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CONTENTS OF LECTURE1

Introduction to non-linear dynamics and chaos.
Chaos in robot control equations.
Simulation results
Analytical criteria
Summary

1Major portions of this Lecture are from Shrinivas & Ghosal (1996 & 1997) and
Ravishankar & Ghosal (1999). More details are available in these and other references
listed at the end of the module.
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INTRODUCTION
CHAOTIC SYSTEMS

Deterministic physical and mathematical systems whose time history
has sensitive dependence on initial conditions.
Occurs in many non-linear dynamical systems2.

Observed in a wide range of systems such as in electric circuits, fluid
dynamics, double pendulum (Levien and Tan (1993)), large deformation
in plates, mechanical and electro-mechanical systems with friction and
hysteresis(Sekar and Narayanan (1992)), and several mathematical
equations modeling complex phenomenon such as weather.
Controversially related to fields such as economics and medical
phenomenon such as epilepsy.
Origin: classical gravitational 3− body problem (Poincaré late 19th
century).

Duffing’s equation (see Moon (1987) & Dowell and Pezeshki (1986))
is a common and well-studied example

Ẍ +CẊ +X 3 = B cos t
Spring-mass-damper system with non-linear ‘hardening’ spring.
Different time histories for different values of C and B.

2See link for more details.
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INTRODUCTION
CHAOTIC SYSTEMS
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Figure 1: Non-chaotic behaviour of a Duffing’s
oscillator
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Figure 2: Phase plot – Ẋ (t) Vs. X (t) – in
non-chaotic case

C = 0.08 B = 0.2, Initial Conditions — (3.0,4.0) and (3.01,4.01)
Two trajectories do not deviate much as time increases and phase plot
settle to a limit cycle!
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Figure 3: Chaotic behaviour of a Duffing’s
oscillator
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Figure 4: Phase plot – Ẋ (t) Vs. X (t) – in
chaotic case

C = 0.05 B = 7.5, Initial Conditions — (3.0,4.0) and (3.01,4.01)
Large deviation in two trajectories as t increases and dense phase plot.
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INTRODUCTION
KEY FEATURES OF CHAOTIC SYSTEMS

Main features of a chaotic system:
Sensitive dependence on initial conditions (see Duffing’s equation) for
certain parameter values.
Every point in phase space is eventually visited – Periodic system
(single or finitely many periods), phase plot will settle in a region (see
limit cycle in Duffing’s equation).
Chaotic system, the attractor is not a fixed point or a limit cycle →
Strange attractor has fractal dimension!

Only in non-linear dynamical systems – Finite dimensional linear
systems can never exhibit chaos.
In continuous non-linear dynamical system (described by differential
equation), the dimension must be 3 or more.
If non-linear differential equations are integrable → No chaos!
One dimensional discrete systems (logistic map) can exhibit chaos.
Well known book on mathematical aspects of chaos theory –
Guckenheimer and Holmes (1983).
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ROBOT DYNAMICS & CONTROL

Equations of motion of a robot are non-linear (see Module 6, Lecture
1)

[M(q)]q̈+C(q, q̇)+G(q)+F(q, q̇) = τ

[M(q)] — Non-linear mass matrix – Trigonometric terms
C(q, q̇) — Nonlinear Coriolis/Centripetal – trigonometric and quadratic
products q̇i q̇j .
G(q) — Nonlinear gravity term – Trigonometric terms.
F(q, q̇) — Nonlinear friction and other terms.
τ — Control torque/force at joints

Control schemes are sometimes nonlinear.
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ROBOT DYNAMICS & CONTROL

To track a desired trajectory, various control schemes are used (see
Module 7, Lecture 3).
Proportional + Derivative(PD) or a PID control scheme

τi = q̈di +Kpi (qdi −qi )+Kvi (q̇di − q̇i )+KIi

∫
(qdi −qi )dt

Model-based control schemes

τ = ̂[M(q)]τ ′+ Ĉ(q, q̇)+ Ĝ(q)+ F̂(q, q̇)

where τ ′ is same as in PD control scheme and (̂.) are estimates used
in model-based terms.
PD and model-based control is asymptotically stable for a regulator
problem under certain conditions (see Module 7, Lecture 3).
Stability not proved for trajectory following with arbitrary qd(t).
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ROBOT DYNAMICS & CONTROL

Equations of motion are 2× DOF in number and non-autonomous.
Simulation of 2 DOF robots – RR, RP, PR, and PP — 4 dimensional
system!
Assumptions

No gravity, friction and other non-linear terms.
Equation of motion contain only inertia and Coriolis/Centripetal Terms

[M(q)]q̈+C(q, q̇) = τ

Desired repetitive joint space trajectory – qd i = Ai sin(ωi t), i = 1,2
Model estimates obtained by perturbing model parameters — multiply
by (1+ ε)

Numerical integration of equations of motion with control laws.
Observe evolution of state variables for various controller gains and
estimates of model parameters.
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DIAGNOSTIC TOOLS FOR CHAOS

Phase plots – Plot of position Vs. velocity
Non-chaotic – Closed with one or more but finite number of loops.
Chaotic – Not closed and fills up a region in phase space.

