
A Brief Introducion to MAPLE�

1 Introduction

MAPLE� is a symbolic maniplation package released under commercial license by MAPLESOFT. In its most basic form, as
in other symbolic manipulation softwares, it can perform a large number of mathematical operations on symbols representing
variables and on strings consisting of several symbols. This is in contrast to common numerical computation packages which
perform mathematical operations on numbers. The output of MAPLE is in the form of symbols and strings which can
be evaluated by assigning numbers to the symbols and strings. In its current sophisticated from, MAPLE can integrate
seamlessly numerical and symbolic calculations, text and math, graphics and images, and several other kinds of information.
For more details, visit Maplesoft O�cial Website. In the context of robotics and the material contained in the Modules,
MAPLE has been used extensively to obtain and solve the algebraic equations arising in kinematic analysis of serial and
parallel manipulators. It has been used extensively to obtain dynamic equations of motion of manipulators and for dynamic
analysis of manipulators. The capability of symbolic computations allows one to develope �error free� equations in kinematics
and dynamics of manipulators, which in turn is solved to obtain numerical results when required. This tutorial is intended
as a brief introduction to using MAPLE, speci�cally in the context of robotics, although it's applications are much more
wider.

2 Using Maple

At the time of writing this tutorial, the running version was Maple 14. The company o�ers subsidized versions of the software
to students for academic/non-commercial usage. Please check the o�cial site for pricing and other details. Once a copy is
obtained, install the software following the instructions in their installation guide.

Once installed, the software may be launched by

1. Windows (All Versions): Start Menu�Programs�Maplesoft�Maple (version number) or just launching the short-
cut(if it exists)on the desktop.

2. Linux/Unix: Menu�Maple (version number) or just launching the shortcut(if it exists) on the desktop.

The GUI comes up as shown in the screenshot below.

Figure 1: MAPLE GUI

2.1 Di�erent modes/environments available in MAPLE

MAPLE has two interfaces for working namely the notebook mode & the worksheet mode.

1. Worksheet Mode: This is the 'conventional' command line interface of MAPLE, included in the package since it's
inception. This interface allows the users to enter all the commands using a keyboard alone, and calls for minimal use
of menus & GUI.
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(a) Traditional MAPLE problem-solving environment

(b) Enter problems at a prompt ([ >)
(c) Math entered and displayed in 2-D or 1-D

(d) Solve math problems with right-click menu on output

2. Document Mode: This is the 'modern' & highly interactive interface of MAPLE & has been recently incorporated
into the package. This interface allows the users to work with MAPLE just like one works on a paper by employing the
highly dynamic & interactive GUI environment. User need not memorize complicated commands and only minimal
commands need to be remembered. Other commands may be added from the menu driven interface. As MAPLE
quotes

(a) Quick problem-solving and free-form, rich content composition

(b) No prompt ([ >) displayed
(c) Math is entered and displayed in 2-D

(d) Solve math problems with right-click menu on input and output

As far as this tutorial is concerned, we'll be dealing with the minimal and traditional worksheet mode of MAPLE. This
is because it is the more widely accepted method as of today and, in addition, the notebook mode has only been recently
introduced feature. It is present only in the latest versions of the software.

To start a �le in MAPLE in worksheet mode, select File�New�Worksheet Mode.

2.2 Basic commands

Once a new worksheet is opened, a command prompt appears as shown below.

[ >
This is the MAPLE command prompt and we will have to execute commands and computations at this prompt. Any

MAPLE code is a series of expressions. Each expression must be explicitly terminated with a semicolon ';' (using a colon
':' instead supresses the output). If a semicolon or colon is not present at the end of a command, MAPLE will interpret
the next command line as a continuation of the previous command and the �rst command won't be executed immediately.
Expressions will only be evaluated or simpli�ed to a certain point automatically; further simpli�cations must be explicitly
asked for.
Tip: Once you've done something in a program step (like rede�ne a variable), it stays done unless you change it again. Even
if you click on an earlier step and re-execute it, the e�ect of the change remains. If a program does not seem to be working,
before trying anything else re-execute all steps from the beginning by clicking on the Edit�Execute Worksheet. (You can
also select a set of commands and re-execute them by selecting Execute�Selection.)

Basics

Variables like x, f, a, bar, etc. are simply symbols by default. They can also be assigned values with the ':=' operator.
Similar to functional programming languages like Scheme or Lisp, variables have no type, so they can refer to any expression
(symbols, numbers, matrices, procedures...). However, every expression in MAPLE does have a type � can be checked by
typing out 'whattype' at the command prompt.

By default, all the simpli�cations MAPLE does are exact and symbolic. Rational, complex, and algebraic numbers are
all supported. To �nd an approximation, use command 'evalf'. To evaluate an expression, substituting a speci�c value for
one variable, use command 'eval'.

