

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 10 - ADVANCED TOPICS

Ashitava Ghosal¹

¹Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian Institute of Science Bangalore 560 012, India Email: asitava@mecheng.iisc.ernet.in

NPTEL, 2010

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 1/99

CONTENTS

- 2 LECTURE 1*
 - Chaos and Non-linear Dynamics in Robots
- 3 LECTURE 2
 - Gough-Stewart Platform based Force-torque Sensors
- 4 Lecture 3*
 - Modeling and Analysis of Deployable Structures
- 5 Module 10 Additional Material
 - References and Suggested Reading

OUTLINE

ONTENTS

2 LECTURE 1*

• Chaos and Non-linear Dynamics in Robots

3 LECTURE 2

• Gough-Stewart Platform based Force-torque Sensors

4 LECTURE 3*

Modeling and Analysis of Deployable Structures

3 Module 10 – Additional Material

• References and Suggested Reading

• Introduction to non-linear dynamics and chaos.

- Chaos in robot control equations.
- Simulation results
- Analytical criteria
- Summary

¹Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and Ravishankar & Ghosal (1999). More details are available in these and other references listed at the end of the module.

- Introduction to non-linear dynamics and chaos.
- Chaos in robot control equations.
- Simulation results
- Analytical criteria
- Summary

¹Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and Ravishankar & Ghosal (1999). More details are available in these and other references listed at the end of the module.

- Introduction to non-linear dynamics and chaos.
- Chaos in robot control equations.
- Simulation results
- Analytical criteria
- Summary

¹Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and Ravishankar & Ghosal (1999). More details are available in these and other references listed at the end of the module.

- Introduction to non-linear dynamics and chaos.
- Chaos in robot control equations.
- Simulation results
- Analytical criteria
- Summary

¹Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and Ravishankar & Ghosal (1999). More details are available in these and other references listed at the end of the module.

- Introduction to non-linear dynamics and chaos.
- Chaos in robot control equations.
- Simulation results
- Analytical criteria
- Summary

¹Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and Ravishankar & Ghosal (1999). More details are available in these and other references listed at the end of the module.

CHAOTIC SYSTEMS

- Deterministic physical and mathematical systems whose time history has sensitive dependence on initial conditions.
- Occurs in *many non-linear* dynamical systems².
 - Observed in a wide range of systems such as in electric circuits, fluid dynamics, double pendulum (Levien and Tan (1993)), large deformation in plates, mechanical and electro-mechanical systems with friction and hysteresis(Sekar and Narayanan (1992)), and several mathematical equations modeling complex phenomenon such as weather.
 - Controversially related to fields such as economics and medical phenomenon such as epilepsy.
 - Origin: classical gravitational 3- body problem (Poincaré late 19th century).
- Duffing's equation (see Moon (1987) & Dowell and Pezeshki (1986)) is a common and well-studied example
 - $\ddot{X} + C\dot{X} + X^3 = B\cos t$
 - Spring-mass-damper system with non-linear 'hardening' spring.
 - Different time histories for different values of C and B.

²See <u>link</u> for more details.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 5 / 99

• • = • • = •

CHAOTIC SYSTEMS

- Deterministic physical and mathematical systems whose time history has sensitive dependence on initial conditions.
- Occurs in *many non-linear* dynamical systems².
 - Observed in a wide range of systems such as in electric circuits, fluid dynamics, double pendulum (Levien and Tan (1993)), large deformation in plates, mechanical and electro-mechanical systems with friction and hysteresis(Sekar and Narayanan (1992)), and several mathematical equations modeling complex phenomenon such as weather.
 - Controversially related to fields such as economics and medical phenomenon such as epilepsy.
 - Origin: classical gravitational 3- body problem (Poincaré late 19th century).
- Duffing's equation (see Moon (1987) & Dowell and Pezeshki (1986)) is a common and well-studied example
 - $\ddot{X} + C\dot{X} + X^3 = B\cos t$
 - Spring-mass-damper system with non-linear 'hardening' spring.
 - Different time histories for different values of C and B.

²See link for more details.

A = A A = A

CHAOTIC SYSTEMS

- Deterministic physical and mathematical systems whose time history has sensitive dependence on initial conditions.
- Occurs in *many non-linear* dynamical systems².
 - Observed in a wide range of systems such as in electric circuits, fluid dynamics, double pendulum (Levien and Tan (1993)), large deformation in plates, mechanical and electro-mechanical systems with friction and hysteresis(Sekar and Narayanan (1992)), and several mathematical equations modeling complex phenomenon such as weather.
 - Controversially related to fields such as economics and medical phenomenon such as epilepsy.
 - Origin: classical gravitational 3- body problem (Poincaré late 19th century).
- Duffing's equation (see Moon (1987) & Dowell and Pezeshki (1986)) is a common and well-studied example
 - $\ddot{X} + C\dot{X} + X^3 = B\cos t$
 - Spring-mass-damper system with non-linear 'hardening' spring.
 - Different time histories for different values of C and B.

²See link for more details.

CHAOTIC SYSTEMS

Figure 1: Non-chaotic behaviour of a Duffing's **Figure 2:** Phase plot $-\dot{X}(t)$ Vs. X(t) – in non-chaotic case

- C = 0.08 B = 0.2, Initial Conditions (3.0,4.0) and (3.01,4.01)
- Two trajectories do not deviate much as time increases and phase plot settle to a limit cycle!

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CHAOTIC SYSTEMS

Figure 4: Phase plot $-\dot{X}(t)$ Vs. X(t) – in chaotic case

• C = 0.05 B = 7.5, Initial Conditions — (3.0, 4.0) and (3.01, 4.01)

• Large deviation in two trajectories as *t* increases and *dense* phase plot.

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional discrete systems (logistic map) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 8 / 99

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional discrete systems (logistic map) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional discrete systems (logistic map) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional discrete systems (logistic map) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional *discrete* systems (*logistic map*) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

KEY FEATURES OF CHAOTIC SYSTEMS

- Main features of a chaotic system:
 - Sensitive dependence on initial conditions (see Duffing's equation) for certain parameter values.
 - Every point in phase space is *eventually visited* Periodic system (single or finitely many periods), phase plot will *settle* in a region (see limit cycle in Duffing's equation).
 - Chaotic system, the attractor is not a fixed point or a limit cycle \rightarrow Strange attractor has fractal dimension!
- Only in *non-linear* dynamical systems Finite dimensional linear systems *can never* exhibit chaos.
- In *continuous* non-linear dynamical system (described by differential equation), the dimension must be 3 or more.
- If non-linear differential equations are *integrable* \rightarrow No chaos!
- One dimensional discrete systems (logistic map) can exhibit chaos.
- Well known book on mathematical aspects of chaos theory Guckenheimer and Holmes (1983).

• Equations of motion of a robot are non-linear (see <u>Module 6</u>, Lecture 1)

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}(\mathsf{q}) + \mathsf{F}(\mathsf{q},\dot{\mathsf{q}}) = \tau$$

- [M(q)] Non-linear mass matrix Trigonometric terms
- C(q, q) Nonlinear Coriolis/Centripetal trigonometric and quadratic products q_iq_j.
- **G**(**q**) Nonlinear gravity term Trigonometric terms.
- $F(q,\dot{q})$ Nonlinear friction and other terms.
- au Control torque/force at joints

• Control schemes are sometimes nonlinear.

• Equations of motion of a robot are non-linear (see <u>Module 6</u>, Lecture 1)

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}(\mathsf{q}) + \mathsf{F}(\mathsf{q},\dot{\mathsf{q}}) = \tau$$

- [M(q)] Non-linear mass matrix Trigonometric terms
- C(q, q) Nonlinear Coriolis/Centripetal trigonometric and quadratic products q_iq_j.
- **G**(**q**) Nonlinear gravity term Trigonometric terms.
- $F(q,\dot{q})$ Nonlinear friction and other terms.
- au Control torque/force at joints
- Control schemes are sometimes nonlinear.

• To track a desired trajectory, various control schemes are used (see <u>Module 7</u>, Lecture 3).

• Proportional + Derivative(PD) or a PID control scheme

$$\tau_i = \ddot{q}_{d_i} + K_{P_i}(q_{d_i} - q_i) + K_{v_i}(\dot{q}_{d_i} - \dot{q}_i) + K_{l_i} \int (q_{d_i} - q_i) dt$$

• Model-based control schemes

$$\tau = \widehat{[\mathsf{M}(\mathsf{q})]}\tau' + \widehat{\mathsf{C}(\mathsf{q},\mathsf{\dot{q}})} + \widehat{\mathsf{G}(\mathsf{q})} + \widehat{\mathsf{F}(\mathsf{q},\mathsf{\dot{q}})}$$

where τ' is same as in PD control scheme and $\widehat{(.)}$ are estimates used in model-based terms.

- PD and model-based control is *asymptotically* stable for a regulator problem under certain conditions (see <u>Module 7</u>, Lecture 3).
- Stability not proved for trajectory following with arbitrary $\mathbf{q}_d(t)$.

- 4 同 6 - 4 三 6 - 4 三

- To track a desired trajectory, various control schemes are used (see <u>Module 7</u>, Lecture 3).
- Proportional + Derivative(PD) or a PID control scheme

$$\tau_i = \ddot{q}_{d_i} + K_{p_i}(q_{d_i} - q_i) + K_{v_i}(\dot{q}_{d_i} - \dot{q}_i) + K_{I_i} \int (q_{d_i} - q_i) dt$$

• Model-based control schemes

$$\tau = \widehat{[\mathsf{M}(\mathsf{q})]}\tau' + \widehat{\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})} + \widehat{\mathsf{G}(\mathsf{q})} + \widehat{\mathsf{F}(\mathsf{q},\dot{\mathsf{q}})}$$

where au' is same as in PD control scheme and $\widehat{(.)}$ are estimates used in model-based terms.

- PD and model-based control is *asymptotically* stable for a regulator problem under certain conditions (see <u>Module 7</u>, Lecture 3).
- Stability not proved for trajectory following with arbitrary $\mathbf{q}_d(t)$.

- To track a desired trajectory, various control schemes are used (see <u>Module 7</u>, Lecture 3).
- Proportional + Derivative(PD) or a PID control scheme

$$\tau_i = \ddot{q}_{d_i} + K_{p_i}(q_{d_i} - q_i) + K_{v_i}(\dot{q}_{d_i} - \dot{q}_i) + K_{I_i} \int (q_{d_i} - q_i) dt$$

Model-based control schemes

$$\tau = \widehat{[\mathsf{M}(\mathsf{q})]}\tau' + \widehat{\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})} + \widehat{\mathsf{G}(\mathsf{q})} + \widehat{\mathsf{F}(\mathsf{q},\dot{\mathsf{q}})}$$

where τ' is same as in PD control scheme and $\widehat{(.)}$ are estimates used in model-based terms.

- PD and model-based control is *asymptotically* stable for a regulator problem under certain conditions (see <u>Module 7</u>, Lecture 3).
- Stability not proved for trajectory following with arbitrary $q_d(t)$.

- To track a desired trajectory, various control schemes are used (see <u>Module 7</u>, Lecture 3).
- Proportional + Derivative(PD) or a PID control scheme

$$\tau_i = \ddot{q}_{d_i} + K_{p_i}(q_{d_i} - q_i) + K_{v_i}(\dot{q}_{d_i} - \dot{q}_i) + K_{I_i} \int (q_{d_i} - q_i) dt$$

Model-based control schemes

$$\tau = \widehat{[\mathsf{M}(\mathsf{q})]}\tau' + \widehat{\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})} + \widehat{\mathsf{G}(\mathsf{q})} + \widehat{\mathsf{F}(\mathsf{q},\dot{\mathsf{q}})}$$

where τ' is same as in PD control scheme and $\widehat{(.)}$ are estimates used in model-based terms.

- PD and model-based control is *asymptotically* stable for a regulator problem under certain conditions (see <u>Module 7</u>, Lecture 3).
- Stability not proved for trajectory following with arbitrary $\mathbf{q}_d(t)$.

- To track a desired trajectory, various control schemes are used (see <u>Module 7</u>, Lecture 3).
- Proportional + Derivative(PD) or a PID control scheme

$$\tau_i = \ddot{q}_{d_i} + K_{p_i}(q_{d_i} - q_i) + K_{v_i}(\dot{q}_{d_i} - \dot{q}_i) + K_{I_i} \int (q_{d_i} - q_i) dt$$

Model-based control schemes

$$\tau = \widehat{[\mathsf{M}(\mathsf{q})]}\tau' + \widehat{\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})} + \widehat{\mathsf{G}(\mathsf{q})} + \widehat{\mathsf{F}(\mathsf{q},\dot{\mathsf{q}})}$$

where τ' is same as in PD control scheme and $\widehat{(.)}$ are estimates used in model-based terms.

- PD and model-based control is *asymptotically* stable for a regulator problem under certain conditions (see <u>Module 7</u>, Lecture 3).
- Stability not proved for trajectory following with arbitrary $\mathbf{q}_d(t)$.

- Equations of motion are $2 \times$ DOF in number and non-autonomous.
- Simulation of 2 DOF robots RR, RP, PR, and PP 4 dimensional system!
- Assumptions
 - No gravity, friction and other non-linear terms.
 - Equation of motion contain only inertia and Coriolis/Centripetal Terms

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q},\dot{\mathsf{q}}) = \tau$$

- Desired *repetitive* joint space trajectory $-q_{d_i} = A_i \sin(\omega_i t)$, i = 1, 2
- Model estimates obtained by perturbing model parameters multiply by $(1 + \varepsilon)$
- Numerical integration of equations of motion with control laws.
- Observe evolution of state variables for various controller gains and estimates of model parameters.

→ Ξ →

- Equations of motion are $2 \times$ DOF in number and non-autonomous.
- Simulation of 2 DOF robots RR, RP, PR, and PP 4 dimensional system!
- Assumptions
 - No gravity, friction and other non-linear terms.
 - Equation of motion contain only inertia and Coriolis/Centripetal Terms

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q},\dot{\mathsf{q}}) = \tau$$

- Desired *repetitive* joint space trajectory $-q_{d_i} = A_i \sin(\omega_i t)$, i = 1, 2
- Model estimates obtained by perturbing model parameters multiply by $(1 + \varepsilon)$
- Numerical integration of equations of motion with control laws.
- Observe evolution of state variables for various controller gains and estimates of model parameters.