Lyapunov exponents – Measures divergence of adjacent trajectories as
t → ∞ (see Parker and Chua (1989), Wolf et al. (1985)).

n exponents for n dimensional system – one exponent is zero always.
At least one positive for chaotic system.

Poincaré maps — Stroboscopic sampling of phase plots
One or finite number of points in non-chaotic case
Points tend to fill up a region — Strange Attractor.

Bifurcation diagrams
Plot of a state variables as a parameter is varied.
Pre- and post-chaotic behavior.
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SIMULATION RESULTS
THE RP MANIPULATOR

X

link 1

p(x,y)

link 2

Y
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d 2

m 2

m    ,     l    ,  r 1 1 1θ 1

Figure 5: The RP Manipulator

Equations of motion

(m1l12+ I1+ I2+m2d2
2)θ̈1+2m2d2θ̇1ḋ2 = τ1

m2d̈2−m2d2θ̇1
2
= F2

Non-dimensional parameters
ρ1 = (1+ I1+I2

m1l21
), ρ2 =

m2
m1

ρ3 =
m1l21
1.0 , ρ4 =

m1l1
1.0

X = d2
l1
, τ∗1 = τ1

ρ3
, F ∗

2 = F2
ρ4

K ∗
p = Kp/ω2, K ∗

v = Kv/ω, t∗ = ωt

Non-dimensional parameters are fewer!! →
easier to search parameter space for
obtaining chaotic behaviour.
For model based control ρ̂i = (1+ ε)ρi
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. . . . . .

SIMULATION RESULTS
THE RP MANIPULATOR UNDER PD CONTROL
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Figure 6: Phase plot in non-chaotic case
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Figure 7: Phase plot in chaotic case[From
Ravishankar and Ghosal (1999)]

Aθ = π, AX = 1.0 and ω = 1.0
Non-dimensional parameters – ρ1 = 2.5, ρ2 = 0.5, ρ3 = 0.4, and
ρ4 = 2.0.
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SIMULATION RESULTS
THE RP MANIPULATOR UNDER PD CONTROL
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Figure 8: Lyapunov exponent in non-chaotic
case
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Figure 9: Lyapunov exponent in chaotic case

Largest Lyapunov exponent for chaotic and non-chaotic cases.
Aθ = π, AX = 1.0, ω = 1.0, ρ1 = 2.5, ρ2 = 0.5, and ρ3 = 0.4, ρ4 = 2.0
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SIMULATION RESULTS
THE RP MANIPULATOR UNDER PD CONTROL
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Figure 10: Poincaré map for RP manipulator under PD
control

Poincaré map
(θ̇1,θ1) projection.
Aθ = π, AX = 1.0,
ω = 1.0, ρ1 = 2.5,
ρ2 = 0.5, and
ρ3 = 0.4,
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SIMULATION RESULTS
THE RP MANIPULATOR UNDER PD AND MODEL-BASED CONTROL
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Figure 11: Chaos maps for RP manipulator
under PD control
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Figure 12: Chaos maps for RP manipulator
under model-based control

Chaos maps – values of gains for chaotic behavior.
K ∗

v in steps of 0.1, K ∗
p in steps of 1.0.

Initial conditions – (0,0,π,1.0)
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SIMULATION RESULTS
THE RP MANIPULATOR UNDER PD AND MODEL-BASED CONTROL
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Figure 13: Bifurcation diagram for RP
manipulator under PD control
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Figure 14: Bifurcation diagram for RP
manipulator under model-based control

Bifurcation diagrams – Plot of state-variable as K ∗
p is changed at a

fixed K ∗
v .

Period doubling route to chaos!
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SIMULATION RESULTS
THE RR MANIPULATOR
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Figure 15: The RR Manipulator

Equations of motion (see Module 6, Lecture 2)
(m1r2

1 + I1+m2r2
2 + I2+m2l21 +2m2l1r2 cosθ2)θ̈1+

(m2r2
2 + I2+m2l1r2 cosθ2)θ̈2−m2l1r2 sinθ2(2θ̇1+ θ̇2)θ̇2 = τ1

(m2r2
2 + I2+m2l1r2 cosθ2)θ̈1+(m2r2

2 + I2)θ̈2+m2l1r2 sinθ2θ̇2
1 = τ2

The RR manipulator (or a double pendulum) is known to be chaotic (see Mahout
et al. (1993)).
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SIMULATION RESULTS
THE RR MANIPULATOR UNDER PD AND MODEL-BASED CONTROL
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VARIATION OF THE LARGEST LYAPUNOV EXPONENTS

PD KP=50, KV=2.0

MODEL BASED KP=15, KV=1.5, EPS=−0.7

Figure 16: Largest Lyapunov exponent for the
RR manipulator under PD and model-based
control