Sometimes a group of functions is grouped into a package or module. To access these, you can use the long form of the
command, such as LinearAlgebra[CharacteristicPolynomial], or use the �with� command, as in with(LinearAlgebra),
to lift those functions to the top namespace.

Vectors, Matrices & Linear Algebra

Matrices have gone through a few historical eras in MAPLE. We will be using the current preferred representation, from
the LinearAlgebra package. Note that this is not the same as the old linalg package. Our matrices and vectors will be
of type Matrix and Vector resp., not matrix and vector. This important point is to be noted. Additional information on
di�erences between the two packages can be obtained from the following URL's.

� A Short Extract from Dr. Francis Wright's 'Computing in MAPLE'

� Comparing the linalg and LinearAlgebra packages

When one types �with(LinearAlgebra)� a large number of routines are mported into the namespace. Most of the routines
one needs are present � the most useful ones are listed at the end of this section for reference.

To create a Matrix or a Vector, one can use the functions Matrix and Vector, which give many options for instantiating
the structures. For small, �xed Matrices and Vectors, one can use the shortcuts <...>, with , separating the entries of a
column vector, and | separating the entries of a row vector. A Matrix is just a row vector of column vectors, or a column
vector of row vectors. For example, the code <�<1,4>|<2,5>| <3,6>�> produces the matrix
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[
1 2 3
4 5 6

]
To access the entries of a Matrix or Vector, use the subscript brackets [] just as with lists or sets. Of course, Matrices

will need two indices. Note that the entries of a Matrix by default are indexed in row-major order; that is, the �rst index
selects the row, and the second index selects the column within that row. And again the indices start at 1. The dimensions
can be obtained with the Dimensions command.

The functions for arithmetic on Matrices and Vectors are all in the LinearAlgebra package � type ?LinearAlgebra or
with(LinearAlgebra); to see a listing of them. Note that this includes basic arithmetic such as Multiply and Add, as
well as matrix invariant computations such as Determinant and Rank. Another computation that is useful is LinearSolve,
which gives a �nds a solution vector x to the system Ax = b, for a given matrix A and vector b.

Miscelleanous

For running big computations, one can prevent "bytes used" messages with
kernelopts(printbytes=false). For timing a program, use the time() command to get the total CPU time used so
far in the execution.

Appendix of Commonly used Commands

Given below are some of the most commonly used commands in MAPLE. Type ?command followed by the command name
to get a synopsis of how they work.

� Basic Arithmetic: +, -, *, /, ^, min, max, abs, I, eval, subs, solve, expand, simplify, sum, product,
numer , denom, normal

� Floating Point: evalf, Digits, sqrt, log, log[b], floor, ceil, Pi

� Integers: igcd, igcdex, ilcm, iquo, irem, isprime, nextprime, ifactor, rand, factorial, binomial

� Modular Arithmetic: mod, mods, modp, &^

� Programming: proc, return, if, for, while, do, local, global, nargs, error, print, lprint

� Comparison: =, <, >, <=, >=, <>

� Data: :=, �, "", �, whattype, type

� Lists, Sets, Sequences: [], {}, seq, nops, op, union, intersect, minus, subset

� Polynomials: degree, sort, coeffs, lcoeff, tcoeff, indets, collect, content, primpart,
with(PolynomialTools)

� Polynomial Arithmetic: gcd, gcdex, lcm, +, -, *, ^, quo, rem, randpoly, factor, factors, irreduc,
sqrfree, roots, modp1, ConvertIn, ConvertOut

� Inert Commands: Gcd, Gcdex, Lcm, Eval, Quo, Rem, Factor, Factors, Roots, ...

� Linear Algebra: <�<...>�>, with(LinearAlgebra), Matrix, Vector, Dimension, RowDimension,
ColumnDimension, Determinant, Add, Multiply, MatrixInverse, RandomMatrix, LinearAlgebra[Modular],
Modular:-Copy, Modular:-Mod, Modular:-Create

� Miscellaneous: kernelopts(printbytes=false), time, showtime, quit, read, save, unwith, restart

List of Keyboard Shortcuts

The following are the key bindings/shortcuts useful while working in the MAPLE worksheet interface.

Sl. No. Keyboard Shortcut Function
1 Ctrl + B Cursor Left
2 Ctrl + F Cursor Right
3 Ctrl + A Move to the Beginning of the Line
4 Ctrl + E Move to the End of the Line
5 Ctrl + W Move One Word Right
6 Ctrl + Y Move One Word Left
7 Ctrl + ] Move to Matching Parenthesis, Brace or Square Bracket
8 Ctrl + D Delete (to Right of Cursor)
9 Ctrl + H Backspace (to Left of Cursor)
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10 Ctrl + X or Ctrl + G Clear the Line
11 Ctrl + K Clear to the End of Line
12 Ctrl + U Undo Changes to the Line
13 Ctrl + P Previous Command From the History
14 Ctrl + N Next Command From the History
15 Ctrl + R Find Matching Command From the History
16 Ctrl + Space or Tab Command Completion
17 Ctrl + T Show Completion Matches
18 Ctrl + C Interrupt the Currently Executing Command
19 Ctrl + _ Stop the Currently Executing Command in the Debugger
20 Ctrl + V Toggle Insert or Overwrite Mode
21 Ctrl + L Redraw the Current Prompt and any text entered