(≥) < 2</p>

- Equations of motion are $2 \times$ DOF in number and non-autonomous.
- Simulation of 2 DOF robots RR, RP, PR, and PP 4 dimensional system!
- Assumptions
 - No gravity, friction and other non-linear terms.
 - Equation of motion contain only inertia and Coriolis/Centripetal Terms

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q}, \dot{\mathsf{q}}) = \tau$$

- Desired *repetitive* joint space trajectory $-q_{d_i} = A_i \sin(\omega_i t), i = 1, 2$
- Model estimates obtained by perturbing model parameters multiply by $(1 + \varepsilon)$
- Numerical integration of equations of motion with control laws.
- Observe evolution of state variables for various controller gains and estimates of model parameters.

- Equations of motion are $2 \times$ DOF in number and non-autonomous.
- Simulation of 2 DOF robots RR, RP, PR, and PP 4 dimensional system!
- Assumptions
 - No gravity, friction and other non-linear terms.
 - Equation of motion contain only inertia and Coriolis/Centripetal Terms

$$[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + \mathsf{C}(\mathsf{q},\dot{\mathsf{q}}) = \tau$$

- Desired *repetitive* joint space trajectory $-q_{d_i} = A_i \sin(\omega_i t)$, i = 1, 2
- Model estimates obtained by perturbing model parameters multiply by $(1 + \varepsilon)$
- Numerical integration of equations of motion with control laws.
- Observe evolution of state variables for various controller gains and estimates of model parameters.

- Equations of motion are $2 \times$ DOF in number and non-autonomous.
- Simulation of 2 DOF robots RR, RP, PR, and PP 4 dimensional system!
- Assumptions
 - No gravity, friction and other non-linear terms.
 - Equation of motion contain only inertia and Coriolis/Centripetal Terms

$$[\mathbf{M}(\mathbf{q})]\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}}) = \tau$$

- Desired *repetitive* joint space trajectory $-q_{d_i} = A_i \sin(\omega_i t)$, i = 1, 2
- Model estimates obtained by perturbing model parameters multiply by $(1 + \varepsilon)$
- Numerical integration of equations of motion with control laws.
- Observe evolution of state variables for various controller gains and estimates of model parameters.

- Phase plots Plot of position Vs. velocity
 - Non-chaotic Closed with one or more but finite number of loops.
 - Chaotic Not closed and fills up a region in phase space.
- Lyapunov exponents Measures divergence of adjacent trajectories as $t \rightarrow \infty$ (see Parker and Chua (1989), Wolf et al. (1985)).
 - *n* exponents for *n* dimensional system one exponent is zero always.
 - At least one positive for chaotic system.
- Poincaré maps Stroboscopic sampling of phase plots
 - One or finite number of points in non-chaotic case
 - Points tend to fill up a region Strange Attractor.
- Bifurcation diagrams
 - Plot of a state variables as a parameter is varied.
 - Pre- and post-chaotic behavior.

NPTEL, 2010 12/99

- Phase plots Plot of position Vs. velocity
 - Non-chaotic Closed with one or more but finite number of loops.
 - Chaotic Not closed and fills up a region in phase space.
- Lyapunov exponents Measures divergence of adjacent trajectories as t→∞ (see Parker and Chua (1989), Wolf et al. (1985)).
 - *n* exponents for *n* dimensional system one exponent is zero always.
 - At least one positive for chaotic system.
- Poincaré maps Stroboscopic sampling of phase plots
 - One or finite number of points in non-chaotic case
 - Points tend to fill up a region Strange Attractor.
- Bifurcation diagrams
 - Plot of a state variables as a parameter is varied.
 - Pre- and post-chaotic behavior.

- Phase plots Plot of position Vs. velocity
 - Non-chaotic Closed with one or more but finite number of loops.
 - Chaotic Not closed and fills up a region in phase space.
- Lyapunov exponents Measures divergence of adjacent trajectories as t→∞ (see Parker and Chua (1989), Wolf et al. (1985)).
 - *n* exponents for *n* dimensional system one exponent is zero always.
 - At least one positive for chaotic system.
- Poincaré maps Stroboscopic sampling of phase plots
 - One or finite number of points in non-chaotic case
 - Points tend to fill up a region Strange Attractor.
- Bifurcation diagrams
 - Plot of a state variables as a parameter is varied.
 - Pre- and post-chaotic behavior.

NPTEL, 2010 12/99

> < = > < = >

- Phase plots Plot of position Vs. velocity
 - Non-chaotic Closed with one or more but finite number of loops.
 - Chaotic Not closed and fills up a region in phase space.
- Lyapunov exponents Measures divergence of adjacent trajectories as t→∞ (see Parker and Chua (1989), Wolf et al. (1985)).
 - *n* exponents for *n* dimensional system one exponent is zero always.
 - At least one positive for chaotic system.
- Poincaré maps Stroboscopic sampling of phase plots
 - One or finite number of points in non-chaotic case
 - Points tend to fill up a region Strange Attractor.
- Bifurcation diagrams
 - Plot of a state variables as a parameter is varied.
 - Pre- and post-chaotic behavior.

SIMULATION RESULTS

THE RP MANIPULATOR

• Equations of motion

• For model based control $\hat{
ho}_i = (1 + \varepsilon)
ho_i$

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

13/99

14/99

Figure 6: Phase plot in non-chaotic case

Figure 7: Phase plot in chaotic case[From Ravishankar and Ghosal (1999)]

• $A_{\theta} = \pi$, $A_X = 1.0$ and $\omega = 1.0$ • Non-dimensional parameters $-\rho_1 = 2.5$, $\rho_2 = 0.5$, $\rho_3 = 0.4$, and $\rho_4 = 2.0$.

case

Figure 9: Lyapunov exponent in chaotic case

- Largest Lyapunov exponent for chaotic and non-chaotic cases.
- $A_{ heta}=\pi$, $A_X=1.0$, $\omega=1.0$, $ho_1=2.5$, $ho_2=0.5$, and $ho_3=0.4$, $ho_4=2.0$

- Poincaré map
- $(\dot{ heta_1}, heta_1)$ projection.

•
$$A_{\theta} = \pi$$
, $A_X = 1.0$,
 $\omega = 1.0$, $\rho_1 = 2.5$,
 $\rho_2 = 0.5$, and
 $\rho_3 = 0.4$,

Figure 10: Poincaré map for RP manipulator under PD control

NPTEL, 2010 16 / 99

The RP manipulator under PD and Model-based Control

Figure 12: Chaos maps for RP manipulator under model-based control

- Chaos maps values of gains for chaotic behavior.
- K_v^* in steps of 0.1, K_p^* in steps of 1.0.
- Initial conditions $(0, 0, \pi, 1.0)$

NPTEL, 2010 17/99

The RP manipulator under PD and Model-based Control

Figure 13: Bifurcation diagram for RP manipulator under PD control

Figure 14: Bifurcation diagram for RP manipulator under model-based control

- Bifurcation diagrams Plot of state-variable as K^{*}_p is changed at a fixed K^{*}_v.
- Period doubling route to chaos!

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 18/99

Figure 15: The RR Manipulator

• Equations of motion (see Module 6, Lecture 2)

 $(m_1r_1^2 + l_1 + m_2r_2^2 + l_2 + m_2l_1^2 + 2m_2l_1r_2\cos\theta_2)\ddot{\theta}_1 + (m_2r_2^2 + l_2 + m_2l_1r_2\cos\theta_2)\ddot{\theta}_2 - m_2l_1r_2\sin\theta_2(2\dot{\theta}_1 + \dot{\theta}_2)\dot{\theta}_2 = \tau_1$ $(m_2r_2^2 + l_2 + m_2l_1r_2\cos\theta_2)\ddot{\theta}_1 + (m_2r_2^2 + l_2)\ddot{\theta}_2 + m_2l_1r_2\sin\theta_2\dot{\theta}_1^2 = \tau_2$ • The RR manipulator (or a double pendulum) is known to be chaotic (see Mahout et al. (1993)).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 19/99

THE RR MANIPULATOR UNDER PD AND MODEL-BASED CONTROL

Figure 16: Largest Lyapunov exponent for the RR manipulator under PD and model-based control

- $A_{\theta_1} = \pi/2$, $A_{\theta_2} = \pi/4$ and $\omega = 2.0$
- Mass and DH parameters Correspond to the first two links of the CMU DD Arm II (see Khosla (1986))

NPTEL, 2010 20/99

THE RR MANIPULATOR UNDER PD AND MODEL-BASED CONTROL

Figure 17: Chaos map for PD control of the RR Manipulator

Figure 18: Chaos map for model-based control of the RR Manipulator

- K_{ν}^* in steps of 0.1, K_{ρ}^* in steps of 1.0
- Initial conditions (0, π ,0, π /2), arepsilon = –0.9

Figure 19: Bifurcation diagram for RR manipulator

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 22 / 99

- Numerical simulation of 2 DOF planar robots under PD and model-based controller.
- Both the RR and RP robot can exhibit chaotic motions
 - Chaotic motions for low controller gains
 - Chaotic motions for large mismatch between model and plant
 - Chaotic motions seen more easily for underestimations
- Route to chaos appear to be through period doubling.
- PR and PP robot *do not* show chaotic motions even after extensive simulations!

- Numerical simulation of 2 DOF planar robots under PD and model-based controller.
- Both the RR and RP robot can exhibit chaotic motions
 - Chaotic motions for low controller gains
 - Chaotic motions for large mismatch between model and plant
 - Chaotic motions seen more easily for underestimations
- Route to chaos appear to be through period doubling.
- PR and PP robot *do not* show chaotic motions even after extensive simulations!

- Numerical simulation of 2 DOF planar robots under PD and model-based controller.
- Both the RR and RP robot can exhibit chaotic motions
 - Chaotic motions for low controller gains
 - Chaotic motions for large mismatch between model and plant
 - Chaotic motions seen more easily for underestimations
- Route to chaos appear to be through period doubling.
- PR and PP robot *do not* show chaotic motions even after extensive simulations!

- Numerical simulation of 2 DOF planar robots under PD and model-based controller.
- Both the RR and RP robot can exhibit chaotic motions
 - Chaotic motions for low controller gains
 - Chaotic motions for large mismatch between model and plant
 - Chaotic motions seen more easily for underestimations
- Route to chaos appear to be through period doubling.
- PR and PP robot *do not* show chaotic motions even after extensive simulations!

- $\bullet\,$ The manipulator mass matrix, [M(q)], is positive definite.
- $\bullet \ [\mathsf{M}(q)]$ defines a Riemannian metric in the configuration space (q)
- From [M(q)] one can compute Riemannian curvature tensor

$$R_{ijkl} = \sum_{h=1}^{n} M_{ih} R^{h}_{ikl}$$

• Equations of motion in absence of potential energy

$$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} + \tau$$

- $\bullet\,$ The manipulator mass matrix, [M(q)], is positive definite.
- $\bullet \ [\mathsf{M}(q)]$ defines a Riemannian metric in the configuration space (q)
- From [M(q)] one can compute Riemannian curvature tensor

$$R_{ijkl} = \sum_{h=1}^{n} M_{ih} R^{h}_{ikl}$$

• Equations of motion in absence of potential energy

$$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} + \tau$$

- $\bullet\,$ The manipulator mass matrix, [M(q)], is positive definite.
- $\bullet~[\mathsf{M}(q)]$ defines a Riemannian metric in the configuration space (q)
- From [M(q)] one can compute Riemannian curvature tensor

$$R_{ijkl} = \sum_{h=1}^{n} M_{ih} R^{h}_{ikl}$$

• Equations of motion in absence of potential energy

$$\dot{\mathbf{q}} = rac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -rac{\partial H}{\partial \mathbf{q}} + \tau$$

- $\bullet\,$ The manipulator mass matrix, [M(q)], is positive definite.
- $\bullet~[\mathsf{M}(q)]$ defines a Riemannian metric in the configuration space (q)
- From [M(q)] one can compute Riemannian curvature tensor

$$R_{ijkl} = \sum_{h=1}^{n} M_{ih} R^{h}_{ikl}$$

• Equations of motion in absence of potential energy

$$\dot{\mathbf{q}} = rac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -rac{\partial H}{\partial \mathbf{q}} + \tau$$

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor R_{ijkl} Gaussian curvature of 2D subspace enough!

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor R_{ijkl} Gaussian curvature of 2D subspace enough!

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor R_{ijkl} Gaussian curvature of 2D subspace enough!

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor R_{ijkl} Gaussian curvature of 2D subspace enough!

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor R_{ijkl} Gaussian curvature of 2D subspace enough!

• If $R_{ijkl} = 0$, then the mass matrix can be factorized

 $[\mathsf{M}(\mathsf{q})] = [\mathsf{N}(\mathsf{q})]^{\mathsf{T}}[\mathsf{N}(\mathsf{q})]$

 $[N(\mathbf{q})]$ is integrable(Stoker 1969, Spong 1992).

$$\dot{\mathbf{q}} = \mathbf{P}, \quad \dot{\mathbf{P}} = [N(\mathbf{q})]^{-T} \tau$$

- For $\tau = 0 \Rightarrow$ Equations of motion *can be integrated* in closed-form \Rightarrow *Cannot* exhibit chaos!
- Can obtain R_{ijkl} easily for 2 DOF robots since [M(q)] is known.
- If $R_{ijkl} = 0$ then chaotic motion not possible.
- Not required to compute full tensor *R_{ijkl}* Gaussian curvature of 2D subspace enough!

Figure 20: Gaussian curvature and trajectories

- $\tau = 0$ Trajectories along *geodesics* of manifold (Arnold 1989).
- $R_{ijkl} \neq 0 \rightarrow \text{Gaussian curvature of 2D subspace} G = (R_{1212}/\det[M])$
- In figures aboves, $\varepsilon(t) = \varepsilon_0 e^{\sqrt{-G}t}$
- $G < 0 \rightarrow$ nearby trajectories diverge *exponentially* Chaos!
- Analytical criteria G < 0 in any 2D subspace \rightarrow Chaotic (see also Zak (1985a & b)).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 27 / 99

GAUSSIAN CURVATURE OF ROBOTS The RP Robot

Figure 22: The RP Robot

GAUSSIAN CURVATURE OF ROBOTS The PR Robot

NPTEL, 2010 29 / 99

GAUSSIAN CURVATURE OF ROBOTS

Figure 24: The RR Robot

- G < 0 if $\cos \theta_2 < -\frac{a_2c_1 b_1 + 2a_3c_3 a_4c_1 + 2a_5c_3}{a_1 + a_2c_2 + 2a_3c_4 a_4c_2 + 2a_5c_4}$, a_i , i = 1, 2, 3, 4 constants.
- Conditionally chaotic.