Aθ1 = π/2, Aθ2 = π/4 and
ω = 2.0
Mass and DH parameters –
Correspond to the first two links
of the CMU DD Arm II (see
Khosla (1986))
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SIMULATION RESULTS
THE RR MANIPULATOR UNDER PD AND MODEL-BASED CONTROL
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Figure 17: Chaos map for PD control of the
RR Manipulator
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Figure 18: Chaos map for model-based control
of the RR Manipulator

K ∗
v in steps of 0.1, K ∗

p in steps of 1.0
Initial conditions – (0,π,0,π/2), ε =−0.9
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SIMULATION RESULTS
THE RR MANIPULATOR UNDER MODEL-BASED CONTROL
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Figure 19: Bifurcation diagram for RR manipulator

ε =−0.9 and Kp = 49
Period doubling route to
chaos
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SIMULATION RESULTS
SUMMARY

Numerical simulation of 2 DOF planar robots under PD and
model-based controller.
Both the RR and RP robot can exhibit chaotic motions

Chaotic motions for low controller gains
Chaotic motions for large mismatch between model and plant
Chaotic motions seen more easily for underestimations

Route to chaos appear to be through period doubling.
PR and PP robot do not show chaotic motions even after extensive
simulations!
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. . . . . .

ANALYTICAL CRITERIA

The manipulator mass matrix, [M(q)], is positive definite.
[M(q)] defines a Riemannian metric in the configuration space (q)
From [M(q)] one can compute Riemannian curvature tensor

Rijkl =
n

∑
h=1

MihRh
ikl

Equations of motion in absence of potential energy

q̇ =
∂H
∂p

, ṗ =−∂H
∂q

+ τ

p is the momentum and H(p,q) is the Hamiltonian of the system.
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. . . . . .

ANALYTICAL CRITERIA (CONTD.)

If Rijkl = 0, then the mass matrix can be factorized

[M(q)] = [N(q)]T [N(q)]

[N(q)] is integrable(Stoker 1969, Spong 1992).
Equations of motion can be written as

q̇ = P, Ṗ = [N(q)]−T τ

For τ = 0 ⇒ Equations of motion can be integrated in closed-form ⇒
Cannot exhibit chaos!
Can obtain Rijkl easily for 2 DOF robots since [M(q)] is known.
If Rijkl = 0 then chaotic motion not possible.
Not required to compute full tensor Rijkl – Gaussian curvature of 2D
subspace enough!
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ANALYTICAL CRITERIA (CONTD.)

        G < 0                  G > 0

ε

ε

 

ε

ε
0

0

(t)

(t)

Figure 20: Gaussian curvature and trajectories

τ = 0 – Trajectories along geodesics of manifold (Arnold 1989).
Rijkl ̸= 0 → Gaussian curvature of 2D subspace – G = (R1212/det[M])

In figures aboves, ε(t) = ε0e
√
−Gt

G < 0 → nearby trajectories diverge exponentially — Chaos!
Analytical criteria — G < 0 in any 2D subspace → Chaotic (see also
Zak (1985a & b)).
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GAUSSIAN CURVATURE OF ROBOTS
THE PP ROBOT

    

  

X

YO

p(x,y)

m1

m2

F 2

d 1

d 2

F 1

link 2

link 1

Figure 21: The PP Robot

KE = 1
2m1ḋ1

2
+ 1

2m2ḋ2
2

Elements of the mass matrix

M11 = m1, M12 = 0, M22 = m2

Mass matrix is constant.

G = 0 → Not chaotic – Expected as it
is linear system!
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GAUSSIAN CURVATURE OF ROBOTS
THE RP ROBOT

X

link 1

p(x,y)

link 2

Y

O

d 2

m 2

m    ,     l    ,  r 1 1 1θ 1

Figure 22: The RP Robot

Elements of mass matrix

M11 = I +m2d2
2 , M12 = 0, M22 = m2

G < 0 for I > 0 → Always chaotic!
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GAUSSIAN CURVATURE OF ROBOTS
THE PR ROBOT

Y

XO

p(x,y)
link 2

F   ,  d 1 1 θ 2

m1

m    , l    , r2  2 2

link 1 Γ2

Figure 23: The PR Robot

Elements of mass matrix

M11 = m1+m2, M12 =−m2r2 sinθ2

M22 = m2r2
2 + I2

G = 0 → Not chaotic!
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GAUSSIAN CURVATURE OF ROBOTS
THE RR ROBOT
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link 1

link 2
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Figure 24: The RR Robot

Elements of mass matrix

M11 = c1+ c2 cosθ2

M12 = 2(c3+ c4 cosθ2), M22 = c3

ci , i = 1,2,3,4 are constants.