2.3 Tips for Troubleshooting in MAPLE

� Make sure there is a semicolon or a colon at the end of the command. Otherwise, MAPLE won't process the information.
Remember that a colon will suppress the output so Maple will process the command but it won't show anything on
the screen. With a semicolon, all relevant output should be displayed. Write the product 2x as 2*x.

� MAPLE follows the Orders of Operation (�rst do multiplication, then addition). If it seems to give wrong answers,
then insert parentheses in the appropriate places.

� Don't forget about the command evalf. Without it, MAPLE may simplify the answer. The command simplify is
also often useful.

� Remember that both log and ln use e as their base. log does not use base 10.

� To assign variable, expressions and functions, use the := operator. A plain equals sign has a di�erent meaning in
MAPLE.

� If a function is to be used instead of an expression, remember to use functional notation consistently.

� Maple is case sensitive. �pi� is not the same thing as Pi � (Pi is the actual constant 3.14159...).

� When a saved worksheet in MAPLE is opened, run the Format�Execute Worksheet command from the menu, so that
MAPLE "knows" everything that has been already worked on.

� If MAPLE is doing strange things to your variables, check through the rest of the worksheet and make sure that the
same letter has not been used to name two di�erent things. Because of this possibility, it's a good idea to save di�erent
problems in di�erent �les. Another way to solve this problem is to enter the command restart at the prompt. This
will clear any values that have been previously assigned.

2.4 Sources for Help & References

MAPLE has an extensive and well-documented help system, which serves as the best and freely available readymade reference
at your �ngertips. This can be further supplemented by the many online introductory tutorials and books from various
publishing houses, for those are interested. In addition, Maplesoft, the company behind Maple, o�ers free webinars, user case
studies and application briefs in their site. Most importantly, they have posted more than 2100 preprogrammed MAPLE
notebooks dealing with problems in highly diverse areas, which in turn may be accessed from the Maple Application Center
and may be used as tutorials which can be used hands-on to demonstrate in MAPLE environment.

3 Examples

We have two examples in this tutorial. First is the classic planar 2R manipulator consisting of two-links and two revolute
joints, and the second is the well-known one degree-of-freedom planar four-bar mechansm. In both the examples the dynamic
equations of motion are derived in a symbolic form. It is assumed that the link parameters, and mass properties are known.
Once the equations of motion are derived, they can be solved numerically in the MAPLE environment. The numerical
solution is not discussed in this example.

3.1 2R Manipulator

Figure 2 shows the well-known planar 2R manipulator. The mass, length, location of centre of mass and Izz component of
inertia of the two links are denoted by (mi, li, ri, Ii), i = 1, 2. The generalised coordinates are θ1(t) and θ2(t) and the torques

at the two joints are τ1(t) and τ2(t). The gravity acts along the negative Ŷ0 direction.
We present in detail the steps in MAPLE which give rise to the equations of motion for the planar 2R manipulator.

1. Open up the MAPLE environment in Worksheet mode and save the �le with an appropriate name of your choice.

4

http://www.maplesoft.com/applications/


Link 2

O2

X̂ 0
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Figure 2: The planar 2R manipulator

2. We start by de�ning the kinetic energy of the 2R manipulator which is given by

KE = 0.5m1r1
2dtheta1

2 + 0.5 I1dtheta1
2 + 0.5 I2 (dtheta1 + dtheta2)

2

+ 0.5m2[l1
2dtheta1

2 + r2
2 (dtheta1 + dtheta2)

2
+ 2 l1r2 cos (θ2) dtheta1 (dtheta1 + dtheta2)]

To de�ne the above in MAPLE and assign it to variable KE, we give as follows.
[>KE:=.5*m[1]*(r[1]*dtheta[1])^2+.5*I[1]*dtheta[1]^2+.5*I[2]*(dtheta[1]+dtheta[2])^2
+.5*m[2]*[l[1]^2*dtheta[1]^2+r[2]^2*(dtheta[1]+dtheta[2])^2

+2*l[1]*r[2]*cos(theta[2])*dtheta[1]*(dtheta[1]+dtheta[2])]

Note: For producing a subscript, the text has to be enclosed in square brackets i.e. dtheta1 is to be written as
dtheta[1]. Also it may be noted that Greek alphabets like α, β, γ, θ etc. can be used in MAPLE by giving typing out
the names of the alphabet in english. For example, α may be spelt as alpha, likewise β as beta, γ as gamma etc.