• Gaussian curvature is zero for PP and PR robots \rightarrow PP and PR manipulators do not show chaotic behaviour.

- \bullet Gaussian curvature is less than zero for RR and RP robots \to Shows chaotic behaviour in numerical simulation.
- Gaussian curvature of a 2D subspace less than zero for RRR and RRP robots.
- Negative Gaussian curvature criteria is for *unforced motion*.
- Numerical simulation and Lyapunov exponent or other diagnostic criteria needs to be used for forced and/or controlled motion.

- Gaussian curvature is zero for PP and PR robots \rightarrow PP and PR manipulators do not show chaotic behaviour.
- $\bullet\,$ Gaussian curvature is less than zero for RR and RP robots $\to\,$ Shows chaotic behaviour in numerical simulation.
- Gaussian curvature of a 2D subspace less than zero for RRR and RRP robots.
- Negative Gaussian curvature criteria is for *unforced motion*.
- Numerical simulation and Lyapunov exponent or other diagnostic criteria needs to be used for forced and/or controlled motion.

- Gaussian curvature is zero for PP and PR robots \rightarrow PP and PR manipulators do not show chaotic behaviour.
- $\bullet\,$ Gaussian curvature is less than zero for RR and RP robots $\to\,$ Shows chaotic behaviour in numerical simulation.
- Gaussian curvature of a 2D subspace less than zero for RRR and RRP robots.
- Negative Gaussian curvature criteria is for *unforced motion*.
- Numerical simulation and Lyapunov exponent or other diagnostic criteria needs to be used for forced and/or controlled motion.

- Gaussian curvature is zero for PP and PR robots \rightarrow PP and PR manipulators do not show chaotic behaviour.
- $\bullet\,$ Gaussian curvature is less than zero for RR and RP robots $\to\,$ Shows chaotic behaviour in numerical simulation.
- Gaussian curvature of a 2D subspace less than zero for RRR and RRP robots.
- Negative Gaussian curvature criteria is for *unforced motion*.
- Numerical simulation and Lyapunov exponent or other diagnostic criteria needs to be used for forced and/or controlled motion.

- Gaussian curvature is zero for PP and PR robots \to PP and PR manipulators do not show chaotic behaviour.
- $\bullet\,$ Gaussian curvature is less than zero for RR and RP robots $\to\,$ Shows chaotic behaviour in numerical simulation.
- Gaussian curvature of a 2D subspace less than zero for RRR and RRP robots.
- Negative Gaussian curvature criteria is for *unforced motion*.
- Numerical simulation and Lyapunov exponent or other diagnostic criteria needs to be used for forced and/or controlled motion.

SUMMARY

• Robot dynamic and control equations are non-linear ODE's.

- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

SUMMARY

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

SUMMARY

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

- Robot dynamic and control equations are non-linear ODE's.
- Nonlinearity different from nonlinear spring or other commonly studied chaotic systems.
- Equations are higher dimensional and more complicated than commonly studied ones.
- Feedback control equations for robots can exhibit chaos.
- Suggest a re-look at some of the robustness results in robot control (see Craig (1989)).
- Lower bounds on controller gains can be obtained by numerical simulations.
- For *unforced motion* negative Gaussian curvature criteria may be useful.

ONTENTS

LECTURE 1*

• Chaos and Non-linear Dynamics in Robots

3 LECTURE 2

• Gough-Stewart Platform based Force-torque Sensors

4 Lecture 3*

Modeling and Analysis of Deployable Structures

5 Module 10 – Additional Material

• References and Suggested Reading

Introduction

- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

Introduction

• Kinematics and statics of Gough-Stewart platform.

- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

Introduction

- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

- Introduction
- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

- Introduction
- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

- Introduction
- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

- Introduction
- Kinematics and statics of Gough-Stewart platform.
- Isotropic and singular configurations
- Six component force-torque sensors based on a Gough-Stewart platform at a near singular configuration.
- Modeling, analysis and design of Gough-Stewart platform based sensors.
- Hardware and experimental results.
- Summary

³Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 & 2009) and Ranganath et. al (2004). Please see these and references listed at the end for more details.

Stewart 1965 Extendable `legs'

- First used as tyre testing machine in UK.
- Now known as Gough-Stewart platform.
- A moving platform connected to fixed ground by six actuated extendable legs
 — 6 DOF (Fichter 1986)
- Linear motion of platform along X, Y and Z axes & Rotational motion about X, Y and Z axes.
- Known also as Heave, Surge, Sway & Roll, Pitch and Yaw.

The 'best known' parallel manipulator (see <u>Module 4</u>, Lecture 5).

Figure 25: The Stewart platform (Stewart 1965)

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 35 / 99

Modern tyre testing machine

Micro-positioning

Industrial manufacturing

Robotic surgery

-2

Physik Instrumetente

http://www.physikinstrumente.com

Precise alignment of mirror

Figure 26: Some modern uses of Gough-Stewart platform

NPTEL, 2010 36 / 99

- Moving top platform
- Fixed base
- 6 extendable legs actuated by prismatic joints.
- Coordinated motion of 6 prismatic joints → Arbitrary 6 DOF motion of top platform

Figure 27: The Gough-Stewart platform

MOTION SIMULATION

- Motion simulations done using ADAMS®.
- Click here for a video showing motion of a Gough-Stewart platfrom due to combined motion of all actuated joints.

Figure 28: Motion simulation of Gough-Stewart platform

NPTEL, 2010 38 / 99

GOUGH-STEWART PLATFORM AS A SENSOR

$\bullet\,$ With actuators (P joints) locked \rightarrow 0 degrees of freedom.

- Instead of actuators, strain gauge based sensors at actuator location.
- External force-moment applied at top platform can be related to *axial* forces along legs at P joint locations.
- Axial forces in legs related to strains.
- Measured strains can be related to external force-torque at top platform.

- With actuators (P joints) locked ightarrow 0 degrees of freedom.
- Instead of actuators, strain gauge based sensors at actuator location.
- External force-moment applied at top platform can be related to *axial* forces along legs at P joint locations.
- Axial forces in legs related to strains.
- Measured strains can be related to external force-torque at top platform.

- With actuators (P joints) locked \rightarrow 0 degrees of freedom.
- Instead of actuators, strain gauge based sensors at actuator location.
- External force-moment applied at top platform can be related to *axial* forces along legs at P joint locations.
- Axial forces in legs related to strains.
- Measured strains can be related to external force-torque at top platform.

- With actuators (P joints) locked \rightarrow 0 degrees of freedom.
- Instead of actuators, strain gauge based sensors at actuator location.
- External force-moment applied at top platform can be related to *axial* forces along legs at P joint locations.
- Axial forces in legs related to strains.
- Measured strains can be related to external force-torque at top platform.

- With actuators (P joints) locked \rightarrow 0 degrees of freedom.
- Instead of actuators, strain gauge based sensors at actuator location.
- External force-moment applied at top platform can be related to *axial* forces along legs at P joint locations.
- Axial forces in legs related to strains.
- Measured strains can be related to external force-torque at top platform.

PLATFORM

REVIEW

Figure 29: A leg of the Gough-Stewart platform

- Kinematics and statics (see <u>Module 5</u>, Lecture 5 for more details).
- Direct kinematics involve solution of a 40 degree polynomial.
- Leg vector

$${}^{B_0}\mathbf{S}_i = {}^{B_0}_{P_0}[R]^{P_0}\mathbf{p}_i + {}^{B_0}\mathbf{t} - {}^{B_0}\mathbf{b}_i$$

- Unit vector along leg ${}^{B_0}\mathbf{s}_i = \frac{{}^{B_0}\mathbf{s}_i}{I_i}$
- Relation between external force-moment at top platform {*Tool*} and leg forces *f_i*

$$\begin{pmatrix} B_{0}\mathbf{F}_{Tool} \\ --- \\ B_{0}\mathbf{M}_{Tool} \end{pmatrix} = \begin{bmatrix} \sum_{i=1}^{6} B_{0}\mathbf{s}_{i}f_{i} \\ --- \\ \sum_{i=1}^{6} (B_{0}\mathbf{b}_{i} \times B_{0}\mathbf{s}_{i})f_{i} \end{bmatrix}$$

REVIEW (CONTD.)

• Statics equation in matrix form

$${}^{B_0}\mathscr{F}_{Tool} \stackrel{\Delta}{=} \begin{pmatrix} {}^{B_0} \mathbf{F}_{Tool} \\ --- \\ {}^{B_0} \mathbf{M}_{Tool} \end{pmatrix} = {}^{B_0}_{Tool} [H] \mathbf{f}$$

• The force transformation matrix $\frac{B_0}{Tool}$ [H] is given by

where **f** is the vector of forces at the prismatic joints $(f_1, f_2, ..., f_6)^T$.

- The force transformation matrix is related to the equivalent Jacobian for the Stewart-Gough platform(see <u>Module 5</u>, Lecture 5).
- Leg forces can be obtained as $f = \frac{B_0}{Tool} [H]^{-1} \frac{B_0}{F_Tool}$

REVIEW (CONTD.)

• Statics equation in matrix form

$${}^{B_0}\mathscr{F}_{Tool} \stackrel{\Delta}{=} \begin{pmatrix} {}^{B_0} \mathbf{F}_{Tool} \\ --- \\ {}^{B_0} \mathbf{M}_{Tool} \end{pmatrix} = {}^{B_0}_{Tool} [H] \mathbf{f}$$

• The force transformation matrix $\frac{B_0}{Tool}$ [H] is given by

where **f** is the vector of forces at the prismatic joints $(f_1, f_2, ..., f_6)^T$.

- The force transformation matrix is related to the equivalent Jacobian for the Stewart-Gough platform(see <u>Module 5</u>, Lecture 5).
- Leg forces can be obtained as $f = \frac{B_0}{Tool} [H]^{-1} \mathscr{B}_0 \mathscr{F}_{Tool}$

REVIEW (CONTD.)

• Statics equation in matrix form

$${}^{B_0}\mathscr{F}_{Tool} \stackrel{\Delta}{=} \left(\begin{array}{c} {}^{B_0} \mathbf{F}_{Tool} \\ --- \\ {}^{B_0} \mathbf{M}_{Tool} \end{array} \right) = {}^{B_0}_{Tool} [H] \mathbf{f}$$

• The force transformation matrix $\frac{B_0}{Tool}$ [H] is given by

where **f** is the vector of forces at the prismatic joints $(f_1, f_2, ..., f_6)^T$.

• The force transformation matrix is related to the equivalent Jacobian for the Stewart-Gough platform(see <u>Module 5</u>, Lecture 5).

• Leg forces can be obtained as $\mathbf{f} = \frac{B_0}{Tool} [H]^{-1} B_0 \mathscr{F}_{Tool}$

REVIEW (CONTD.)

• Statics equation in matrix form

$${}^{B_0}\mathscr{F}_{Tool} \stackrel{\Delta}{=} \left(\begin{array}{c} {}^{B_0} \mathbf{F}_{Tool} \\ --- \\ {}^{B_0} \mathbf{M}_{Tool} \end{array} \right) = {}^{B_0}_{Tool} [H] \mathbf{f}$$

• The force transformation matrix $\frac{B_0}{Tool}$ [H] is given by

where **f** is the vector of forces at the prismatic joints $(f_1, f_2, ..., f_6)^T$.

- The force transformation matrix is related to the equivalent Jacobian for the Stewart-Gough platform(see <u>Module 5</u>, Lecture 5).
- Leg forces can be obtained as $\mathbf{f} = \frac{B_0}{Tool} \begin{bmatrix} H \end{bmatrix}^{-1} \mathscr{F}_{Tool}$

ISOTROPIC CONFIGURATIONS OF GOUGH-STEWART PLATFORM

Figure 30: Gough-Stewart platform in an isotropic configuration

- Isotropic configuration det $\frac{B_0}{Tool}$ [H] \neq 0
- Eigenvalues of top left 3 × 3 and bottom right 3 × 3 matrix are equal (not necessary equal to each other) (see Klein and Milkos 1991, Fattah and Ghasemi 2001 and Dwarakanath et al. 2001).

• All directions are equivalent in terms of force (or moment) components.

- Isotropic configuration can be obtained in closed-form (see Bandyopadhyay & Ghosal, 2008)
- Data of Gough-Stewart platform from INRIA prototype.

SINGULAR CONFIGURATIONS OF GOUGH-STEWART

- Singular configuration det $\frac{B_0}{Tool}$ [H] = 0
- One or more eigenvalue of $\frac{B_0}{Tool}$ [*H*] is zero!
- Gain singularity → Platform cannot resist one or more component of force/moment applied at the top platform.
- Singularity manifold(s) can be obtained in closed-form (see Bandyopadhyay & Ghosal, 2006)
- Position singularity manifold shown for a semi-regular Stewart platform manipulator (SRSPM) – cubic in z and a quadratic curve, but *not* an ellipse, in x and y.
- Orientation singularity manifold, at a given position, can also be obtained (see Bandyopadhyay & Ghosal, 2006).

NPTEL, 2010 43 / 99

SINGULAR CONFIGURATION

- Force F is applied at the hinge C at an angle ϕ .
- Axial forces in the links AC and BC are

$$\begin{pmatrix} \cos\theta & -\cos\theta \\ \sin\theta & \sin\theta \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = F \begin{pmatrix} \cos\phi \\ \sin\phi \end{pmatrix}$$

Figure 32: A planar two link

В

 $\stackrel{\rm hinged \ truss}{\bullet} \ {\rm LHS} \ {\rm matrix} \ {\rm is} \ [H] \ {\rm and} \ {\rm for} \ \theta \neq 0$

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = [H]^{-1} \begin{pmatrix} F\cos\phi \\ F\sin\phi \end{pmatrix} = \frac{F}{2} \begin{pmatrix} \cos\phi/\cos\theta + \sin\phi/\sin\theta \\ -\cos\phi/\cos\theta + \sin\phi/\sin\theta \end{pmatrix}$$

- For $\theta \to 0$ and $\phi \neq 0$, $R_1, R_2 \to \infty F$ cannot be resisted.
- For $\theta = 0$ and $\phi \neq 0$, the eigenvalues are 1 and 0.

R₂

- Eigenvector for 0 is Y axis F_v cannot be resisted at $\theta = 0$.
- A small F_v will give large output $R_1 \rightarrow$ Enhanced sensitivity or mechanical amplification for certain components!!