G < 0 if cosθ2 <−a2c1−b1+2a3c3−a4c1+2a5c3

a1+a2c2+2a3c4−a4c2+2a5c4
, ai , i = 1,2,3,4

constants.
Conditionally chaotic.
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ANALYTICAL CRITERIA

Gaussian curvature is zero for PP and PR robots → PP and PR
manipulators do not show chaotic behaviour.
Gaussian curvature is less than zero for RR and RP robots → Shows
chaotic behaviour in numerical simulation.
Gaussian curvature of a 2D subspace less than zero for RRR and RRP
robots.
Negative Gaussian curvature criteria is for unforced motion.
Numerical simulation and Lyapunov exponent or other diagnostic
criteria needs to be used for forced and/or controlled motion.
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. . . . . .

SUMMARY

Robot dynamic and control equations are non-linear ODE’s.
Nonlinearity different from nonlinear spring or other commonly studied
chaotic systems.
Equations are higher dimensional and more complicated than
commonly studied ones.
Feedback control equations for robots can exhibit chaos.
Suggest a re-look at some of the robustness results in robot control
(see Craig (1989)).
Lower bounds on controller gains can be obtained by numerical
simulations.
For unforced motion negative Gaussian curvature criteria may be
useful.
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CONTENTS OF LECTURE3
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Isotropic and singular configurations
Six component force-torque sensors based on a Gough-Stewart
platform at a near singular configuration.
Modeling, analysis and design of Gough-Stewart platform based
sensors.
Hardware and experimental results.
Summary

3Major portions of this Lecture are from Bandyopadhyay & Ghosal (2006, 2008 &
2009) and Ranganath et. al (2004). Please see these and references listed at the end for
more details.
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INTRODUCTION

 

Stewart 1965 
Extendable `legs’ 

Figure 25: The Stewart platform
(Stewart 1965)

First used as tyre testing machine in UK.
Now known as Gough-Stewart platform.

A moving platform connected to fixed
ground by six actuated extendable legs
— 6 DOF (Fichter 1986)
Linear motion of platform along X , Y
and Z axes & Rotational motion about
X , Y and Z axes.
Known also as Heave, Surge, Sway &
Roll, Pitch and Yaw.

The ‘best known’ parallel manipulator
(see Module 4, Lecture 5).
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INTRODUCTION
 
 
 
 
 
 
 
 
 
 
 
   Industrial manufacturing  
  

Micro-positioning 

 

Modern tyre testing 
machine

   

Physik Instrumetente 
http://www.physikinstrumente.com 

 
   

Precise alignment of 
mirrorRobotic surgery 

 
 
 
 
 
 
 
 
 
  

Figure 26: Some modern uses of Gough-Stewart platform
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INTRODUCTION

U Joint

Extensible Leg

Fixed Base

Spherical Joint

P1

P4

P5

P6

Prismatic
Joint

P2

P3

Top Platform

B1

B2

B3

B4

B5

{B0}

{P0}

B6

Figure 27: The Gough-Stewart platform

Moving top platform
Fixed base

6 extendable legs actuated by
prismatic joints.
Coordinated motion of 6
prismatic joints → Arbitrary 6
DOF motion of top platform
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INTRODUCTION
MOTION SIMULATION

Figure 28: Motion simulation of Gough-Stewart platform

Motion simulations done
using ADAMS R⃝.
Click here for a video
showing motion of a
Gough-Stewart platfrom
due to combined motion
of all actuated joints.
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INTRODUCTION
GOUGH-STEWART PLATFORM AS A SENSOR

With actuators (P joints) locked → 0 degrees of freedom.
Instead of actuators, strain gauge based sensors at actuator location.
External force-moment applied at top platform can be related to axial
forces along legs at P joint locations.
Axial forces in legs related to strains.
Measured strains can be related to external force-torque at top
platform.
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KINEMATICS AND STATICS OF GOUGH-STEWART

PLATFORM
REVIEW

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 29: A leg of the
Gough-Stewart platform

Kinematics and statics (see Module 5,
Lecture 5 for more details).
Direct kinematics involve solution of a
40 degree polynomial.
Leg vector

B0Si =
B0
P0
[R]P0pi +

B0 t−B0 bi

Unit vector along leg B0si =
B0Si

li
Relation between external force-moment
at top platform {Tool} and leg forces fi B0FTool

−−−
B0MTool

=

 ∑6
i=1

B0si fi
−−−

∑6
i=1(

B0bi ×B0 si )fi


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KINEMATICS AND STATICS OF GOUGH-STEWART

PLATFORM
REVIEW (CONTD.)

Statics equation in matrix form

B0FTool
∆
=

 B0FTool
−−−

B0MTool

= B0
Tool [ H ]f

The force transformation matrix B0
Tool [ H ] is given by

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


where f is the vector of forces at the prismatic joints (f1, f2, ..., f6)T .
The force transformation matrix is related to the equivalent Jacobian
for the Stewart-Gough platform(see Module 5, Lecture 5).