Two notable and highly useful features introduced in MAPLE include what are called as symbol selection and command
completion. These features act as an excellent aid for the programmer by helping in command completion, thereby
removing the burden of remembering the command names from the programmer's shoulders. For example, if one does
not know the complete input to be given for the symbol ϵ, all one needs to do is to enter leading characters of the
command followed by [Esc] key (or [Ctrl][Shift][Space]), i.e. probably eps [Esc] in this case. The software provides an
in situ list of the probable commands/ symbols starting with the letters eps, from which the user may select whatever
he intended to type out.

3. Next, we de�ne the Potential Energy of the manipulator which is given by

PE = m1gr1 sin (θ1) +m2g (l1 sin (θ1) + r2 sin (θ1 + θ2))

We de�ne this in MAPLE as follows.
[>PE:=m[1]*g*r[1]*sin(theta[1])+m[2]*g*(l[1]*sin(theta[1])+r[2]*sin(theta[1]+theta[2]))

4. Next we obtain the Lagrangian of the system as the di�erence between kinetic and potential energies.
[>L:=KE-PE

5. Once the Lagrangian is derived, we can formulate the Euler-Lagrange(E-L) equations. The E-L equations are of the
form

d

dt
(
∂L
∂q̇i

)− dL
dqi

= τi(t) for i = 1 to dof

As a part of deriving these equations, symbolic di�erentiation of the Lagrangian with respect to joint variables (qi)
and its derivative (q̇i) is required. The angular rates have been denoted as dtheta1 and dtheta2 in the expression for
Lagrangian. MAPLE needs to be informed that these along with the variables θ1 & θ2 are variables of time. These
variables have to be properly substituted with subexpressions which indicate them as explicit time variables. This
is where subs come into picture. According to MAPLE, this command is used to substitute sub-expressions into an
expression. The syntax is subs(substituting expression, main expression). Therefore we de�ne the substituting
expression as
[>symb_time:={dtheta[1]=diff(theta[1](t),t), dtheta[2]=diff(theta[2](t),t),

theta[1]=theta[1](t), theta[2]=theta[2](t)}
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6. Next, we evaluate the term inside the parentheses in the E-L equations, namely ∂L
∂q̇i

, by the following command.

[>temp[1]:=collect(simplify(subs(symb_time, diff(L, dtheta[1]))),{m[1], m[2]})

It may be noted that the commands collect & simplify do just what their names indicate, namely collect terms
simplify exressions at an elementary levelsuch as expanding square of sums, trigonometric expansions etc. More details
on them may be obtained from MAPLE help.

The output for the expression will be

temp1 = m1r1
2 d

dt
θ1 (t) + [1.0 l1

2 d

dt
θ1 (t) + 1.0 r2

2

(
d

dt
θ1 (t) +

d

dt
θ2 (t)

)
+ 1.0 l1r2 cos (θ2 (t))

(
d

dt
θ1 (t) +

d

dt
θ2 (t)

)
+ 1.0 l1r2 cos (θ2 (t))

d

dt
θ1 (t)]m2 + [0.0] + I1

d

dt
θ1 (t) + I2

d

dt
θ1 (t) + I2

d

dt
θ2 (t)

Moving along similar lines, we derive the same term for the E-L equation with respect to θ2 by the command
[>temp[2]:=collect(simplify(subs(symb_time, diff(L, dtheta[2]))), {m[1], m[2]})

Which in turn gives the output as,

temp2 = [1.0 r2
2

(
d

dt
θ1 (t) +

d

dt
θ2 (t)

)
+ 1.0 l1r2 cos (θ2 (t))

d

dt
θ1 (t)]m2 + I2

d

dt
θ1 (t) + I2

d

dt
θ2 (t) + [0.0]

7. Next, we derive the �nal form of the �rst E-L Lagrange equation for the system by entering the following.
[>eq[1]:=collect(simplify(diff(temp[1], t)-subs(symb_time, diff(L, theta[1]))-tau[1], trig),

{diff(theta[1](t), t, t), diff(theta[2](t), t, t)}) Which gives us the �rst equation as

(
m1r1

2 + I1 + I2
) d2

dt2
θ1 (t) +m2gr2 cos (θ1 (t) + θ2 (t)) + [l1

2 d2

dt2
θ1 (t) + r2

2

(
d2

dt2
θ1 (t) +

d2

dt2
θ2 (t)

)
− 1.0 l1r2 sin (θ2 (t))

(
d

dt
θ2 (t)

)(
d

dt
θ1 (t) +

d

dt
θ2 (t)

)
+ l1r2 cos (θ2 (t))

(
d2

dt2
θ1 (t) +

d2

dt2
θ2 (t)

)
− 1.0 l1r2 sin (θ2 (t))

(
d

dt
θ2 (t)