NEAR SINGULAR CONFIGURATION IN A HINGED PLANAR TRUSS

Figure 33: Force amplification Vs. θ

- For $\phi = \pi/2$, $|R_1| = |R_2| = F/(2\sin\theta) - \theta$ small, $|R_1|$ and $|R_2|$ large!
- At $\theta = 1^{\circ}$, magnification $|R_1|/F$ is approximately 28.6.
- If AC and BC are *elastic* $\theta_{\text{new}} = \arctan(\delta + \delta_1)$ (Srinath 1983) where, $\delta = I\sin\theta$ and $\delta_1 = I\cos\theta \times (F/EA)^{1/3}$ and Poisson's ratio is 0.3.
- For elastic links $R_1 = -R_2 = F/(2\sin\theta_{new})$ amplification/enhanced sensitivity is present but lower!!

< ∃ > < ∃ >

100

Singular Configurations in 6×6 Gough-Stewart platform

• Force transformation [H] matrix in 6×6 Gough-Stewart platform

- Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin 2000).
- Example All legs parallel along (0 0 1)^T (parallel to Z axis) and base connection points on a plane

Singular directions: $(1,0,0;0,0,0)^T$, $(0,1,0;0,0,0)^T$, and $(0,0,0;0,0,1)^T$. • Cannot resist or *enhanced sensitivity* for F_{x_1}, F_{y_2} and M_{z_2} .

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

Singular Configurations in 6×6 Gough-Stewart platform

• Force transformation [H] matrix in 6×6 Gough-Stewart platform

- Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin 2000).
- Example All legs parallel along (0 0 1)^T (parallel to Z axis) and base connection points on a plane

Singular directions: $(1,0,0;0,0,0)^T$, $(0,1,0;0,0,0)^T$, and $(0,0,0;0,0,1)^T$.

• Cannot resist or enhanced sensitivity for $F_{x_1}, F_{y_2}, a_{p_2}, M_{z_2}, \dots, F_{x_n}$

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 46 / 99

Singular Configurations in 6×6 Gough-Stewart platform

• Force transformation [H] matrix in 6×6 Gough-Stewart platform

- Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin 2000).
- Example All legs parallel along (0 0 1)^T (parallel to Z axis) and base connection points on a plane

Singular directions: $(1,0,0;0,0,0)^T$, $(0,1,0;0,0,0)^T$, and $(0,0,0;0,0,1)^T$.

• Cannot resist or enhanced sensitivity for F_{x_1}, F_{y_2} , and M_{z_2}, F_{z_3} ,

Singular Configurations in 6×6 Gough-Stewart platform

• Force transformation [H] matrix in 6×6 Gough-Stewart platform

- Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin 2000).
- Example All legs parallel along (0 0 1)^T (parallel to Z axis) and base connection points on a plane

Singular directions: $(1,0,0;0,0,0)^T$, $(0,1,0;0,0,0)^T$, and $(0,0,0;0,0,1)^T$. • Cannot resist or *enhanced sensitivity* for F_x , F_y and M_z .

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 46 / 99

SINGULAR CONFIGURATIONS IN 6×6 GOUGH-STEWART PLATFORM

• External force and leg forces are related by

 $\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of **F** lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

 SINGULAR CONFIGURATIONS IN 6×6 GOUGH-STEWART PLATFORM

• External force and leg forces are related by

$$\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of **F** lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

⁴See <u>Module 5</u>, Lecture 2 for a similar treatment for velocities. (a = 1, b = 1)

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 47 / 99

• External force and leg forces are related by

$$\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of **F** lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

⁴See <u>Module 5</u>, Lecture 2 for a similar treatment for velocities. (a = b + a = b)

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 47 / 99

$$\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of **F** lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 47 / 99

$$\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of F lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

$$\mathbf{F} = [H_f]\mathbf{f} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 & \mathbf{s}_4 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix} \mathbf{f}$$

- Maximum, minimum and intermediate values of $\mathbf{F}^T \mathbf{F}$ subject to a constraint $\mathbf{f}^T \mathbf{f} = 1$ are the eigenvalues of $[g_f] = [H_f]^T [H_f]^4$.
- Rank of $[g_f]$ is at most $3 \Rightarrow 3$ eigenvalues are 0 & 3 non-zero eigenvalues obtained from solution of a *cubic and in closed-form*.
- The tip of **F** lies on an ellipsoid and the axes of ellipsoid are obtained from eigenvectors corresponding to non-zero eigenvalues.
- Principal axis of ellipsoid are along principal forces.
- Directions corresponding to zero eigenvalues of $[g_f]$ are principal moments at origin.

NPTEL, 2010 47/99

• Eigenvector of $[g_f]$ mapped by [H] are

$$[H][X] = \begin{pmatrix} [0] & [F]^* \\ --- & --- \\ [M]_O^* & [M]_P^* \end{pmatrix}$$

- Rank of $[g_f]$ less than $3 \Rightarrow$ Singularity in force domain.
- Eigenvectors of [g_f], corresponding to zero eigenvalue, mapped by [H] give direction(s) where force cannot be resisted same as null space [F]*.
- Singular directions of moment Null space of $[M]_O^*$.

100

• Eigenvector of $[g_f]$ mapped by [H] are

$$[H][X] = \begin{pmatrix} [0] & [F]^* \\ --- & --- \\ [M]_O^* & [M]_P^* \end{pmatrix}$$

- Rank of $[g_f]$ less than $3 \Rightarrow$ Singularity in force domain.
- Eigenvectors of [g_f], corresponding to zero eigenvalue, mapped by [H] give direction(s) where force cannot be resisted same as null space [F]*.
- Singular directions of moment Null space of $[M]_O^*$.

• Eigenvector of $[g_f]$ mapped by [H] are

$$[H][X] = \begin{pmatrix} [0] & [F]^* \\ --- & --- \\ [M]_O^* & [M]_P^* \end{pmatrix}$$

- Rank of $[g_f]$ less than $3 \Rightarrow$ Singularity in force domain.
- Eigenvectors of $[g_f]$, corresponding to zero eigenvalue, mapped by [H] give direction(s) where force cannot be resisted same as null space $[F]^*$.
- Singular directions of moment Null space of $[M]_O^*$.

• Eigenvector of $[g_f]$ mapped by [H] are

$$[H][X] = \begin{pmatrix} [0] & [F]^* \\ --- & --- \\ [M]_O^* & [M]_P^* \end{pmatrix}$$

- Rank of $[g_f]$ less than $3 \Rightarrow$ Singularity in force domain.
- Eigenvectors of $[g_f]$, corresponding to zero eigenvalue, mapped by [H] give direction(s) where force cannot be resisted same as null space $[F]^*$.
- Singular directions of moment Null space of $[M]_O^*$.

Algorithm to obtain singular directions in Gough-Stewart platform

- Enumerate all possible 6-6 Gough-Stewart platforms by choosing pairs of base and platform points. For each of the configurations,
 - Compute the number of zero eigenvalues of [*H*]. This will give the total number of singular directions *including* force and moments.
 - Obtain all eigenvalues and corresponding eigenvectors symbolically for $[g_f]$ using a symbolic manipulation package.
 - Obtain the matrix [H][X] and sub-matrices [F]* and [M]^{*}_O (see previous slide).
 - Obtain null space vectors of $[F]^*$ and $[M]_O^*$ to obtain the singular force and moment directions (if any).
- Eigenvalues and eigenvectors can be obtained symbolically \rightarrow Singular directions can be obtained symbolically.
- Singular directions obtained using Mathematica®(Wolfram 2004).

ヘロト ヘヨト ヘヨト ヘヨト

Algorithm to obtain singular directions in Gough-Stewart platform

- Enumerate all possible 6-6 Gough-Stewart platforms by choosing pairs of base and platform points. For each of the configurations,
 - Compute the number of zero eigenvalues of [*H*]. This will give the total number of singular directions *including* force and moments.
 - Obtain all eigenvalues and corresponding eigenvectors symbolically for $[g_f]$ using a symbolic manipulation package.
 - Obtain the matrix [H][X] and sub-matrices [F]* and [M]^{*}_O (see previous slide).
 - Obtain null space vectors of $[F]^*$ and $[M]_O^*$ to obtain the singular force and moment directions (if any).
- Eigenvalues and eigenvectors can be obtained symbolically \rightarrow Singular directions can be obtained symbolically.

• Singular directions obtained using Mathematica®(Wolfram 2004).

NPTEL, 2010 49 / 99

- 4 同 5 - 4 目 5 - 4 目 5

Algorithm to obtain singular directions in Gough-Stewart platform

- Enumerate all possible 6-6 Gough-Stewart platforms by choosing pairs of base and platform points. For each of the configurations,
 - Compute the number of zero eigenvalues of [*H*]. This will give the total number of singular directions *including* force and moments.
 - Obtain all eigenvalues and corresponding eigenvectors symbolically for $[g_f]$ using a symbolic manipulation package.
 - Obtain the matrix [H][X] and sub-matrices [F]* and [M]^{*}_O (see previous slide).
 - Obtain null space vectors of $[F]^*$ and $[M]_O^*$ to obtain the singular force and moment directions (if any).
- Eigenvalues and eigenvectors can be obtained symbolically \rightarrow Singular directions can be obtained symbolically.
- Singular directions obtained using Mathematica®(Wolfram 2004).

- 4 同 5 - 4 目 5 - 4 目 5

Examples of Singular Directions in 6×6 Gough-Stewart platform

Table 1: Examples of Singular Directions in 6×6 Gough-Stewart platform configurations

		*	Singular					
	Leg 1	Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6						
1	$B_1 - P_1$	$B_2 - P_2$	$B_3 - P_3$	$B_4 - P_4$	$B_{5} - P_{5}$	$B_{6} - P_{6}$	3	F_x, F_y, M_z
2	$B_1 - P_2$	$B_2 - P_1$	$B_3 - P_3$	$B_4 - P_4$	$B_{5} - P_{5}$	$B_{6} - P_{6}$	2	F_x, M_z
3	$B_1 - P_2$	$B_2 - P_1$	$B_3 - P_4$	$B_4 - P_3$	$B_{5} - P_{5}$	$B_{6} - P_{6}$	1	Mz
4	$B_1 - P_2$	$B_2 - P_1$	$B_3 - P_4$	$B_4 - P_3$	$B_{5} - P_{6}$	$B_{6} - P_{5}$	0	none
5	$B_1 - P_1$	$B_2 - P_3$	$B_3 - P_2$	$B_4 - P_5$	$B_{5} - P_{4}$	$B_{6} - P_{6}$	1	Mz
6	$B_1 - P_1$	$B_2 - P_6$	$B_3 - P_5$	$B_4 - P_4$	$B_{5} - P_{3}$	$B_{6} - P_{2}$	2	F_x, M_z
7	$B_1 - P_1$	$B_2 - P_3$	$B_3 - P_2$	$B_4 - P_4$	$B_{5} - P_{6}$	$B_{6} - P_{5}$	1	Fy
8	$B_1 - P_2$	$B_2 - P_3$	$B_3 - P_4$	$B_4 - P_5$	$B_{5} - P_{6}$	$B_{6} - P_{1}$	3	M_x, M_y, M_z

* - Column indicate number of zero eigenvalues of [H].

• B_i , P_i , i = 1, ...6 are Base and Platform connection points.

100

NEAR SINGULAR CONFIGURATION IN 6×6 Gough-Stewart platform

• Configuration 1 chosen for sensor development — Enhanced sensitivity for F_x , F_y and M_z .

- Both top and bottom platform are regular hexagons of equal sides.
- At *exactly* singular configuration, legs are *exactly* vertical and amplification is infinite Not desirable!
- Gough-Stewart platform, Configuration # 1, at a *near* singularity
 - The legs are *not exactly* vertical.
 - Top and bottom platform not *aligned* and included half-angle changed from 30° to $33^{\circ} \rightarrow$ Top platform rotated by 3° !
 - det $[H] \neq 0 \rightarrow Near singular$ with condition number of [H] about 1900.
 - Amplification of about 10 (and not infinity)!

• • = • • =

NEAR SINGULAR CONFIGURATION IN 6×6 Gough-Stewart platform

- Configuration 1 chosen for sensor developement *Enhanced* sensitivity for F_x , F_y and M_z .
- Both top and bottom platform are regular hexagons of equal sides.
- At *exactly* singular configuration, legs are *exactly* vertical and amplification is infinite Not desirable!
- Gough-Stewart platform, Configuration # 1, at a *near* singularity
 - The legs are *not exactly* vertical.
 - Top and bottom platform not *aligned* and included half-angle changed from 30° to $33^{\circ} \rightarrow$ Top platform rotated by 3° !
 - det $[H] \neq 0 \rightarrow Near singular$ with condition number of [H] about 1900.
 - Amplification of about 10 (and not infinity)!

- 4 回 ト - 4 回 ト

NEAR SINGULAR CONFIGURATION IN 6×6 Gough-Stewart platform

- Configuration 1 chosen for sensor developement *Enhanced sensitivity* for *F_x*, *F_y* and *M_z*.
- Both top and bottom platform are regular hexagons of equal sides.
- At *exactly* singular configuration, legs are *exactly* vertical and amplification is infinite Not desirable!
- Gough-Stewart platform, Configuration # 1, at a *near* singularity
 - The legs are not exactly vertical.
 - Top and bottom platform not *aligned* and included half-angle changed from 30° to $33^{\circ} \rightarrow$ Top platform rotated by 3° !
 - det $[H] \neq 0 \rightarrow Near singular$ with condition number of [H] about 1900.
 - Amplification of about 10 (and not infinity)!

(4回) (4回) (4回)

NEAR SINGULAR CONFIGURATION IN 6×6 Gough-Stewart platform

- Configuration 1 chosen for sensor developement *Enhanced sensitivity* for *F_x*, *F_y* and *M_z*.
- Both top and bottom platform are regular hexagons of equal sides.
- At *exactly* singular configuration, legs are *exactly* vertical and amplification is infinite Not desirable!
- Gough-Stewart platform, Configuration # 1, at a *near* singularity
 - The legs are *not exactly* vertical.
 - Top and bottom platform not *aligned* and included half-angle changed from 30° to $33^{\circ} \rightarrow$ Top platform rotated by 3° !
 - det $[H] \neq 0 \rightarrow Near singular$ with condition number of [H] about 1900.
 - Amplification of about 10 (and not infinity)!