Leg forces can be obtained as f = B0
Tool [ H ]

−1B0FTool
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ISOTROPIC CONFIGURATIONS OF GOUGH-STEWART

PLATFORM

Figure 30: Gough-Stewart platform in an
isotropic configuration

Isotropic configuration
detB0

Tool [ H ] ̸= 0
Eigenvalues of top left 3×3 and
bottom right 3×3 matrix are equal
(not necessary equal to each other)
(see Klein and Milkos 1991, Fattah
and Ghasemi 2001 and Dwarakanath
et al. 2001).
All directions are equivalent in terms
of force (or moment) components.
Isotropic configuration can be
obtained in closed-form (see
Bandyopadhyay & Ghosal, 2008)
Data of Gough-Stewart platform
from INRIA prototype.
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SINGULAR CONFIGURATIONS OF GOUGH-STEWART

PLATFORM

Figure 31: Singularity manifold of
Gough-Stewart platform at a given
orientation

Singular configuration detB0
Tool [ H ] = 0

One or more eigenvalue of B0
Tool [ H ] is

zero!
Gain singularity → Platform cannot
resist one or more component of
force/moment applied at the top
platform.
Singularity manifold(s) can be obtained
in closed-form (see Bandyopadhyay &
Ghosal, 2006)

Position singularity manifold shown for a semi-regular Stewart
platform manipulator (SRSPM) – cubic in z and a quadratic curve,
but not an ellipse, in x and y .
Orientation singularity manifold, at a given position, can also be
obtained (see Bandyopadhyay & Ghosal, 2006).
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SINGULAR CONFIGURATION

RR1 2

Figure 32: A planar two link
hinged truss

Planar truss with hinges.
Force F is applied at the hinge C at an
angle ϕ .
Axial forces in the links AC and BC are(

cosθ −cosθ
sinθ sinθ

)(
R1
R2

)
= F

(
cosϕ
sinϕ

)
LHS matrix is [H] and for θ ̸= 0(

R1
R2

)
= [H]−1

(
F cosϕ
F sinϕ

)
=

F
2

(
cosϕ/cosθ + sinϕ/sinθ
−cosϕ/cosθ + sinϕ/sinθ

)
For θ → 0 and ϕ ̸= 0, R1,R2 → ∞ — F cannot be resisted.
For θ = 0 and ϕ ̸= 0, the eigenvalues are 1 and 0.
Eigenvector for 0 is Y axis – Fy cannot be resisted at θ = 0.
A small Fy will give large output R1 → Enhanced sensitivity or
mechanical amplification for certain components!!
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NEAR SINGULAR CONFIGURATION IN A HINGED

PLANAR TRUSS
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Figure 33: Force amplification Vs. θ

For ϕ = π/2,
|R1|= |R2|= F/(2sinθ) — θ
small, |R1| and |R2| large!
At θ = 1◦, magnification |R1|/F
is approximately 28.6.
If AC and BC are elastic
θnew = arctan(δ +δ1) (Srinath
1983) where, δ = l sinθ and
δ1 = l cosθ × (F/EA)1/3 and
Poisson’s ratio is 0.3.
For elastic links
R1 =−R2 = F/(2sinθnew ) –
amplification/enhanced
sensitivity is present but lower!!
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SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM

Force transformation [H] matrix in 6×6 Gough-Stewart platform

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin
2000).
Example — All legs parallel along (0 0 1)T (parallel to Z axis) and
base connection points on a plane

[H] =


0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

b1y b2y b3y b4y b5y b6y

−b1x −b2x −b3x −b4x −b5x −b6x
0 0 0 0 0 0


Singular directions: (1,0,0;0,0,0)T , (0,1,0;0,0,0)T , and (0,0,0;0,0,1)T .
Cannot resist or enhanced sensitivity for Fx , Fy and Mz .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 99



. . . . . .

SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM

Force transformation [H] matrix in 6×6 Gough-Stewart platform

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin
2000).
Example — All legs parallel along (0 0 1)T (parallel to Z axis) and
base connection points on a plane

[H] =


0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

b1y b2y b3y b4y b5y b6y

−b1x −b2x −b3x −b4x −b5x −b6x
0 0 0 0 0 0


Singular directions: (1,0,0;0,0,0)T , (0,1,0;0,0,0)T , and (0,0,0;0,0,1)T .
Cannot resist or enhanced sensitivity for Fx , Fy and Mz .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 99



. . . . . .

SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM

Force transformation [H] matrix in 6×6 Gough-Stewart platform

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin
2000).
Example — All legs parallel along (0 0 1)T (parallel to Z axis) and
base connection points on a plane

[H] =


0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

b1y b2y b3y b4y b5y b6y

−b1x −b2x −b3x −b4x −b5x −b6x
0 0 0 0 0 0


Singular directions: (1,0,0;0,0,0)T , (0,1,0;0,0,0)T , and (0,0,0;0,0,1)T .
Cannot resist or enhanced sensitivity for Fx , Fy and Mz .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 99



. . . . . .

SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM

Force transformation [H] matrix in 6×6 Gough-Stewart platform

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


Singular configuration det[H] = 0 (Merlet 1989, St-Onge and Gosselin
2000).
Example — All legs parallel along (0 0 1)T (parallel to Z axis) and
base connection points on a plane

[H] =


0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

b1y b2y b3y b4y b5y b6y

−b1x −b2x −b3x −b4x −b5x −b6x
0 0 0 0 0 0


Singular directions: (1,0,0;0,0,0)T , (0,1,0;0,0,0)T , and (0,0,0;0,0,1)T .
Cannot resist or enhanced sensitivity for Fx , Fy and Mz .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 99



. . . . . .

SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM
ALGORITHM TO OBTAIN SINGULAR DIRECTIONS

External force and leg forces are related by

F = [Hf ]f =
[

s1 s2 s3 s4 s5 s6
]
f

Maximum, minimum and intermediate values of FTF subject to a
constraint fT f = 1 are the eigenvalues of [gf ] = [Hf ]

T [Hf ]
4.

Rank of [gf ] is at most 3 ⇒ 3 eigenvalues are 0 & 3 non-zero
eigenvalues obtained from solution of a cubic and in closed-form.
The tip of F lies on an ellipsoid and the axes of ellipsoid are obtained
from eigenvectors corresponding to non-zero eigenvalues.
Principal axis of ellipsoid are along principal forces.
Directions corresponding to zero eigenvalues of [gf ] are principal
moments at origin.

4See Module 5, Lecture 2 for a similar treatment for velocities.
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. . . . . .

SINGULAR CONFIGURATIONS IN 6×6
GOUGH-STEWART PLATFORM

Eigenvector of [gf ] mapped by [H] are

[H][X ] =

 [0] [F ]∗

−−− −−−
[M]O

∗ [M]p
∗


[F ]∗ is a 3×3 matrix of principal forces, [M]O

∗ is a 3×3 matrix of
principal moments at the origin, and [M]p

∗ is a 3×3 matrix of
principal moments at centre of platform.
Rank of [gf ] less than 3 ⇒ Singularity in force domain.
Eigenvectors of [gf ], corresponding to zero eigenvalue, mapped by [H]
give direction(s) where force cannot be resisted — same as null space
[F ]∗.
Singular directions of moment — Null space of [M]O

∗.
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. . . . . .

ALGORITHM TO OBTAIN SINGULAR DIRECTIONS IN

GOUGH-STEWART PLATFORM

Enumerate all possible 6−6 Gough-Stewart platforms by choosing
pairs of base and platform points. For each of the configurations,

Compute the number of zero eigenvalues of [H]. This will give the
total number of singular directions including force and moments.
Obtain all eigenvalues and corresponding eigenvectors symbolically for
[gf ] using a symbolic manipulation package.
Obtain the matrix [H][X ] and sub-matrices [F ]∗ and [M]∗O (see
previous slide).
Obtain null space vectors of [F ]∗ and [M]∗O to obtain the singular force
and moment directions (if any).

Eigenvalues and eigenvectors can be obtained symbolically → Singular
directions can be obtained symbolically.
Singular directions obtained using Mathematica R⃝(Wolfram 2004).
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. . . . . .

EXAMPLES OF SINGULAR DIRECTIONS IN 6×6
GOUGH-STEWART PLATFORM

Table 1: Examples of Singular Directions in 6×6 Gough-Stewart platform configurations

Leg Connections ∗ Singular
Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Directions

1 B1−P1 B2−P2 B3−P3 B4−P4 B5−P5 B6−P6 3 Fx ,Fy ,Mz
2 B1−P2 B2−P1 B3−P3 B4−P4 B5−P5 B6−P6 2 Fx ,Mz
3 B1−P2 B2−P1 B3−P4 B4−P3 B5−P5 B6−P6 1 Mz
4 B1−P2 B2−P1 B3−P4 B4−P3 B5−P6 B6−P5 0 none
5 B1−P1 B2−P3 B3−P2 B4−P5 B5−P4 B6−P6 1 Mz
6 B1−P1 B2−P6 B3−P5 B4−P4 B5−P3 B6−P2 2 Fx ,Mz
7 B1−P1 B2−P3 B3−P2 B4−P4 B5−P6 B6−P5 1 Fy
8 B1−P2 B2−P3 B3−P4 B4−P5 B5−P6 B6−P1 3 Mx ,My ,Mz

∗ – Column indicate number of zero eigenvalues of [H].

Bi , Pi , i = 1, ...6 are Base and Platform connection points.
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. . . . . .

NEAR SINGULAR CONFIGURATION IN 6×6
GOUGH-STEWART PLATFORM

Configuration 1 chosen for sensor developement — Enhanced
sensitivity for Fx , Fy and Mz .
Both top and bottom platform are regular hexagons of equal sides.
At exactly singular configuration, legs are exactly vertical and
amplification is infinite — Not desirable!
Gough-Stewart platform, Configuration # 1, at a near singularity

The legs are not exactly vertical.
Top and bottom platform not aligned and included half-angle changed
from 30◦ to 33◦ → Top platform rotated by 3◦!
det [H] ̸= 0 → Near singular with condition number of [H] about 1900.
Amplification of about 10 (and not infinity)!
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. . . . . .