)
d

dt
θ1 (t) + l1r2 cos (θ2 (t))

d2

dt2
θ1 (t)]m2 + [0.0] +m2gl1 cos (θ1 (t)) + I2

d2

dt2
θ2 (t)

+m1gr1 cos (θ1 (t))− 1.0 τ1 = 0

Similarly, second equation for system is obtained via the command
[>eq[2]:=collect(simplify(diff(temp[2], t)-subs(symb_time, diff(L, theta[2]))-tau[2], trig),

{diff(theta[1](t), t, t), diff(theta[2](t), t, t)})

and, we get

[r2
2

(
d2

dt2
θ1 (t) +

d2

dt2
θ2 (t)

)
−1.0 l1r2 sin (θ2 (t))

(
d

dt
θ2 (t)

)
d

dt
θ1 (t)+ l1r2 cos (θ2 (t))

d2

dt2
θ1 (t)]m2+[0.0]+I2

d2

dt2
θ1 (t)

+I2
d2

dt2
θ2 (t)−0.50m2[−2.0 l1r2 sin (θ2 (t))

(
d

dt
θ1 (t)

)(
d

dt
θ1 (t) +

d

dt
θ2 (t)

)
]+m2gr2 cos (θ1 (t) + θ2 (t))−1.0 τ2 = 0

8. Now that the E-L equations have been derived, further manipulations like collecting the terms, expanding any if
required can be carried using the commands collect & simplify. Once the equations are in the appropriate form,
these may be exported to MATLAB and solved numerically by solvers like ODE45 (which uses Runge-Kutta methods).
A signi�cant point to be noted here is that, to transfer this equation to MATLAB, you just need to copy the equation
from MAPLE using Ctrl+C & paste it in MATLAB environment using Ctrl+V. MAPLE will take care of proper syntax
management between the two computing environments.

3.2 Four-bar Mechanism

Figure 3 shows the four-bar mechanism. The geometry and inertial parameters are as shown in the �gure. The four-bar
mechanism is perhaps the simplest closed-loop mechanism with one degree of freedom. Hence it can have only one actuated
torque τ1(t). It is assumed to be acting in the joint with joint variable θ1(t). We present the steps in MAPLE which can
be used to obtain the equations of motion of the four-bar mechanism. The steps are described in a more concise manner as
most of the commands and syntaxes used here has been explained in the previous example. The commands will be listed
out along with their respective outputs.

1. De�ne the Kinetic and Potential energies by the command
[>KE:=.5*m[1]*r[1]^2*dtheta[1]^2+.5*I[1]*dtheta[1]^2+.5*I[2]*(dtheta[1]+dphi[2])^2
+.5*m[2]*(l[1]^2*dtheta[1]^2+r[2]^2*(dtheta[1]+dphi[2])^2

+2*l[1]*r[2]*cos(phi[2])*dtheta[1]*(dtheta[1]+dphi[2]))+.5*m[3]*r[3]^2*dphi[1]^2+.5*I[3]*dphi[1]^2

&
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Figure 3: A four-bar mechanism

[>PE:=m[1]*g*r[1]*sin(theta[1])+m[2]*g*(l[1]*sin*theta[1]+r[2]*sin(theta[1]+phi[2]))
+m[3]*g*r[3]*sin(phi[1])

Which gives the output,

KE = 0.5m1r1
2dtheta1

2 + 0.5 I1dtheta1
2 + 0.5 I2 (dtheta1 + dphi2)

2

+ 0.5m2

(
l1

2dtheta1
2 + r2

2 (dtheta1 + dphi2)
2
+ 2 l1r2 cos (ϕ2) dtheta1 (dtheta1 + dphi2)

)
+ 0.5m3r3

2dphi1
2 + 0.5 I3dphi1

2

PE = m1gr1 sin (θ1) +m2g (l1 sin (θ1) + r2 sin (θ1 + ϕ2)) +m3gr3 sin (ϕ1)

2. Therefore, the Lagrangian may be written as
[>L=KE-PE
Which gives the output as

L = 0.5m1r1
2dtheta1

2 + 0.5 I1dtheta1
2 + 0.5 I2 (dtheta1 + dphi2)

2

+ 0.5m2

(
l1

2dtheta1
2 + r2

2 (dtheta1 + dphi2)
2
+ 2 l1r2 cos (ϕ2) dtheta1 (dtheta1 + dphi2)

)
+ 0.5m3r3

2dphi1
2 + 0.5 I3dphi1

2 −m1gr1 sin (θ1)−m2g (l1 sin (θ1) + r2 sin (θ1 + ϕ2))−m3gr3 sin (ϕ1)