• • = • • = •

NOMINAL GEOMETRY OF SENSOR

Table 2:	Nominal	geometry	of 6-6	Stewart	Platform	with	$\gamma = 33^{\circ}$
----------	---------	----------	--------	---------	----------	------	-----------------------

E	Base coor	dinates		Platform coordinates				
Point	X	y	Ζ	Point	X	X Y		
No.	mm	mm	mm	No	mm	mm	mm	
b_1	43.30	25.0	0.0	p_1	41.93	27.23	100	
<i>b</i> ₂	0	50.0	0.0	<i>p</i> ₂	2.616	49.93	100	
<i>b</i> ₃	-43.30	25.0	0.0	<i>p</i> ₃	-44.55	22.70	100	
b_4	-43.30	-25.0	0.0	<i>p</i> ₄	-44.55	-22.70	100	
b_5	0	-50	0.0	<i>p</i> 5	2.616	-49.93	100	
b_6	43.3	-25.0	0.0	<i>p</i> 6	41.93	-27.23	100	

• Expected to give enhanced sensitivity to F_x , F_y and M_z .

• Near singular configuration - can invert [H] if and when required.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 52 / 99

GOUGH-STEWART PLATFORM BASED SENSOR Flexible Hinges

- Kinematic joints (S or U) give rise to unpredictable friction!
- Flexible hinges (Paros and Weisboard 1965, Zhang and Fasse 2001) much better No friction! (see also McInroy and Hamann 2000).

M_Z F_Z H R K

Figure 34: Flexure hinges – rectangular cross-section

- Geometry (t, R, θ) or (d, D, θ) can be designed to give required lateral and longitudinal stiffness (or compliance).
- For small motion (sensor) good approximation to kinematic joints.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 53 / 99

FLEXIBLE HINGES – IMPLEMENTATION

Figure 36: Detailed view of flexure hinges

- Hinges (also leg and ring): Titanium alloy of yield strength 880 N $/\mathrm{mm}^2$.
- No rotation permitted beyond 3.8° to prevent failure!

ASHITAVA GHOSAL (IISC)

Figure 37: Schematic of ring shaped sensing element

- Ring shaped sensing element from Titanium alloy rod.
- Ring mid-plane has largest stress (and strain) when axial load applied.
- For 30 N axial compressive load, 145 micro-strains (compressive)at inside surface and 110 micro-strains (tensile) at the outside surface 510 micro-strains in full bridge configuration.

ASHITAVA GHOSAL (IISC)

Figure 38: Deflection (mm) of sensor
Figure 39: Stress (N/mm²) in sensor
Finite element model (in NISA (1997)) of top and bottom platform and six legs with hinges and sensing element created.
Applied loading of F_x = F_y = F_z = 0.98 N, M_x = M_y = M_z = 49.05
Maximum deflection 0.5 mm and maximum stress about 294 N/mm² at the flexible hinges — Safe design!

NPTEL, 2010 56 / 99

Figure 40: Prototype Gough-Stewart platform based force-torque sensor

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 57 / 99

OR 🤬

GOUGH-STEWART PLATFORM BASED SENSOR

PROTOTYPE SENSOR – EXPERIMENTS

Figure 41: Experimental data for external applied force

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 58 / 99

PROTOTYPE SENSOR – EXPERIMENTS

Figure 42: Experimental data for external applied moment

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

100

GOUGH-STEWART PLATFORM BASED SENSOR CALIBRATION

- Calibration of leg Measure strain in legs for known loading.
- Obtain calibration constant $\mu-$ strain /N for each leg.
 - Leg 1 13.786, Leg 2 13.958, Leg 3 14.102
 - Leg 4 13.921, Leg 5 13.994, leg 6 14.046
- Convert measured strains to leg forces f_i , i = 1, ..., 6 for applied loads.
- Obtain elements of [H] matrix from experimental data
 - From $(\mathbf{F}; \mathbf{M})^T = [H]\mathbf{f}$, write

 $F_{x} = f_{1}H_{11} + f_{2}H_{12} + f_{3}H_{13} + f_{4}H_{14} + f_{5}H_{15} + f_{6}H_{16}$

- f_i measured leg forces, H_{1j} unknown elements of first row of [H].
- From *n* sets of measurements f_i , i = 1, ..., 6, form $n \times 6$ matrix [f].
- The elements H_{1j} are

 $(H_{1j}, H_{2j}, H_{3j}, H_{4j}, H_{5j}, H_{6j})^T = [f]^{\#}(F_{1x}, F_{2x}, ..., F_{nx})^T$

where $[f]^{\#}$ is the *pseudo-inverse* of [f].

• Find other rows of [H] in similar manner.

NPTEL, 2010 60 / 99

GOUGH-STEWART PLATFORM BASED SENSOR CALIBRATION

- Calibration of leg Measure strain in legs for known loading.
- Obtain calibration constant $\mu-$ strain /N for each leg.
 - Leg 1 13.786, Leg 2 13.958, Leg 3 14.102
 - Leg 4 13.921, Leg 5 13.994, leg 6 14.046

Convert measured strains to leg forces f_i, i = 1,...,6 for applied loads.
Obtain elements of [H] matrix from experimental data
From (F; M)^T = [H]f, write

 $F_{x} = f_{1}H_{11} + f_{2}H_{12} + f_{3}H_{13} + f_{4}H_{14} + f_{5}H_{15} + f_{6}H_{16}$

 f_i measured leg forces, H_{1j} unknown elements of first row of [H].

• From *n* sets of measurements f_i , i = 1, ..., 6, form $n \times 6$ matrix [f].

• The elements H_{1j} are

 $(H_{1j}, H_{2j}, H_{3j}, H_{4j}, H_{5j}, H_{6j})^T = [f]^{\#}(F_{1x}, F_{2x}, ..., F_{nx})^T$

where $[f]^{\#}$ is the *pseudo-inverse* of [f].

• Find other rows of [H] in similar manner.

GOUGH-STEWART PLATFORM BASED SENSOR Calibration

- Calibration of leg Measure strain in legs for known loading.
- Obtain calibration constant $\mu-$ strain /N for each leg.
 - Leg 1 13.786, Leg 2 13.958, Leg 3 14.102
 - Leg 4 13.921, Leg 5 13.994, leg 6 14.046
- Convert measured strains to leg forces f_i , i = 1, ..., 6 for applied loads.
- Obtain elements of [H] matrix from experimental data
 From (F; M)^T = [H]f, write

 $F_{\rm x} = f_1 H_{11} + f_2 H_{12} + f_3 H_{13} + f_4 H_{14} + f_5 H_{15} + f_6 H_{16}$

 f_i measured leg forces, H_{1j} unknown elements of first row of [H].

- From *n* sets of measurements f_i , i = 1, ..., 6, form $n \times 6$ matrix [f].
- The elements H_{1j} are

 $(H_{1j}, H_{2j}, H_{3j}, H_{4j}, H_{5j}, H_{6j})^T = [f]^{\#}(F_{1x}, F_{2x}, ..., F_{nx})^T$

where $[f]^{\#}$ is the *pseudo-inverse* of [f].

• Find other rows of [H] in similar manner.

NPTEL, 2010 60 / 99

GOUGH-STEWART PLATFORM BASED SENSOR Calibration

- Calibration of leg Measure strain in legs for known loading.
- \bullet Obtain calibration constant $\mu-{\rm strain}$ /N for each leg.
 - Leg 1 13.786, Leg 2 13.958, Leg 3 14.102
 - Leg 4 13.921, Leg 5 13.994, leg 6 14.046
- Convert measured strains to leg forces f_i , i = 1, ..., 6 for applied loads.
- Obtain elements of [H] matrix from experimental data
 - From $(\mathbf{F}; \mathbf{M})^T = [H]\mathbf{f}$, write

$$F_x = f_1 H_{11} + f_2 H_{12} + f_3 H_{13} + f_4 H_{14} + f_5 H_{15} + f_6 H_{16}$$

 f_i measured leg forces, H_{1j} unknown elements of first row of [H].

- From *n* sets of measurements f_i , i = 1, ..., 6, form $n \times 6$ matrix [f].
- The elements H_{1j} are

$$(H_{1j}, H_{2j}, H_{3j}, H_{4j}, H_{5j}, H_{6j})^T = [f]^{\#}(F_{1x}, F_{2x}, ..., F_{nx})^T$$

where $[f]^{\#}$ is the *pseudo-inverse* of [f].

• Find other rows of [H] in similar manner.

GOUGH-STEWART PLATFORM BASED SENSOR Calibration (Contd.)

• Calibration $[H_c]$ matrix is obtained as

	-0.0195	0.0279	-0.0266	-0.0223	0.0369	-0.0117
	0.0287	-0.0076	-0.0368	0.0280	0.0036	-0.0272
[<i>L</i>]	0.8890	0.8294	0.8321	0.8845	0.9704	0.9712
$[\Pi_c] =$	22.7237	44.3631	21.0266	-18.6015	-45.1386	-26.4990
	-6.7289	-5.5169	-5.0906	-4.8826	-5.1129	-6.4894
	1.3319	-1.5084	1.8969	-1.4110	1.2823	-1.9917

• Condition No. is 1351 compared to a computed 1910.

• Obtain unknown $(\mathbf{F}; \mathbf{M})^T$ from $[H_c]\mathbf{f}$, where \mathbf{f} is measured leg forces.

CALIBRATION (CONTD.)

• Calibration $[H_c]$ matrix is obtained as

	-0.0195	0.0279	-0.0266	-0.0223	0.0369	-0.0117
	0.0287	-0.0076	-0.0368	0.0280	0.0036	-0.0272
Г <u>Г</u> Г 1	0.8890	0.8294	0.8321	0.8845	0.9704	0.9712
$[\Pi_c] \equiv$	22.7237	44.3631	21.0266	-18.6015	-45.1386	-26.4990
	-6.7289	-5.5169	-5.0906	-4.8826	-5.1129	-6.4894
	1.3319	-1.5084	1.8969	-1.4110	1.2823	-1.9917

• Condition No. is 1351 compared to a computed 1910.

Obtain unknown $(\mathbf{F}; \mathbf{M})^T$ from $[H_c]\mathbf{f}$, where \mathbf{f} is measured leg forces.

GOUGH-STEWART PLATFORM BASED SENSOR CALIBRATION (CONTD.)

• Calibration $[H_c]$ matrix is obtained as

	-0.0195	0.0279	-0.0266	-0.0223	0.0369	-0.0117
	0.0287	-0.0076	-0.0368	0.0280	0.0036	-0.0272
[11]	0.8890	0.8294	0.8321	0.8845	0.9704	0.9712
$[n_c] =$	22.7237	44.3631	21.0266	-18.6015	-45.1386	-26.4990
	-6.7289	-5.5169	-5.0906	-4.8826	-5.1129	-6.4894
	1.3319	-1.5084	1.8969	-1.4110	1.2823	-1.9917

- Condition No. is 1351 compared to a computed 1910.
- Obtain unknown $(\mathbf{F}; \mathbf{M})^T$ from $[H_c]\mathbf{f}$, where \mathbf{f} is measured leg forces.

EXAMPLE FORCE-TORQUE MEASUREMENTS

- For a combined 3D external loading of $(0.9123, 0.9123, 0)^T$ N force and $(-10.0356, 10.03560, 0)^T$ N-mm moment, the measured values of forces and moments are $(0.9270, 0.8819, 0.0265)^T$ N and $(-13.0081, 10.1789, -1.4352)^T$ N-mm respectively. It may be noted that the FEA computed values for the externally applied 3D loading are $(0.9241, 0.8809, 0.0932)^T$ N of force and $(-19.2041, 12.3772, -0.5258)^T$ N-mm.
- For a combined 3D loading of $(0.9123, 0.9123, 0)^T$ N force and $(-10.0356, 10.0356, -45.6165)^T$ N-mm moment, the measured values of forces and moments are $(0.8937, 0.9153, 0.1462)^T$ N and $(-12.2085, 8.9987, -45.9569)^T$ N-mm respectively. The computed FEA values for the 3D loading is $(0.8780, 0.9261, 0.2688)^T$ N force and $(-21.8783, 18.0896, -43.7448)^T$ N-mm moment.

- The performance of the prototype sensor is very good for sensing forces and moments in the chosen sensitive directions and errors are around 3%.
- A magnification of about 10 is observed in the sensitive directions.
- The performance of the prototype sensor in the non-sensitive directions is less accurate More electronic amplification is required.
- The computed FEA values are in general larger. This is expected since FE based models are known to be stiffer.

MOMENT SENSITIVE CONFIGURATION

- Configuration # 8 is sensitive to moments.
- The connection sequence is $B_1 P_2$, $B_2 P_3$... $B_6 P_1$

Figure 43: CAD model of sensor sensitive to moment components

100

MOMENT SENSITIVE CONFIGURATION

Figure 44: Prototype sensor sensitive to moment components

• Testing under progress.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 65/99

SUMMARY

• Gough-Stewart as a six component force-torque sensor.

- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

- Gough-Stewart as a six component force-torque sensor.
- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

- Gough-Stewart as a six component force-torque sensor.
- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

- Gough-Stewart as a six component force-torque sensor.
- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

- Gough-Stewart as a six component force-torque sensor.
- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

- Gough-Stewart as a six component force-torque sensor.
- Isotropic and singular configurations.
- Algorithm to obtain singular directions can be done symbolically!
- Design of a 6 component force-torque sensor sensitive to F_x , F_y and M_z .
 - Kinematic design choice of configuration and geometry.
 - Design of flexible hinges and sensing element.
 - Finite element analysis of full sensor.
 - Prototyping, calibration and testing.
- Sensor sensitive to moments.
- Can design a *class* of Gough-Stewart platform based sensors with desired (enhanced) sensitivities!!

OUTLINE

D CONTENTS

2 LECTURE 1*

• Chaos and Non-linear Dynamics in Robots

3 LECTURE 2

• Gough-Stewart Platform based Force-torque Sensors

LECTURE 3*

• Modeling and Analysis of Deployable Structures

MODULE 10 – ADDITIONAL MATERIAL References and Suggested Reading

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.
- Summary

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.
- Summary

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.
- Summary

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.
- Summary

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.

Summary

Introduction

- Over-constrained mechanisms and deployable structures.
- Constraint Jacobian and obtaining redundant links and joints.
- Kinematics of SLE based deployable structures.
- Statics of SLE based deployable structures.
- Summary

- Large deployable structures
 - Space applications small payload bay.
 - Modern communication and other satellites in orbit have large appendages.
 - $\bullet\,$ Compact folded state in payload bay \to Large deployed state in orbit.
- Large number of links and joints present.
 - In stowed state locked/strapped one DOF mechanism.
 - During deployment, behaves as a one degree of freedom mechanism.
 - At the end of deployment, actuated joint is locked.
 - In deployed state Structure capable of taking load.
- Main ones: coilable and pantograph masts, antennae and solar panels.
- This lecture deals with pantograph based deployable structures.