GOUGH-STEWART PLATFORM BASED FORCE-TORQUE

SENSOR
NOMINAL GEOMETRY OF SENSOR

Table 2: Nominal geometry of 6-6 Stewart Platform with γ = 33◦

Base coordinates Platform coordinates
Point x y z Point X Y Z
No. mm mm mm No mm mm mm
b1 43.30 25.0 0.0 p1 41.93 27.23 100
b2 0 50.0 0.0 p2 2.616 49.93 100
b3 -43.30 25.0 0.0 p3 -44.55 22.70 100
b4 -43.30 -25.0 0.0 p4 -44.55 -22.70 100
b5 0 -50 0.0 p5 2.616 -49.93 100
b6 43.3 -25.0 0.0 p6 41.93 -27.23 100

Expected to give enhanced sensitivity to Fx , Fy and Mz .
Near singular configuration – can invert [H] if and when required.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
FLEXIBLE HINGES

Kinematic joints (S or U) give rise to unpredictable friction!
Flexible hinges (Paros and Weisboard 1965, Zhang and Fasse 2001)
much better – No friction! (see also McInroy and Hamann 2000).
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Figure 34: Flexure hinges – rectangular
cross-section
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Figure 35: Flexure hinges – circular
cross-section

Geometry (t, R, θ) or (d , D, θ) can be designed to give required
lateral and longitudinal stiffness (or compliance).
For small motion (sensor) good approximation to kinematic joints.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
FLEXIBLE HINGES – IMPLEMENTATION

Figure 36: Detailed view of flexure hinges

Hinges (also leg and ring): Titanium alloy of yield strength 880 N
/mm2.
No rotation permitted beyond 3.8◦ to prevent failure!

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 54 / 99



. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
SENSING ELEMENT

Figure 37: Schematic of ring shaped sensing element

Ring shaped sensing element from Titanium alloy rod.
Ring mid-plane has largest stress (and strain) when axial load applied.
For 30 N axial compressive load, 145 micro-strains (compressive)at
inside surface and 110 micro-strains (tensile) at the outside surface —
510 micro-strains in full bridge configuration.
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GOUGH-STEWART PLATFORM BASED SENSOR
FINITE ELEMENT ANALYSIS
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Figure 38: Deflection (mm) of sensor
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Figure 39: Stress (N/mm2) in sensor

Finite element model (in NISA (1997)) of top and bottom platform
and six legs with hinges and sensing element created.
Applied loading of Fx = Fy = Fz = 0.98 N, Mx = My = Mz = 49.05
Maximum deflection 0.5 mm and maximum stress about 294 N/mm2

at the flexible hinges — Safe design!
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GOUGH-STEWART PLATFORM BASED SENSOR

Figure 40: Prototype Gough-Stewart platform based force-torque sensor
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GOUGH-STEWART PLATFORM BASED SENSOR
PROTOTYPE SENSOR – EXPERIMENTS
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Figure 41: Experimental data for external applied force
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GOUGH-STEWART PLATFORM BASED SENSOR
PROTOTYPE SENSOR – EXPERIMENTS
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Figure 42: Experimental data for external applied moment
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GOUGH-STEWART PLATFORM BASED SENSOR
CALIBRATION

Calibration of leg – Measure strain in legs for known loading.
Obtain calibration constant µ−strain /N for each leg.

Leg 1 – 13.786, Leg 2 – 13.958, Leg 3 – 14.102
Leg 4 – 13.921, Leg 5 – 13.994, leg 6 – 14.046

Convert measured strains to leg forces fi , i = 1, ...,6 for applied loads.
Obtain elements of [H] matrix from experimental data

From (F;M)T = [H]f, write

Fx = f1H11+ f2H12+ f3H13+ f4H14+ f5H15+ f6H16

fi measured leg forces, H1j unknown elements of first row of [H].
From n sets of measurements fi , i = 1, ...,6, form n×6 matrix [f ].
The elements H1j are

(H1j ,H2j ,H3j ,H4j ,H5j ,H6j)
T = [f ]#(F1x ,F2x , ...,Fnx)

T

where [f ]# is the pseudo-inverse of [f ].
Find other rows of [H] in similar manner.
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where [f ]# is the pseudo-inverse of [f ].
Find other rows of [H] in similar manner.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
CALIBRATION (CONTD.)