3. Unlike the case of a 2R manipulator, where there were only active variables, there exist passive variables in this problem.
The passive variables have to be eliminated using the loop closure constraint equations. In this case, the active variable
is θ1 and passive variables are ϕ1, ϕ2. To eliminate the passive variables, the loop closure equations to be used are,
[>constr[1]:=l[1]*cos(theta[1])+l[2]*cos(theta[1]+phi[2])-l[3]*cos(phi[1])-l[0]
& [>constr[2]:=l[1]*sin(theta[1])+l[2]*sin(theta[1]+phi[2])-l[3]*sin(phi[1])
Which gives,

l1 cos (θ1) + l2 cos (θ1 + ϕ2)− l3 cos (ϕ1)− l0 = 0

l1 sin (θ1) + l2 sin (θ1 + ϕ2)− l3 sin (ϕ1) = 0

4. Next we calculate the terms involving derivatives with respect to rates in the E-L equations. For the �rst equation
(with respect to θ1)

[>trm[11]:=collect(simplify(diff(subs(symb_time, diff(L, dtheta[1])), t), trig), {m[1], m[2]})

Which in turn gives

m1r1
2 d2

dt2
θ1 (t) +

(
l1

2 d2

dt2
θ1 (t)− 1.0 l1r2 sin (ϕ2 (t))

(
d

dt
ϕ2 (t)

)2

+ r2
2 d2

dt2
θ1 (t) + r2

2 d2

dt2
ϕ2 (t)

− 2.0 l1r2 sin (ϕ2 (t))

(
d

dt
ϕ2 (t)

)
d

dt
θ1 (t) + 2.0 l1r2 cos (ϕ2 (t))

d2

dt2
θ1 (t) + l1r2 cos (ϕ2 (t))

d2

dt2
ϕ2 (t)

)
m2

+ I1
d2

dt2
θ1 (t) + I2

d2

dt2
θ1 (t) + I2

d2

dt2
ϕ2 (t)
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Similarly, for the corresponding term in the second equation(with respect to ϕ1), we have

[>trm[12]:=collect(simplify(diff(subs(symb_time,diff(L, dphi[2])),t),trig),{m[1], m[2]})

This gives the output as,(
r2

2 d2

dt2
θ1 (t) + r2

2 d2

dt2
ϕ2 (t)− 1.0 l1r2 sin (ϕ2 (t))

(
d

dt
ϕ2 (t)

)
d

dt
θ1 (t) + l1r2 cos (ϕ2 (t))

d2

dt2
θ1 (t)

)
m2

+ I2
d2

dt2
θ1 (t) + I2

d2

dt2
ϕ2 (t)

Finally, the same term appearing in the third equation(with respect to ϕ2) is derived using,

[>trm[13]:=collect(simplify(diff(subs(symb_time,diff(L, dphi[1])), t),trig),{m[1], m[2]})

The term comes out as

1.0m3r3
2 d2

dt2
ϕ1 (t) + 1.0 I3

d2

dt2
ϕ1 (t)

5. Now we move on to construct the E-L equations of motion. As already mentioned, we have three variables in this
problem, as the �gure indicates, namely θ1, ϕ1 and ϕ2. These can be constructed as follows.
[>eq[1]:=collect(simplify(expand(trm[11]-subs(symb_time, diff(L, theta[1]))-tau[1], trig)),

[diff(theta[1](t), t, t), diff(phi[2](t), t, t), diff(phi[1](t), t, t), diff(phi[2](t), t),

diff(theta[1](t), t), diff(phi[1](t), t), theta[1](t), phi[1](t), phi[2](t)])

[>eq[2]:=collect(simplify(expand(trm[12]-subs(symb_time, diff(L, phi[2]))-tau[2], trig)),

[diff(theta[1](t), t, t), diff(phi[2](t), t, t), diff(phi[1](t), t, t), diff(phi[2](t), t),

diff(theta[1](t), t), diff(phi[1](t), t), theta[1](t), phi[1](t), phi[2](t)])

[>eq[3]:=collect(simplify(expand(trm[13]-subs(symb_time, diff(L, phi[1]))-tau[3], trig)),

[diff(theta[1](t), t, t), diff(phi[2](t), t, t), diff(phi[1](t), t, t), diff(phi[2](t), t),

diff(theta[1](t), t), diff(phi[1](t), t), theta[1](t), phi[1](t), phi[2](t)])

These three statements, upon execution give the three equations as(
m1r1

2+I1+I2+m2l1
2+m2r2

2+2.0m2l1r2 cos (ϕ2 (t))
) d2

dt2
θ1 (t)+

(
I2+m2l1r2 cos (ϕ2 (t))+m2r2

2
) d2

dt2
ϕ2 (t)

+m2gr2 cos (θ1 (t)) cos (ϕ2 (t))− 1.0m2gr2 sin (θ1 (t)) sin (ϕ2 (t))− 1.0m2l1r2 sin (ϕ2 (t))

(
d

dt
ϕ2 (t)

)2

+m1gr1 cos (θ1 (t)) +m2gl1 cos (θ1 (t))− 2.0m2l1r2 sin (ϕ2 (t))

(
d

dt
ϕ2 (t)

