditions. 

The rolling and slipping as undergone by a wheel under tractive 
rolling were introduced through the use of traction models. The 
equations of motion of the WMR were obtained incorporating the 
effects of wheel slip. To illustrate the significance of slip, a PID 
controller and an ‘ideal’ rolling model based controller was used on 
a WMR model with slip. Simulations results show that the path errors 
are larger for lower adhesion coefficient values. 

The analysis of the error equation suggest that the system is stable 
under certain conditions. Improved performance can be obtained by 
ensuring that the required tractive forces are available or by increasing 
controller gains. Numerical simulations of the WMR show that the 
performance in trajectory tracking with unmodeled slip and traction 
is not very satisfactory. The path deviation of the WMR is small only 
when the adhesion coefficient is chosen large representing conditions 
closer to “ideal” rolling. In conclusion, for better performance of a 
WMR, we have to model slip and use an accurate traction model. 
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NOMENCLATURE 
Index to alternating delays T,,,,,, ,, or T,, .,,, h .  

Index to the nth (inth) occurrence of an event. 
Start of timing diagrams. 
The (absolute) time at which crosstalk occurred. 
Sensor causing crosstalk, located at the beginning of a 
critical path. 
Sensor affected by crosstalk, located at the end of a 
critical path. 
Length of a critical path. 
Maximum allowable time difference between any two 
consecutive readings. 
Time from firing to receiving an echo. 
Erroneous reading, caused by crosstalk. 
Amount of time from the beginning of a period to the 
actual firing of a sensor. 
Amount of time from receiving an echo to the beginning 
of the next period. 
Nominal time interval between scheduled firings of the 
sensors in a group. 
Shortest time interval between actual firings of the sen- 
sors in a group. 
Amount of time a sensor is scheduled for firing after the 
beginning of a period. 
Time period. The amount of time in which each sensor 
fires once. 
The amount of time EERUF waits before firing a sensor, 
after the sensor was already scheduled for firing. 
Time window-the amount of time a sensor is “open” 
to await an echo. 

TI, ,,, Amount of time soundwaves spend on traveling through 
the critical path. Error Eliminating Rapid Ultrasonic Firing 

for Mobile Robot Obstacle Avoidance 
Abbreviations: 

Johann Borenstein and Yoram Koren 

Abstract-This paper introduces error eliminating rapid ultrasonic$nng 
(EERUF), a new method for firing multiple ultrasonic sensors in mobile 
robot applications. EERUF allows ultrasonic sensors to fire at rates 
that are five to ten times faster than those customary in conventional 
applications. This is possible because EERUF reduces the number of 
erroneous readings due to ultrasonic noise by one to two orders of 
magnitude. 

While faster firing rates improve the reliability and robustness of 
mobile robot obstacle avoidance and are necessary for safe travel at 
higher speed (e.g., I -  > 0.3 dsec) ,  they introduce more ultrasonic 
noise and increase the occurrence rate of crosstalk. However, EERUF 
almost eliminates crosstalk, making fast firing feasible. Furthermore, 
ERRUF’s unique noise rejection capability allows multiple mobile robots 
to collaborate in the same environment, even if their ultrasonic sensors 
operate at the same frequencies. 

We have implemented and tested the EERUF method on a mobile 
robot and we present experimental results. With EERUF, a mobile robot 
was able to traverse an obstacle course of densely spaced, pencil-thin (8 
mm-diameter) poles at up to 1 dsec .  
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EERUF Error Eliminating Rapid Ultrasonic Firing. 
URS Ultrasonic Range Sensor. 

I. INTRODUCTION AND BACKGROUND 

This paper introduces error eliminating rapid ultrasonic Jiring 
(EERUF), a new method for noise rejection with ultrasonic range 
sensors (URS’s). The EERUF method is designed to work with the 
widely used URS’s manufactured by Polaroid [19]. A comprehensive 
discussion of the characteristics and limitations of these sensors can 
be found in the literature and is omitted here (see [l], [5] ,  [lo], [12], 

In order to guarantee complete coverage of the area around a 
mobile robot in all directions, many mobile robots have URS’s 
installed on their periphery at 15” intervals.’ For omnidirectional 
robots of circular shape, this design requires 24 (=3G0”/15’) URS’s 
mounted on a ring around the robot. Similar designs using 24 URS’s 
in 1.5” intervals are described in the literature [17], [7], [2], [18], 
[9], [ 1 I], [6] and were used in the previously commercially available 
robot manufactured by denning. 

[151, 

’ Kuc [ 141 shows that theoretically it would be necessary to use even denser 
spacing (e.g., 5’) to cover all possible obstacles. However,we found that in 
practice 15O-spacing reliability detects obstacles as small as 8-mm-diameter 
vertical poles. 

/’ 
/ 
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