- Large deployable structures
 - Space applications small payload bay.
 - Modern communication and other satellites in orbit have large appendages.
 - $\bullet\,$ Compact folded state in payload bay \to Large deployed state in orbit.
- Large number of links and joints present.
 - In stowed state locked/strapped one DOF mechanism.
 - During deployment, behaves as a one degree of freedom mechanism.
 - At the end of deployment, actuated joint is locked.
 - In deployed state Structure capable of taking load.
- Main ones: coilable and pantograph masts, antennae and solar panels.
- This lecture deals with pantograph based deployable structures.

- Large deployable structures
 - Space applications small payload bay.
 - Modern communication and other satellites in orbit have large appendages.
 - $\bullet\,$ Compact folded state in payload bay \to Large deployed state in orbit.
- Large number of links and joints present.
 - In stowed state locked/strapped one DOF mechanism.
 - During deployment, behaves as a one degree of freedom mechanism.
 - At the end of deployment, actuated joint is locked.
 - In deployed state Structure capable of taking load.
- Main ones: coilable and pantograph masts, antennae and solar panels.
- This lecture deals with pantograph based deployable structures.

- Large deployable structures
 - Space applications small payload bay.
 - Modern communication and other satellites in orbit have large appendages.
 - $\bullet\,$ Compact folded state in payload bay \to Large deployed state in orbit.
- Large number of links and joints present.
 - In stowed state locked/strapped one DOF mechanism.
 - During deployment, behaves as a one degree of freedom mechanism.
 - At the end of deployment, actuated joint is locked.
 - In deployed state Structure capable of taking load.
- Main ones: coilable and pantograph masts, antennae and solar panels.
- This lecture deals with pantograph based deployable structures.

Figure 45: Folded articulated square mast (FAST)

Figure 46: Deployment of FAST (see Warden 1987)

- Eight FAST masts are used in the International Space Station to support solar arrays.
- Source: AEC-Able Engineering Company, Inc.

Figure 47: Planar scissor-like-element (SLE) or a pantograph

- Revolute joint in middle connects two links of equal length.
- Passive cable: connects two points such
 that it is slack when fully or partially
 folded and becomes taught when fully
 deployed.
- Passive cable(s) terminate deployment and increase stiffness of structure – sometimes more than one passive cables.
- Active cable: length decreases continuously and control deployment.
- Typically only one active cable to avoid multiple mechanisms and actuators.
- Initially points (k,j) are close to (i, l) As the active cable is shortened, (j, l) comes near to (k, i).

EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 48: Stacked planar SLE masts (a) Fully deployed, (b) Partially deployed

- Four SLE's stacked on top of each other.
- Deployment angle varies from fully folded ($\beta = 0^{\circ}$) to fully deployed ($\beta = 45^{\circ}$).
- 8 passive cables and one active cable.

ASHITAVA GHOSAL (IISC)

EXAMPLES OF DEPLOYABLE STRUCTURES

Ring Pantograph (You & Pellegrino (1997))

- Three different SLEs : Two concentric circular pantograph units.
- o Double layer cable network supports the RF reflective mesh
- o Active cable is used for deployment.

Figure 49: Deployment sequence of a cable stiffened pantograph deployable antennae (You & Pellegrin (1997)

EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 50: Schematic of a 5.6 m EGS antennae

- Circular pantograph ring and radial tensioned membrane rib connected to a central hub.
- 5.6 m by 6.4 m elliptical version tested in MIR space station.
- Made by Energia-GPI Space (EGS), Russia. Visit <u>website</u> for more information.

OVER-CONSTRAINED MECHANISMS

Figure 51: Over-constrained Mechanisms

• Most well known DOF or mobility equation: Grübler-Kutzbach

$$M = \lambda(n-j-1) + \sum_{i=1}^{j} f_i, \quad \lambda = 3 \text{ or6}$$

- $M \neq 1$ in all example, although all can move!!
- Case (a): Special geometry, Case (b): Passive DOF along PP line af, Case (c): Redundant link pq, and Case (d): Redundant R joint at down

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

75/99

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives $M \neq 1$ by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account → Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress s and number of internal mechanisms m (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account \rightarrow Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress s and number of internal mechanisms m (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account \rightarrow Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress s and number of internal mechanisms m (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account → Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress *s* and number of internal mechanisms *m* (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account → Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress *s* and number of internal mechanisms *m* (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account → Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress *s* and number of internal mechanisms *m* (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DEGREE OF FREEDOM & MOBILITY

- Many other well-known mechanisms Bennett mechanism (Bennett, 1903), deployable pantograph masts gives M ≠ 1 by Grübler-Kutzbach formula.
- Grübler-Kutzbach fails since special geometry is not taken in to account \rightarrow Formula based on counting alone!!
- Many attempts to derive a "more universal" DOF/mobility formula (see Gogu, 2005)
- Passive DOF f_p subtracted by Tsai (2001): S S pair or P P pair cases.
- Equivalent screw system to choose λ (Waldron, 1966).
- Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
 Used in this Lecture!!
- Including state of self-stress *s* and number of internal mechanisms *m* (Guest and Fowler, 2005).

ASHITAVA GHOSAL (IISC)

DIFFERENT TYPES OF COORDINATES

Figure 52: Three kinds of coordinates in RRPR mechanism

- Relative coordinates are described with respect to previous link (Denavit and Hartenberg, 1965).
- Reference point (or *absolute*) coordinates planar body with 3 coordinate (x, y, ϕ) and by 6 coordinates in space (Nikravesh, 1988).
- Cartesian (or *natural* coordinates) reference point moved to joint (Garcia de Jalon and Bayo, 1994).

ASHITAVA GHOSAL (IISC)

DIFFERENT TYPES OF COORDINATES

Figure 52: Three kinds of coordinates in RRPR mechanism

- Relative coordinates are described with respect to previous link (Denavit and Hartenberg, 1965).
- Reference point (or *absolute*) coordinates planar body with 3 coordinate (x, y, φ) and by 6 coordinates in space (Nikravesh, 1988).
- Cartesian (or *natural* coordinates) reference point moved to joint (Garcia de Jalon and Bayo, 1994).

ASHITAVA GHOSAL (IISC)

DIFFERENT TYPES OF COORDINATES

Figure 52: Three kinds of coordinates in RRPR mechanism

- Relative coordinates are described with respect to previous link (Denavit and Hartenberg, 1965).
- Reference point (or *absolute*) coordinates planar body with 3 coordinate (x, y, φ) and by 6 coordinates in space (Nikravesh, 1988).
- Cartesian (or *natural* coordinates) reference point moved to joint (Garcia de Jalon and Bayo, 1994).

ASHITAVA GHOSAL (IISC)

- Constraint equations are different for different choice of coordinates.
- For relative coordinates loop-closure constraints (see <u>Module 4</u>, Lecture 1) for RRPR mechanism

 $l_1 \cos \phi_1 + d \cos(\phi_1 + \phi_2) + l_3 \cos(\phi_1 + \phi_2 - \pi/2) = l_4$

 $l_1 \sin \phi_1 + d \sin(\phi_1 + \phi_2) + l_3 \sin(\phi_1 + \phi_2 - \pi/2) = 0$

where q = (\$\phi_1\$, \$\phi_2\$, \$d\$) are the coordinates (see figure).
For reference point coordinates, the constrains are

 $\begin{aligned} x_a + l_1/2\cos\phi_1 &= x_1, \ y_a + l_1/2\sin\phi_1 &= y_1 \\ x_1 + l_1/2\cos\phi_1 &+ l_2/2\cos\phi_2 &= x_2, \ y_1 + l_1/2\sin\phi_1 + l_2/2\sin\phi_2 &= y_2 \\ \phi_2 - \phi_3 &= \pi/2, \ (y_2 - y_3)\cos\phi_2 + (x_3 - x_2)\sin\phi_2 &= l_3/2 \\ x_3 + l_3/2\cos\phi_3 &= x_d, \ y_3 + l_3/2\sin\phi_3 &= y_d \end{aligned}$

where $q = (x_1, y_1, \phi_1, x_2, y_2, \phi_2, x_3, y_3, \phi_3)$ are the coordinates (see figure). • For Cartesian coordinates

$$\begin{aligned} (x_1 - x_a)^2 + (y_1 - y_a)^2 &= l_1^2, \ (x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2 \\ (x_3 - x_b)^2 + (y_3 - y_b)^2 &= l_3^2, \ (x_2 - x_1)(x_3 - x_b) + (y_2 - y_1)(y_3 - y_b) = l_2 l_3 \cos \phi \\ (x_3 - x_1)/(x_2 - x_1) - (y_3 - y_1)/(y_2 - y_1) &= 0 \end{aligned}$$

where $\mathbf{q} = (x_1, y_1, x_2, y_2, x_3, y_3)$ are the coordinates (see figure), \mathbf{z} , \mathbf{z}

- Constraint equations are different for different choice of coordinates.
- For relative coordinates loop-closure constraints (see <u>Module 4</u>, Lecture 1) for RRPR mechanism

$$l_1 \cos \phi_1 + d \cos(\phi_1 + \phi_2) + l_3 \cos(\phi_1 + \phi_2 - \pi/2) = l_4$$

$$l_1 \sin \phi_1 + d \sin(\phi_1 + \phi_2) + l_3 \sin(\phi_1 + \phi_2 - \pi/2) = 0$$

where $\mathbf{q} = (\phi_1, \phi_2, d)$ are the coordinates (see figure).

For reference point coordinates, the constrains are

 $\begin{aligned} x_a + l_1/2\cos\phi_1 &= x_1, \ y_a + l_1/2\sin\phi_1 &= y_1 \\ x_1 + l_1/2\cos\phi_1 + l_2/2\cos\phi_2 &= x_2, \ y_1 + l_1/2\sin\phi_1 + l_2/2\sin\phi_2 &= y_2 \\ \phi_2 - \phi_3 &= \pi/2, \ (y_2 - y_3)\cos\phi_2 + (x_3 - x_2)\sin\phi_2 &= l_3/2 \\ x_3 + l_3/2\cos\phi_3 &= x_d, \ y_3 + l_3/2\sin\phi_3 &= y_d \end{aligned}$

where $q = (x_1, y_1, \phi_1, x_2, y_2, \phi_2, x_3, y_3, \phi_3)$ are the coordinates (see figure). • For Cartesian coordinates

$$\begin{aligned} (x_1 - x_a)^2 + (y_1 - y_a)^2 &= l_1^2, \ (x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2 \\ (x_3 - x_b)^2 + (y_3 - y_b)^2 &= l_3^2, \ (x_2 - x_1)(x_3 - x_b) + (y_2 - y_1)(y_3 - y_b) = l_2 l_3 \cos \phi \\ (x_3 - x_1)/(x_2 - x_1) - (y_3 - y_1)/(y_2 - y_1) &= 0 \end{aligned}$$

where $\mathbf{q} = (x_1, y_1, x_2, y_2, x_3, y_3)$ are the coordinates (see figure), \mathbf{z} , \mathbf{z}

- Constraint equations are different for different choice of coordinates.
- For relative coordinates loop-closure constraints (see <u>Module 4</u>, Lecture 1) for RRPR mechanism

$$l_1 \cos \phi_1 + d \cos(\phi_1 + \phi_2) + l_3 \cos(\phi_1 + \phi_2 - \pi/2) = l_4$$

$$l_1 \sin \phi_1 + d \sin(\phi_1 + \phi_2) + l_3 \sin(\phi_1 + \phi_2 - \pi/2) = 0$$

where $\mathbf{q} = (\phi_1, \phi_2, d)$ are the coordinates (see figure).

• For reference point coordinates, the constrains are

$$\begin{aligned} x_a + l_1/2\cos\phi_1 &= x_1, \ y_a + l_1/2\sin\phi_1 &= y_1 \\ x_1 + l_1/2\cos\phi_1 &= l_2/2\cos\phi_2 &= x_2, \ y_1 + l_1/2\sin\phi_1 + l_2/2\sin\phi_2 &= y_2 \\ \phi_2 - \phi_3 &= \pi/2, \ (y_2 - y_3)\cos\phi_2 + (x_3 - x_2)\sin\phi_2 &= l_3/2 \\ x_3 + l_3/2\cos\phi_3 &= x_d, \ y_3 + l_3/2\sin\phi_3 &= y_d \end{aligned}$$

where $\mathbf{q} = (x_1, y_1, \phi_1, x_2, y_2, \phi_2, x_3, y_3, \phi_3)$ are the coordinates (see figure). • For Cartesian coordinates

$$(x_1 - x_a)^2 + (y_1 - y_a)^2 = l_1^2, \ (x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2 (x_3 - x_b)^2 + (y_3 - y_b)^2 = l_3^2, \ (x_2 - x_1)(x_3 - x_b) + (y_2 - y_1)(y_3 - y_b) = l_2 l_3 \cos \phi (x_3 - x_1)/(x_2 - x_1) - (y_3 - y_1)/(y_2 - y_1) = 0$$

where $\mathbf{q} = (x_1, y_1, x_2, y_2, x_3, y_3)$ are the coordinates (see figure), $\mathbf{z} \rightarrow \mathbf{z} \rightarrow \mathbf{z}$

- Constraint equations are different for different choice of coordinates.
- For relative coordinates loop-closure constraints (see <u>Module 4</u>, Lecture 1) for RRPR mechanism

$$l_1 \cos \phi_1 + d \cos(\phi_1 + \phi_2) + l_3 \cos(\phi_1 + \phi_2 - \pi/2) = l_4$$

$$l_1 \sin \phi_1 + d \sin(\phi_1 + \phi_2) + l_3 \sin(\phi_1 + \phi_2 - \pi/2) = 0$$

where $\mathbf{q} = (\phi_1, \phi_2, d)$ are the coordinates (see figure).