)
d

dt
θ1 (t)− 1.0 τ1 = 0

(
I2 +m2l1r2 cos (ϕ2 (t)) +m2r2

2
) d2

dt2
θ1 (t) +

(
I2 +m2r2

2
) d2

dt2
ϕ2 (t)− 1.0 τ2

+m2l1r2 sin (ϕ2 (t))

(
d

dt
θ1 (t)

)2

+m2gr2 cos (θ1 (t)) cos (ϕ2 (t))− 1.0m2gr2 sin (θ1 (t)) sin (ϕ2 (t)) = 0

(
m3r3

2 + I3
) d2

dt2
ϕ1 (t) +m3gr3 cos (ϕ1 (t))− 1.0 τ3 = 0

These are the three E-L equations for the four-bar mechanism. It may be noted τ2(t) and τ3(t) will be zero since there
is no actuator at the passive joints. It can be non-zero if friction or some other torques are bein modeled.

6. Now, we move onto extraction of the Mass Matrix, which is obtained by collecting the coe�cients of the second
derivatives of the generalized coordinates(variables). This is done as follows.

[>M:=Matrix(3, 3, [coeff(eq[1],diff(theta[1](t), t, t)),

coeff(eq[1],diff(phi[2](t), t, t)), coeff(eq[1], diff(phi[1](t), t, t)),

coeff(eq[2], diff(theta[1](t), t, t)), coeff(eq[2], diff(phi[2](t), t, t)),

coeff(eq[2], diff(phi[1](t), t, t)), coeff(eq[3], diff(theta[1](t), t, t)),

coeff(eq[3], diff(phi[2](t), t, t)), coeff(eq[3], diff(phi[1](t), t, t))])

M =


m1r1

2 + I1 + I2 +m2l1
2 +m2r2

2 + 2.0m2l1r2 cos (ϕ2 (t)) I2 +m2l1r2 cos (ϕ2 (t)) +m2r2
2 0

I2 +m2l1r2 cos (ϕ2 (t)) +m2r2
2 I2 +m2r2

2 0

0 0 m3r3
2 + I3


Further, the explicit dependence on time, of the generalized coordinates are removed using the command
[>M_tmp := subs({phi[1](t) = q[3], phi[2](t) = q[2], theta[1](t) = q[1]}, M)

Which gives the output

Mtmp =


m1r1

2 + I1 + I2 +m2l1
2 +m2r2

2 + 2.0m2l1r2 cos (q2) I2 +m2l1r2 cos (q2) +m2r2
2 0

I2 +m2l1r2 cos (q2) +m2r2
2 I2 +m2r2

2 0

0 0 m3r3
2 + I3


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7. Next, we extract the Coriolis/Centripetal matrix. This is constructed by collecting the coe�cients of the quadratic
terms. However, an alternate easier approach would be to use the formula involving the elements of the mass matrix
M, which is given by

Cij =
1

2

n∑
k=1

(
∂Mij

∂qk
+

∂Mik

∂qj
− ∂Mkj

∂qi

)
q̇k

This can be implemented in MAPLE by the following code.
[> Ctmp := Matrix(3, 3);

for i to 3 do

for j to 3 do

Ctmp[i, j]:=0;

for k to 3 do

tmp_coeff:=subs({q[1] = theta[1](t), q[2] = phi[2](t), q[3] = phi[1](t)},

.5*(diff(M_tmp[i, j], q[k])+diff(M_tmp[i, k], q[j])-(diff(M_tmp[k, j], q[i]))));

Ctmp[i, j]:=Ctmp[i, j]+tmp_coeff*(diff(q[k](t), t))

end do

end do

end do;

C:=subs({q[1](t) = theta[1](t), q[2](t) = phi[2](t), q[3](t) = phi[1](t)}, Ctmp);

The above set of commands gives the C matrix as

C =


−1.0m2l1r2 sin (ϕ2 (t))

d
dtϕ2 (t) −1.0m2l1r2 sin (ϕ2 (t))

d
dtθ1 (t)− 1.0m2l1r2 sin (ϕ2 (t))

d
dtϕ2 (t) 0.0

1.0m2l1r2 sin (ϕ2 (t))
d
dtθ1 (t) 0.0 0.0

0.0 0.0 0.0


8. Next, we extract the gravity vector. This can be obtained from the expression of the Potential Energy. We have

Gi =
∂(PE)

∂qi

Using the above formula, we can compute the gravity vector using
[> G:=subs({phi[1]=phi[1](t), phi[2]=phi[2](t), theta[1]=theta[1](t)},

Vector(3, [diff(PE,theta[1]), diff(PE,phi[2]), diff(PE,phi[1])]))

The output for the above command gives the gravity vector as,

G =


m1gr1 cos (θ1 (t)) +m2g (l1 cos (θ1 (t)) + r2 cos (θ1 (t) + ϕ2 (t)))

m2gr2 cos (θ1 (t) + ϕ2 (t))

m3gr3 cos (ϕ1 (t))


9. Now, we bring the constraints into picture. We develop the constraint matrix Ψ, which is the derivative of the constraint

equations with respect to the generalized coordinates θ1, ϕ1 & ϕ2. This is done as follows.
[> psi := subs({phi[1] = phi[1](t), phi[2] = phi[2](t), theta[1] = theta[1](t)},

Matrix(2, 3, [[diff(constr[1],theta[1]),diff(constr[1],phi[1]), diff(constr[1],phi[2])],

[diff(constr[2],theta[1]), diff(constr[2],phi[1]), diff(constr[2],phi[2])]]))

The constraint matrix is obtained as follows.

