
Homogeneous coordinates, lines, screws and twists

In lecture 1 of module 2, a brief mention was made of homogeneous coor-
dinates, lines in ℜ3, screws and twists to describe the general motion of a
rigid body. Lines were used to represent joint axes and screws was used in
connection with the properties A

B[T ]. In this write-up, we present a brief de-
scription of homogeneous coordinates, mathematical representation of lines,
screws, and twists using Plücker coordinates and also present expressions
for the angle and distance between two lines. We start with the concept of
homogeneous coordinates.

Let (x, y) denote the Cartesian co-ordinates of a point in the Euclidean
plane E2; then the homogeneous coordinates of the point are given by
(x, y, w) ∈ E3 with w ̸= 0. One of the key properties of homogeneous
coordinates is that scaling does not matter, e,g., the coordinates (x, y, w)
and (λx, λy, λw), where λ is a non-zero constant, represent the same point.

From elementary mathematics, we know that any point (x, y, z) on a
line passing through two points, say A(x0, y0, z0)

T and A(x1, y1, z1)
T , in {A}

satisfies
x− x0
x0 − x1

=
y − y0
y0 − y1

=
z − z0
z0 − z1

= c (1)

where c is an arbitrary non-zero constant. In equation (1), if we consider a
line through the origin, i.e., (x0, y0, z0) = 0, we get (x, y, z) = −c(x1, y1, z1).
If z is considered the same as w, then the equation of a line through the
origin is equivalent to scaling. Hence, homogenous coordinates represent a
point in E2 by a line through the origin in E3. Likewise, a line in E2 is a
plane through the origin of E3.

To go from homogeneous coordinates to Cartesian coordinates, we simply
extract from (x, y, w) the quantities (x/w, y/w) and set w to 1. This implies
that the Euclidean plane E2 with points (x, y) can be embedded as a w = 1
plane and the ordinary Euclidean point (with Cartesian coordinates (x, y))
can be thought of as a line through the origin intersecting the w = 1 plane.

In addition to the ordinary Euclidean points, it is possible to have ho-
mogeneous coordinates of the form (x, y, 0). These are lines through the
origin of E3 parallel to w = 1 plane. These are called ideal points or points
at infinity which can be shown to form a line called the line at infinity. The
set of lines through the origin of E3 defines the projective plane P2. The
projective plane can be thought of as the Euclidean plane E2 to which we
have added points at infinity. In this form, the projective plane has the
interesting property of duality which states that in every axiom we can re-
place ‘point’ by ‘line’ and still make perfect sense without any exceptions.
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For example, we can say ‘two points determine a line’ or ‘two lines determine
a point’. We can also state two parallel lines meet at infinity without any
mathematical problem. The projective space P2 is one of the fundamental
concepts in geometry and, as we will see in Module 3, allows us to ‘correctly’
count the number of solutions of non-linear equations.

The concept of a projective space is also useful in theoretical kinematics
since the 4× 1 homogeneous coordinates and the 4× 4 transformation ma-
trices of Lecture 1 can be put on a more formal footing. The 4 × 1 vector
obtained by appending a ‘1’ to (x, y, z)T are obtained from the homogeneous
coordinates (x, y, z, w)T by setting w = 1. Similar to the discussion above
we can also have points at infinity for w = 0. One difference between P2

earlier and P3 is that now the axioms and the notion of duality involve
points, lines, and planes.

In equation (1), instead of three equations, we can also represent the line
as

L =A (x0, y0, z0)
T + tQ̂A (2)

where t is an arbitrary constant and Q̂A is a unit vector from A(x0, y0, z0)
T

to A(x1, y1, z1)
T in the coordinate system {A}. In addition, the point

A(x0, y0, z0)
T need not have three independent parameters. Since the line

extends to infinity in both directions, along the line, we can choose the point
A(x0, y0, z0)

T as the point where the line intersects any of the three coordi-
nate planes (x = 0 or y = 0 or z = 0). Hence, a line in ℜ3 can be described
by four independent parameters.

We represent a line by a pair of vectors of the form (AQ ; AQ0) where
AQ is the direction vector and AQ0 is the moment vector given by

AQ0 =
A r×A Q (3)

where Ar locates a point on the line. It can be shown that AQ0 is indepen-
dent of the chosen point on the line.