• For reference point coordinates, the constrains are

$$\begin{aligned} x_a + l_1/2\cos\phi_1 &= x_1, \ y_a + l_1/2\sin\phi_1 &= y_1 \\ x_1 + l_1/2\cos\phi_1 &= l_2/2\cos\phi_2 &= x_2, \ y_1 + l_1/2\sin\phi_1 + l_2/2\sin\phi_2 &= y_2 \\ \phi_2 - \phi_3 &= \pi/2, \ (y_2 - y_3)\cos\phi_2 + (x_3 - x_2)\sin\phi_2 &= l_3/2 \\ x_3 + l_3/2\cos\phi_3 &= x_d, \ y_3 + l_3/2\sin\phi_3 &= y_d \end{aligned}$$

where $\mathbf{q} = (x_1, y_1, \phi_1, x_2, y_2, \phi_2, x_3, y_3, \phi_3)$ are the coordinates (see figure). • For Cartesian coordinates

$$(x_1 - x_a)^2 + (y_1 - y_a)^2 = l_1^2, \ (x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2$$

$$(x_3 - x_b)^2 + (y_3 - y_b)^2 = l_3^2, \ (x_2 - x_1)(x_3 - x_b) + (y_2 - y_1)(y_3 - y_b) = l_2 l_3 \cos \phi$$

$$(x_3 - x_1)/(x_2 - x_1) - (y_3 - y_1)/(y_2 - y_1) = 0$$

where $\mathbf{q} = (x_1, y_1, x_2, y_2, x_3, y_3)$ are the coordinates (see figure).
CONSTRAINTS WITH NATURAL COORDINATES RIGID BODY

Figure 53: Constraints associated with rigid link

- Distance between two points remain constant: $\mathbf{r}_{ij} \cdot \mathbf{r}_{ij} = L_{ij}^2$
- Link with three points: distance btween *i*, *j* and *k* remain constant.
- Link with 3 co-linear points: $\mathbf{r}_{ij} \cdot \mathbf{r}_{ij} = L_{ij}^2$ and $\mathbf{r}_{ij} k\mathbf{r}_{ik} = \mathbf{0}$.
- Link with three points and included angle.

$$\begin{aligned} \mathbf{r}_{ij} \cdot \mathbf{r}_{ij} &= L_{ij}^2 \\ \mathbf{r}_{ik} \cdot \mathbf{r}_{ik} &= L_{ik}^2 \\ \mathbf{r}_{ij} \cdot \mathbf{r}_{ik} &= L_{ij} L_{ik} \cos(\alpha) \end{aligned}$$

CONSTRAINTS WITH NATURAL COORDINATES

Figure 54: Constraints associated with joints

- Spherical joint two adjacent links share a point.
- Rotary joint constraints

$$\begin{aligned} \mathbf{r}_{ij} \cdot \mathbf{u}_m - L_{ij} \cos(\alpha_i) &= 0\\ \mathbf{r}_{ij} \cdot \mathbf{u}_n - L_{ij} \cos(\alpha_j) &= 0\\ \mathbf{r}_{ij} \cdot \mathbf{r}_{ij} &= L_{ij}^2, \ \mathbf{u}_n \cdot \mathbf{u}_m &= \cos(\gamma)\\ \mathbf{u}_n \cdot \mathbf{u}_n &= \mathbf{u}_m \cdot \mathbf{u}_m = 1 \end{aligned}$$

- γ is the angle shown in figure.
- Cylindrical joint constraint

$$\mathbf{r}_{ik} \times \mathbf{r}_{ij} = 0$$
$$\mathbf{r}_{ij} \times \mathbf{u}_c = 0$$

CONSTRAINTS WITH NATURAL COORDINATES • Two length constraint equations

$$\begin{aligned} \mathbf{r}_{ij} \cdot \mathbf{r}_{ij} &= L_{ij}^2 \\ \mathbf{r}_{kl} \cdot \mathbf{r}_{kl} &= L_{kl}^2 \end{aligned}$$

• Two co-linearity constraints

$$\begin{aligned} \mathbf{r}_{ij} &- \lambda_1 \mathbf{r}_{ip} &= 0 \\ \mathbf{r}_{kl} &- \lambda_2 \mathbf{r}_{kp} &= 0 \end{aligned}$$

Figure 55: Constraints associated with SLE

 $\lambda_1 = rac{a+b}{a}$ and $\lambda_2 = rac{c+d}{c}$.

• Simplifying, SLE constraints are

$$\frac{b}{a+b}\mathbf{P}_i + \frac{a}{a+b}\mathbf{P}_j - \frac{c}{c+d}\mathbf{P}_l - \frac{d}{c+d}\mathbf{P}_k = 0$$

 \mathbf{P}_m (m = i, j, k, l) are the position vectors of 4 points.

• Boundary constraints: If point P is fixed, its coordinates are 0.

$$f_j(X_1, Y_1, Z_1, X_2, \cdots, Y_n, Z_n) = 0$$
 for $j = 1$ to n_c

 n_c is the total number of constraint equations and 3n is the number of Cartesian coordinates of the system.

• Derivative of all constraint equations in symbolic form

 $[J]\delta X = 0$

- Homogeneous equation \Rightarrow Non-trivial δX if dimension of null space of [J] is at least one.
- Dimension of null-space of [J] same as DOF of mechanism!!

$$f_j(X_1, Y_1, Z_1, X_2, \dots, Y_n, Z_n) = 0$$
 for $j = 1$ to n_c

 n_c is the total number of constraint equations and 3n is the number of Cartesian coordinates of the system.

• Derivative of all constraint equations in symbolic form

 $[\mathsf{J}]\delta\mathsf{X}=\mathsf{0}$

- Homogeneous equation \Rightarrow Non-trivial δX if dimension of null space of [J] is *at least* one.
- Dimension of null-space of [J] same as DOF of mechanism!!

$$f_j(X_1, Y_1, Z_1, X_2, \dots, Y_n, Z_n) = 0$$
 for $j = 1$ to n_c

 n_c is the total number of constraint equations and 3n is the number of Cartesian coordinates of the system.

• Derivative of all constraint equations in symbolic form

 $[J]\delta X = 0$

- Homogeneous equation \Rightarrow Non-trivial δX if dimension of null space of [J] is *at least* one.
- Dimension of null-space of [J] same as DOF of mechanism!!

$$f_j(X_1, Y_1, Z_1, X_2, \cdots, Y_n, Z_n) = 0$$
 for $j = 1$ to n_c

 n_c is the total number of constraint equations and 3n is the number of Cartesian coordinates of the system.

• Derivative of all constraint equations in symbolic form

$$[\mathsf{J}]\delta\mathsf{X}=\mathsf{0}$$

- Homogeneous equation \Rightarrow Non-trivial δX if dimension of null space of [J] is *at least* one.
- Dimension of null-space of [J] same as DOF of mechanism!!

- Add the derivative of the constraint equations one at a time in the following order
 - arising out of length constraints
 - arising out of joint constraints
- At each step evaluate dimension of null-space of [J].
- Nullity([J]) doesn't decrease when a constraint is added \rightarrow Constraint is redundant.
- Boundary constraints are added last: Nullity([J]) doesn't decrease \rightarrow Boundary constraint is redundant.
- Final dimension of the null-space of [J] is the mobility/degree of freedom of the system.

- Add the derivative of the constraint equations one at a time in the following order
 - arising out of length constraints
 - arising out of joint constraints
- At each step evaluate dimension of null-space of [J].
- \bullet Nullity([J]) doesn't decrease when a constraint is added \rightarrow Constraint is redundant.
- Boundary constraints are added last: Nullity([J]) doesn't decrease \rightarrow Boundary constraint is redundant.
- Final dimension of the null-space of [J] is the mobility/degree of freedom of the system.

- Add the derivative of the constraint equations one at a time in the following order
 - arising out of length constraints
 - arising out of joint constraints
- At each step evaluate dimension of null-space of [J].
- Nullity([J]) doesn't decrease when a constraint is added \rightarrow Constraint is redundant.
- Boundary constraints are added last: Nullity([J]) doesn't decrease \rightarrow Boundary constraint is redundant.
- Final dimension of the null-space of [J] is the mobility/degree of freedom of the system.

- Add the derivative of the constraint equations one at a time in the following order
 - arising out of length constraints
 - arising out of joint constraints
- At each step evaluate dimension of null-space of [J].
- Nullity([J]) doesn't decrease when a constraint is added \rightarrow Constraint is redundant.
- Boundary constraints are added last: Nullity([J]) doesn't decrease \rightarrow Boundary constraint is redundant.
- Final dimension of the null-space of [J] is the mobility/degree of freedom of the system.

- Add the derivative of the constraint equations one at a time in the following order
 - arising out of length constraints
 - arising out of joint constraints
- At each step evaluate dimension of null-space of [J].
- Nullity([J]) doesn't decrease when a constraint is added \rightarrow Constraint is redundant.
- Boundary constraints are added last: Nullity([J]) doesn't decrease → Boundary constraint is redundant.
- Final dimension of the null-space of [J] is the mobility/degree of freedom of the system.

KINEMATIC ANALYSIS OF OVER-CONSTRAINED MECHANISMS

Figure 56: Constraints Jacobian analysis of three slider mechanism

- Constraint Jacobian analysis correctly predicts DOF as 1.
- Also determines *redundant* constraints which resulted in $M \neq 1$.

イロト イポト イヨト イヨト

KINEMATIC ANALYSIS OF OVER-CONSTRAINED MECHANISMS

Constraints	Size of [J]	Nullspace	Remarks
Length constraints	(10, 12)	2	
+ Cross products	(13, 12)	1	
a-p-b, b-r-c and $c-q-d$			Two cross products redundant
Joint d removed			
Length constraints	(10, 14)	4	
+ Cross product	(13, 14)	1	
a-p-b, b-r-c and $c-q-d$			

Nullspace magnitude	Variables	Nullspace magnitude	Variables	Remarks
-0.1740	X_p	-0.1740	X_p	
0.3013	Y_p	0.3013	Y_p	
-0.3480	X_b	-0.3480	X_b	
0.6027	Y_b	0.6027	Y_b	
0.0085	X_r	0.0085	X_r	
0.2921	Y_r	0.2921	Y_r	
0.3650	X_c	0.3650	X_c	
-0.0185	Y _c	-0.0185	Y_c	
0.1825	X_q	0.1825	X_q	
-0.0092	Y_q	-0.0092	Y_q	
-0.1660	X_t	-0.1660	X_t	
0.3387	Y_t	0.3387	Y_t	
-	-	0.0000	X_d	Redundant
-	-	0.0000	Y_d	Redundant

Joint *d* is seen to be redundant

Link *cd* rotates about *d* without a joint at *d* !!

Figure 57: Constraints Jacobian analysis of Kempes -Burmester mechanism 📱 🔊 🔍

KINEMATIC ANALYSIS OF SLE BASED MASTS

Dance looks

Spherical Joint Fixed Spherical Joint Y 1 X		- 6 3 Rev Join SLE	Polytic point vis U Revolute point - j point - j Revolute point - i point - i point - i point - i	Un Link - j Ω
Constraints	Size of [J]	Nullspace	Remarks	
Length constraints	(6, 18)	12		
Revolute joints	(0.40)	10		0 1 2 1 2 4 1 1 24
+ FACE 1	(8,18)	10		Spherical joint replaced with
+ FACE 2	(10,18)	8		Revolute joint shown above
+ FACE 3	(12,18)	6		
SLEs	(SLE 2 and 3 are redundant
+ SLE 1	(15, 18)	4		SEE - 2 and 5 are reduindant
+ SLE 2	(18,18)	4	SLE - 2 is redundant	DOF is 1 without SLE - 2
+ SLE 3	(21,18)	4	SLE - 3 is redundant	and SLE - 3
+ Boundary conditions				
$X_1 = Y_1 = Z_1 = 0$	(24, 18)	1		

Figure 58: Constraints Jacobian analysis of triangular SLE mast with revolute joints

NPTEL, 2010 86 / 99

KINEMATIC ANALYSIS OF SLE BASED MASTS

Size of [J]	Nullspace	Remarks
(8,24)	16	
(10, 24)	14	
(12,24)	12	
(14,24)	10	
(16,24)	8	
(19,24)	5	
(22,24)	4	two components are redundant
(25,24)	4	SLE - 3 is redundant
(28,24)	4	SLE - 4 is redundant
(31, 24)	1	
	Size of [J] (8,24) (10,24) (12,24) (14,24) (16,24) (19,24) (22,24) (22,24) (25,24) (28,24) (31,24)	$\begin{array}{c c c} \text{Size of } [\mathbf{J}] & \text{Nullspace} \\ \hline (8,24) & 16 \\ \hline (10,24) & 14 \\ \hline (12,24) & 12 \\ \hline (14,24) & 10 \\ \hline (16,24) & 8 \\ \hline (10,24) & 5 \\ \hline (22,24) & 4 \\ \hline (25,24) & 4 \\ \hline (25,24) & 4 \\ \hline (28,24) & 4 \\ \hline (31,24) & 1 \\ \end{array}$

Spherical joint replaced with Revolute joint shown above

SLE - 3 and 4 are redundant DOF is 1 without SLE - 3 and SLE - 4

Figure 59: Constraints Jacobian analysis of box SLE mast with revolute joints

KINEMATIC ANALYSIS OF SLE BASED MASTS

EXAMPLES	1:	2	1	1	
I j -	Fixed oint Z V X 2		9	Horizontal Cable	SLE – 6 ar FACE 5 & DOF is 1 v DOF is 0 v (modeled a
	Contents	Size of [J]	Null Space	Remarks	
	+ SLE 1	(20, 39)	21		
	+ SLE 2	(28, 42)	18		
	+ SLE 3	(36, 45)	15		
	+ SLE 4	(44, 48)	12		
	+ SLE 5	(52,51)	10		
	+ SLE 0	(60,54)	10	SLE - 6 is redundant	
	+ FACE I	(62,54)	8		
	+ FACE 2	(64,54)	5		
	+ FACE 3	(68.54)	4		
	+ FACE 5	(70.54)	4	Bevolute joints are redundant	
	+ FACE 6	(72.54)	4	Revolute joints are redundant	
	+ Boundary conditions	(,01)		, , are retained	
	$(X_1 = Y_1 = Z_1 = 0)$	(75, 54)	1	Mechanism	
	+ Cable 1-2	(76, 54)	0	Structure	

SLE – 6 and R joints on FACE 5 & 6 are redundant DOF is 1 without Cable DOF is 0 with Cable (modeled as rigid rod)

4 D b 4 🖓

Figure 60: Constraints Jacobian analysis of hexagonal SLE mast with cables

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 88 / 99

KINEMATIC ANALYSIS OF SLE BASED MASTS Simulation

- \bullet Once redundancy identified \rightarrow Can solve kinematics!
- L = 30.0, Joint 2 moves horizontally and height decreases!!