Ψ =

[
−l1 sin (θ1 (t))− l2 sin (θ1 (t) + ϕ2 (t)) l3 sin (ϕ1 (t)) −l2 sin (θ1 (t) + ϕ2 (t))

l1 cos (θ1 (t)) + l2 cos (θ1 (t) + ϕ2 (t)) −l3 cos (ϕ1 (t)) l2 cos (θ1 (t) + ϕ2 (t))

]

Using the constraint matrix Ψ, we can eliminate the two Lagrange multipliers which needs to be introduced for each
of the constraint equations before appending them to the augmented Lagrangian L. Once the Lagrangian multipliers
are eliminated, we will be left with a set of three second-order, ordinary di�erential equations of motion for the planar
four-bar mechanism. The steps which follow are part of simpli�cation procedures before the system is numerically
solved for some known initial conditions.
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10. We know that the equations of dynamics derived using E-L equations (or by any method for that matter) can be cast
in the generic form as

[M(q)]q̈ + [C(q, q̇)]q̇ +G(q) = τ + [Ψ(q)]Tλ

Where τ is the vector of external torques/forces, Ψ is the Jacobian of the constraints and λ's are the corresponding
Lagrangian multipliers. The constraint equations will be of the form

[Ψ(q)]q̇ = 0

By simple algebraic manipulation, the Lagrangian multipliers can be eliminated, to arrive at the following generic form
for equations of motion.

[M ]q̈ = (τ − [C]q̇ −G)− [Ψ]T ([Ψ][M ]−1[Ψ]T )−1
{
[Ψ][M ]−1(τ − [C]q̇ −G) + ˙[Ψ]q̇

}
This on further simpli�cation yields the following expression.

q̈ =
(
[M ]−1 − [M ]−1[Ψ]T ([Ψ][M ]−1[Ψ]T )−1[Ψ][M ]−1

)
(τ −G)− [M ]−1[Ψ]T ([Ψ][M ]−1[Ψ]T )−1

(
Ψ̇−Ψ[C]

)
We will derive the symbolic form of various terms coming up in the above expression, so that they may be used directly
in any numerical computation routine.

11. Note that from this step on, only the MAPLE commands will be provided and outputs are skipped.

To compute [M ]−1

[> tmp[5]:=MatrixInverse(M)

Next, to compute [Ψ][M ]−1[Ψ]T we give

[> tmp[1]:=MatrixMatrixMultiply(psi, MatrixMatrixMultiply(MatrixInverse(M, method = subs),

MTM[transpose](psi)))

To evaluate the term [Ψ]T we use MAPLE commands

[> tmp[3] := MTM[transpose](psi)

To evaluate [Ψ][M ]−1τ − [Ψ][M ]−1G, we use

[> tmp[2]:=MatrixVectorMultiply(psi, MatrixVectorMultiply(MatrixInverse(M), T))

-MatrixVectorMultiply(psi, MatrixVectorMultiply(MatrixInverse(M), G))

Finally, to evaluate the term ˙[Ψ]− [Ψ][M ]−1[C],

[> tmp[4]:=map(diff, psi, t)-MatrixMatrixMultiply(psi, MatrixMatrixMultiply(MatrixInverse(M), C))

12. Once the above terms are derived, the symbolic expressions may be transferred to any numercial computation environ-
ment, and the above formed system of ordinary di�erential equations can be solved with proper initial conditions.

4 Concluding Remarks

In the above, two examples are presented to introduce a user to MAPLE. A word of caution would be very much apt at this
point. MAPLE is only a software and can never replace the logical/ analytical capabilities of a human brain. For example,
MAPLE cannot easily simplify expressions by factoring out common terms, nor can it locate and remove cancellation terms.
Similarly, it cannot take a symbolic inverse of too complicated a matrix, even if it exists and can be done manually. Therefore,
the results should be validated by verifying the outputs for a simpli�ed and idealized system for which the analytical results
we may already know.

For example, in case of the 2R manipulator, if the second link length is made to approach zero and if the operating range
of the joint angles from a vertical reference are taken to be small, then the symbolic expression for the dynamics should
match with that of a simple pendulum. This can be easily ver�ed.
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