The vector pair (AQ ; AQ0) are the six Plücker coordinates of a line in
ℜ3. It may be noted that there are only four independent parameters since
AQ ·AQ0 = 0 and c(AQ ; AQ0) (c ∈ ℜ1 ̸= 0) is the same line as (AQ ; AQ0).
Since, the Plücker coordinates of a line are unchanged by scaling, they are
homogeneous coordinates. Hence, similar to choosing w = 1 in the case of
points, as long as |AQ| ≠ 0, we can represent lines in ℜ3 by a unit vector
and its moment as

Q̂A =
AQ

|AQ|
AQ̂0 = Ar× Q̂A (4)
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Note that the vector pair (Q̂A ; AQ̂0) has four independent parameters.
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Figure 1: Line in ℜ3

The Denavit-Hartenberg parameters, discussed in Lecture 2, are based
on the notion of distance and angle between lines in three-dimensional space.
In the following, we present analytical expressions for the common perpen-
dicular, angle and distance between two lines in ℜ3. These expressions can
be used to compute numerical values of D-H parameters from a CAD model
of a robot.

We assume that the two lines L1 and L2, as shown in figure 1, are
described by the vector pairs (AẐ1 ; AẐ01) and (AẐ2 ; AẐ02), respectively.
The unit vector along the common perpendicular is given by

AX̂1 =
AẐ1 ×A Ẑ2

|AẐ1 ×A Ẑ2|
(5)

It may be noted that the unit vector AX̂1 is from L1 to L2. If L1 and L2

intersect, then the unit vector AX̂1 is normal to the plane formed by the two
intersecting lines, and there are two choices for the direction of AX̂1. If the
lines are parallel, the common perpendicular is not unique and the vector
cross-product in equation (5) is zero. For this case any line perpendicular
to L1 and L2 is a common perpendicular.
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The angle between the two lines is

α1 = cos−1(AẐ1 · AẐ2), 0 ≤ α1 ≤ π (6)

The angle α1 can also be negative, (−π ≤ α1 ≤ 0), and we can choose the
correct sign by ensuring that the angle is measured from AẐ1 to AẐ2 about
AX̂1 using the right-hand rule. If the two lines are parallel, the angle is 0
or π.
The shortest distance is along the common perpendicular and is given by

a1 =
AẐ1 · AẐ02 +

A Ẑ2 · AẐ01

|AẐ1 ×A Ẑ2|
(7)

If the lines L1 and L2 intersect, then a1 is zero. If the lines are parallel, the
length of any of the common perpendiculars is a1.
The point of intersection of the common perpendicular line with L1 can be
obtained by solving simultaneously the equations of line L1 and the plane
formed by line L2 and the common perpendicular line. Denoting the point
by the vector AO1, we have

AO1 =
(AX̂1 · AẐ02)

AẐ1 −A Ẑ01 × (AẐ2 ×A X̂1)

|AẐ1 ×A Ẑ2|
(8)

The moment vector AX̂01 can be obtained by noting that the distances
between L1, L2 and the common perpendicular are zero, and AX̂01·AX̂1 = 0.
The vector AX̂01 is given by

AX01 = [{cosα1
AẐ02−AẐ01} · AX̂1]

AẐ1+[{cosα1
AẐ01−AẐ02} · AX̂1]

AẐ2

(9)
The lines (AX̂1 ; AX̂01), (

AẐ1 ; AẐ01) and their point of intersection, AO1,
completely determine the coordinate system {1} with respect to the fixed
coordinate system {A}.

A screw S with respect to {A} can be specified by a line and a pitch
denoted by h. The screw coordinates denoted by (AS ; AS0) are defined as

AS = AQ
AS0 = AQ0 + hAQ (10)

The pitch can be obtained from a given (AS ; AS0) by

h =
AS · AS0

AS · AS
(11)
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Since a line has four independent parameters, a screw has five independent
parameters. If the pitch h is zero, the screw coordinates are the same as the
line coordinates. A screw has infinite pitch if AS = 0. A screw is an element
of P5.

A twist is a six-dimensional entity which completely describes the motion
of a rigid body in ℜ3. It can be thought of as a screw with a magnitude.
Denoting a twist by V, we can write

V = c

(
AS

|AS|
;

AS0

|AS|

)
, c ∈ ℜ1 (12)

In terms of (normalized) line coordinates, we can write

V = c
(
Q̂A ; AQ̂0 + hQ̂A

)
, c ∈ ℜ1 (13)

The six independent parameters are the four in normalized line coordinates
(Q̂A ; AQ̂0), the pitch h, and the magnitude c. A twist of zero pitch is pure
rotation and is of the form θ(Q̂A ; AQ̂0) where θ is the amount of rotation.
A twist of infinite pitch is a pure translation and is of the form (0; dQ̂A),
where d is the amount of translation.
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