Figure 61: Trajectory of joint coordinates for a triangular mast

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- Over-constrained mechanisms do not give correct DOF from Grübler-Kutzbach criterion.
- Grübler-Kutzbach criterion does not take into account geometry!
- Null space dimension of the constraint Jacobian
 - Correctly determines degrees of freedom.
 - Can identify redundant links, joints and boundary conditions.
- Constraint Jacobian approach is *local* results valid at a chosen configuration & does not account for *singularities*.
- Global analysis possible for pantograph masts and simple mechanisms.
- Constraint Jacobian approach applied to SLE based masts *redundant* SLE's can be identified!

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

- At the end of deployment, the actuator is locked & Mechanism becomes a structure.
- Various approaches to analyse structures (see Kwan & Pellegrino (1994), Shan (1992) and Gantes et al. (1994))
- Constraint Jacobian matrix extended for static analysis.
- Stiffness matrix obtained from each type of constraints and then assembled.
- Rank of system stiffness matrix gives redundant links and joints.
- Deflection analysis from stiffness matrix.

STATIC ANALYSIS OF SLE BASED MASTS LINKS SEGMENTS – AXIAL LOAD

- For elastic members, $[S_m]\delta L = \delta T$; Elongation is δL for a load δT
- The member stiffness matrix is

- where I, A and E are length, cross-sectional area and elastic modulus, respectively.
- External force is related to δT by the Jacobian matrix: $[J_m]^T \delta T = \delta F$
- Hence, $[\mathbf{J}_m]^T [\mathbf{S}_m] [\mathbf{J}_m] \delta \mathbf{X} = \delta \mathbf{F}$.
- Elastic stiffness matrix is $[K_m] = [J_m]^T [S_m] [J_m]$.

- For elastic members, $[S_m]\delta L = \delta T$; Elongation is δL for a load δT
- The member stiffness matrix is

$$[\mathbf{S}_m] = \begin{bmatrix} \frac{A_1 E_1}{l_1} & 0 & 0 & 0\\ 0 & \frac{A_2 E_2}{l_2} & 0 & 0\\ 0 & 0 & \frac{A_3 E_3}{l_3} & 0\\ 0 & 0 & 0 & \frac{A_4 E_4}{l_4} \end{bmatrix}$$

- External force is related to δT by the Jacobian matrix: $[J_m]^T \delta T = \delta F$
- Hence, $[\mathbf{J}_m]^T [\mathbf{S}_m] [\mathbf{J}_m] \delta \mathbf{X} = \delta \mathbf{F}$.
- Elastic stiffness matrix is $[K_m] = [J_m]^T [S_m] [J_m]$.

- For elastic members, $[S_m]\delta L = \delta T$; Elongation is δL for a load δT
- The member stiffness matrix is

$$[\mathbf{S}_m] = \begin{bmatrix} \frac{A_1 E_1}{l_1} & 0 & 0 & 0\\ 0 & \frac{A_2 E_2}{l_2} & 0 & 0\\ 0 & 0 & \frac{A_3 E_3}{l_3} & 0\\ 0 & 0 & 0 & \frac{A_4 E_4}{l_4} \end{bmatrix}$$

- External force is related to δT by the Jacobian matrix: $[J_m]^T \delta T = \delta F$
- Hence, $[\mathbf{J}_m]^T [\mathbf{S}_m] [\mathbf{J}_m] \delta \mathbf{X} = \delta \mathbf{F}$.
- Elastic stiffness matrix is $[K_m] = [J_m]^T [S_m] [J_m]$.

- For elastic members, $[S_m]\delta L = \delta T$; Elongation is δL for a load δT
- The member stiffness matrix is

$$[\mathbf{S}_m] = \begin{bmatrix} \frac{A_1 E_1}{l_1} & 0 & 0 & 0\\ 0 & \frac{A_2 E_2}{l_2} & 0 & 0\\ 0 & 0 & \frac{A_3 E_3}{l_3} & 0\\ 0 & 0 & 0 & \frac{A_4 E_4}{l_4} \end{bmatrix}$$

- External force is related to δT by the Jacobian matrix: $[J_m]^T \delta T = \delta F$
- Hence, $[\mathbf{J}_m]^T [\mathbf{S}_m] [\mathbf{J}_m] \delta \mathbf{X} = \delta \mathbf{F}$.
- Elastic stiffness matrix is $[K_m] = [J_m]^T [S_m] [J_m]$.

- For elastic members, $[S_m]\delta L = \delta T$; Elongation is δL for a load δT
- The member stiffness matrix is

$$[\mathbf{S}_m] = \begin{bmatrix} \frac{A_1 E_1}{l_1} & 0 & 0 & 0\\ 0 & \frac{A_2 E_2}{l_2} & 0 & 0\\ 0 & 0 & \frac{A_3 E_3}{l_3} & 0\\ 0 & 0 & 0 & \frac{A_4 E_4}{l_4} \end{bmatrix}$$

- External force is related to δT by the Jacobian matrix: $[J_m]^T \delta T = \delta F$
- Hence, $[\mathbf{J}_m]^T [\mathbf{S}_m] [\mathbf{J}_m] \delta \mathbf{X} = \delta \mathbf{F}$.
- Elastic stiffness matrix is $[K_m] = [J_m]^T [S_m] [J_m]$.

STATIC ANALYSIS OF SLE BASED MASTS Links segments – Bending

• For rotations $\delta \phi''$ and member moments $\delta {\sf M}''$

 $[{\sf S}_n]\delta\phi=\delta{\sf M}$

 $\bullet\,$ The member stiffness matrix $[{\sf S}_n]$ for the SLE is given by

E is the Young's modulus, I_z and I_y are moments of inertia.

- Elastic stiffness matrix $[K_n] = [J_n]^T [S_n] [J_n]$
- Combined stiffness matrix

$$[\mathsf{K}_s] = [\mathsf{K}_m] + [\mathsf{K}_n]$$

STATIC ANALYSIS OF SLE BASED MASTS Links segments – Bending

• For rotations $\delta \phi''$ and member moments $\delta {\sf M}''$

 $[\mathsf{S}_n]\delta\phi=\delta\mathsf{M}$

 $\bullet\,$ The member stiffness matrix $[S_n]$ for the SLE is given by

E is the Young's modulus, I_z and I_y are moments of inertia.

- Elastic stiffness matrix $[K_n] = [J_n]^T [S_n] [J_n]$
- Combined stiffness matrix

$$[\mathsf{K}_s] = [\mathsf{K}_m] + [\mathsf{K}_n]$$

STATIC ANALYSIS OF SLE BASED MASTS Links segments – Bending

ullet For rotations $\delta\phi''$ and member moments $\delta {\sf M}''$

$$[{\sf S}_n]\delta\phi=\delta{\sf M}$$

 $\bullet\,$ The member stiffness matrix $[S_n]$ for the SLE is given by

$$[\mathbf{S}_n] = \begin{bmatrix} \frac{3E_1I_z}{l_1 + l_2} & 0 & 0 & 0\\ 0 & \frac{3E_1I_y}{l_1 + l_2} & 0 & 0\\ 0 & 0 & \frac{3E_2I_z}{l_3 + l_4} & 0\\ 0 & 0 & 0 & \frac{3E_2I_y}{l_3 + l_4} \end{bmatrix}$$

E is the Young's modulus, I_z and I_y are moments of inertia.

- Elastic stiffness matrix $[K_n] = [J_n]^T [S_n] [J_n]$
- Combined stiffness matrix

$$[\mathsf{K}_s] = [\mathsf{K}_m] + [\mathsf{K}_n]$$

STATIC ANALYSIS OF SLE BASED MASTS Links segments – Bending

 \bullet For rotations $\delta\phi''$ and member moments $\delta {\sf M}''$

$$[{\sf S}_n]\delta\phi=\delta{\sf M}$$

 $\bullet\,$ The member stiffness matrix $[S_n]$ for the SLE is given by

$$[\mathbf{S}_n] = \begin{bmatrix} \frac{3E_1I_z}{l_1 + l_2} & 0 & 0 & 0\\ 0 & \frac{3E_1I_y}{l_1 + l_2} & 0 & 0\\ 0 & 0 & \frac{3E_2I_z}{l_3 + l_4} & 0\\ 0 & 0 & 0 & \frac{3E_2I_y}{l_3 + l_4} \end{bmatrix}$$

E is the Young's modulus, I_z and I_y are moments of inertia.

- Elastic stiffness matrix $[K_n] = [J_n]^T [S_n] [J_n]$
- Combined stiffness matrix

$$[\mathsf{K}_s] = [\mathsf{K}_m] + [\mathsf{K}_n]$$

STATIC ANALYSIS OF SLE BASED MASTS Rank of Stiffness Matrix

• Stiffness matrix is given by $[K_s] = [J_s]^T [S_s] [J_s]$ where

$$[\mathbf{S}_{s}] = \begin{bmatrix} \frac{A_{1}E_{1}}{l_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{A_{2}E_{2}}{l_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{A_{3}E_{3}}{l_{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{A_{4}E_{4}}{l_{4}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{3E_{1}I_{x}}{l_{1}+l_{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{1}+l_{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \end{bmatrix}$$

 $\bullet\,$ Rank of stiffness matrix $[{\sf K}_{\it s}]$ same as rank of Jacobian matrix

 $rank([\mathsf{K}_{s}]) = rank(([\mathsf{J}_{s}][\mathsf{S}_{s}])^{\mathsf{T}}([\mathsf{J}_{s}][\mathsf{S}_{s}])) = rank([\mathsf{J}_{s}][\mathsf{S}_{s}]) = rank([\mathsf{J}_{s}])$

• Cable modeled as bar capable of taking tension only.

STATIC ANALYSIS OF SLE BASED MASTS Rank of Stiffness Matrix

• Stiffness matrix is given by $[K_s] = [J_s]^T [S_s] [J_s]$ where

$$[\mathbf{S}_{s}] = \begin{bmatrix} \frac{A_{1}E_{1}}{l_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{A_{2}E_{2}}{l_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{A_{3}E_{3}}{l_{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{A_{4}E_{4}}{l_{4}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{3E_{1}I_{x}}{l_{1}+l_{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{3E_{1}I_{y}}{l_{1}+l_{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \end{bmatrix}$$

• Rank of stiffness matrix $[K_s]$ same as rank of Jacobian matrix

 $rank([\mathsf{K}_{s}]) = rank(([\mathsf{J}_{s}][\mathsf{S}_{s}])^{\mathsf{T}}([\mathsf{J}_{s}][\mathsf{S}_{s}])) = rank([\mathsf{J}_{s}][\mathsf{S}_{s}]) = rank([\mathsf{J}_{s}])$

• Cable modeled as bar capable of taking tension only.

STATIC ANALYSIS OF SLE BASED MASTS Rank of Stiffness Matrix

• Stiffness matrix is given by $[K_s] = [J_s]^T [S_s] [J_s]$ where

$$[\mathbf{S}_{s}] = \begin{bmatrix} \frac{A_{1}E_{1}}{l_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{A_{2}E_{2}}{l_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{A_{3}E_{3}}{l_{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{A_{4}E_{4}}{l_{4}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{3E_{1}I_{x}}{l_{1}+l_{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{1}+l_{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3E_{2}I_{x}}{l_{3}+l_{4}} & 0 \end{bmatrix}$$

• Rank of stiffness matrix $[K_s]$ same as rank of Jacobian matrix

 $rank([\mathsf{K}_{s}]) = rank(([\mathsf{J}_{s}][\mathsf{S}_{s}])^{T}([\mathsf{J}_{s}][\mathsf{S}_{s}])) = rank([\mathsf{J}_{s}][\mathsf{S}_{s}]) = rank([\mathsf{J}_{s}])$

• Cable modeled as bar capable of taking tension only.

STATIC ANALYSIS OF SLE BASED MASTS

EXAMPLES

- Figure 62: Stacked SLE units Deployment from $\beta = 0$ to $\beta = 45^{\circ}$, 0.5 N applied along X and Y.
- $AE = 1.5 \times 10^5$ N, L = 1m, $EI_7 = 9.6 \times 10^7$ Nmm².
- Results match with those presented in Kwan and Pellegrino (1994).

STATIC ANALYSIS OF SLE BASED MASTS

EXAMPLES

Figure 64: Nested hexagonal SLE mast with cables

	X stiffness	Y stiffness in	Z stiffness
	(N/mm)	(N/mm)	(N/mm)
Top or bottom cables	32.01	104.31	17.56
Only vertical cables	40.46	81.17	10.28
Top and bottom cables	65.44	175.42	27.25
All cables	114.23	326.64	39.26

Table 3: Variation of stiffness with addition of cables for assembled hexagonal mast

- Over-constrained mechanisms and many deployable structures do not give correct DOF using Grübler-Kutzbach criterion.
- Deployable structures are very important for space and other applications.
- A constraint Jacobian based approach is useful to
 - Determine correct DOF of over-constrained mechanisms and deployable structures.
 - Determine redundant links and joints which make such mechanisms violate Grübler-Kutzbach criterion.
- Kinematic and static analysis of several pantograph based structures performed.

- Over-constrained mechanisms and many deployable structures do not give correct DOF using Grübler-Kutzbach criterion.
- Deployable structures are very important for space and other applications.
- A constraint Jacobian based approach is useful to
 - Determine correct DOF of over-constrained mechanisms and deployable structures.
 - Determine redundant links and joints which make such mechanisms violate Grübler-Kutzbach criterion.
- Kinematic and static analysis of several pantograph based structures performed.

- Over-constrained mechanisms and many deployable structures do not give correct DOF using Grübler-Kutzbach criterion.
- Deployable structures are very important for space and other applications.
- A constraint Jacobian based approach is useful to
 - Determine correct DOF of over-constrained mechanisms and deployable structures.
 - Determine redundant links and joints which make such mechanisms violate Grübler-Kutzbach criterion.
- Kinematic and static analysis of several pantograph based structures performed.

- Over-constrained mechanisms and many deployable structures do not give correct DOF using Grübler-Kutzbach criterion.
- Deployable structures are very important for space and other applications.
- A constraint Jacobian based approach is useful to
 - Determine correct DOF of over-constrained mechanisms and deployable structures.
 - Determine redundant links and joints which make such mechanisms violate Grübler-Kutzbach criterion.
- Kinematic and static analysis of several pantograph based structures performed.

OUTLINE

D CONTENTS

2 LECTURE 1*

• Chaos and Non-linear Dynamics in Robots

3 LECTURE 2

• Gough-Stewart Platform based Force-torque Sensors

4 LECTURE 3*

Modeling and Analysis of Deployable Structures

5 Module 10 – Additional Material

References and Suggested Reading

MODULE 10 – ADDITIONAL MATERIAL

• References & Sugested Reading

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 99/99