Calibration [Hc ] matrix is obtained as

[Hc ] =


−0.0195 0.0279 −0.0266 −0.0223 0.0369 −0.0117
0.0287 −0.0076 −0.0368 0.0280 0.0036 −0.0272
0.8890 0.8294 0.8321 0.8845 0.9704 0.9712
22.7237 44.3631 21.0266 −18.6015 −45.1386 −26.4990
−6.7289 −5.5169 −5.0906 −4.8826 −5.1129 −6.4894
1.3319 −1.5084 1.8969 −1.4110 1.2823 −1.9917


Condition No. is 1351 compared to a computed 1910.
Obtain unknown (F;M)T from [Hc ]f, where f is measured leg forces.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
EXAMPLE FORCE-TORQUE MEASUREMENTS

For a combined 3D external loading of (0.9123,0.9123,0)T N force
and (−10.0356,10.03560,0)T N-mm moment, the measured values of
forces and moments are (0.9270,0.8819,0.0265)T N and
(−13.0081,10.1789,−1.4352)T N-mm respectively. It may be noted
that the FEA computed values for the externally applied 3D loading
are (0.9241,0.8809,0.0932)T N of force and
(−19.2041,12.3772,−0.5258)T N-mm.
For a combined 3D loading of (0.9123,0.9123,0)T N force and
(−10.0356,10.0356,−45.6165)T N-mm moment, the measured values
of forces and moments are (0.8937,0.9153,0.1462)T N and
(−12.2085,8.9987,−45.9569)T N-mm respectively. The computed
FEA values for the 3D loading is (0.8780,0.9261,0.2688)T N force
and (−21.8783,18.0896,−43.7448)T N-mm moment.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR

The performance of the prototype sensor is very good for sensing
forces and moments in the chosen sensitive directions and errors are
around 3%.
A magnification of about 10 is observed in the sensitive directions.
The performance of the prototype sensor in the non-sensitive
directions is less accurate — More electronic amplification is required.
The computed FEA values are in general larger. This is expected since
FE based models are known to be stiffer.
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
MOMENT SENSITIVE CONFIGURATION

Configuration # 8 is sensitive to moments.
The connection sequence is B1−P2, B2−P3 ... B6−P1

 

CAD model of a leg 
with sensing ring  

 
   Flexible hinge – 2 DOF 
 

Figure 43: CAD model of sensor sensitive to moment components
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. . . . . .

GOUGH-STEWART PLATFORM BASED SENSOR
MOMENT SENSITIVE CONFIGURATION

Figure 44: Prototype sensor sensitive to moment components

Testing under progress.
ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 99



. . . . . .

SUMMARY

Gough-Stewart as a six component force-torque sensor.
Isotropic and singular configurations.
Algorithm to obtain singular directions – can be done symbolically!
Design of a 6 component force-torque sensor sensitive to Fx , Fy and
Mz .

Kinematic design – choice of configuration and geometry.
Design of flexible hinges and sensing element.
Finite element analysis of full sensor.
Prototyping, calibration and testing.

Sensor sensitive to moments.
Can design a class of Gough-Stewart platform based sensors with
desired (enhanced) sensitivities!!
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OUTLINE

.. .1 CONTENTS

.. .2 LECTURE 1∗
Chaos and Non-linear Dynamics in Robots

.. .3 LECTURE 2
Gough-Stewart Platform based Force-torque Sensors

.. .4 LECTURE 3∗
Modeling and Analysis of Deployable Structures

.. .5 MODULE 10 – ADDITIONAL MATERIAL
References and Suggested Reading
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. . . . . .

CONTENTS OF LECTURE5

Introduction
Over-constrained mechanisms and deployable structures.
Constraint Jacobian and obtaining redundant links and joints.
Kinematics of SLE based deployable structures.
Statics of SLE based deployable structures.
Summary

5This Lecture is based on material from Nagaraj (2009) and Nagaraj et al. (2009,
2010). Please see these and reference listed at the end for more details.
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. . . . . .

INTRODUCTION

Large deployable structures
Space applications — small payload bay.
Modern communication and other satellites in orbit have large
appendages.
Compact folded state in payload bay→ Large deployed state in orbit.

Large number of links and joints present.
In stowed state — locked/strapped one DOF mechanism.
During deployment, behaves as a one degree of freedom mechanism.
At the end of deployment, actuated joint is locked.
In deployed state — Structure capable of taking load.

Main ones: coilable and pantograph masts, antennae and solar panels.
This lecture deals with pantograph based deployable structures.
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. . . . . .

INTRODUCTION
EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 45: Folded articulated square mast
(FAST)

Figure 46: Deployment of FAST (see Warden
1987)

Eight FAST masts are used in the International Space Station to
support solar arrays.
Source: AEC-Able Engineering Company, Inc.
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INTRODUCTION
EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 47: Planar scissor-like-element
(SLE) or a pantograph

Revolute joint in middle connects two
links of equal length.
Passive cable: connects two points such
that it is slack when fully or partially
folded and becomes taught when fully
deployed.
Passive cable(s) terminate deployment
and increase stiffness of structure –
sometimes more than one passive cables.
Active cable: length decreases
continuously and control deployment.

Typically only one active cable — to avoid multiple mechanisms and
actuators.
Initially points (k , j) are close to (i , l) – As the active cable is
shortened, (j , l) comes near to (k , i).
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INTRODUCTION
EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 48: Stacked planar SLE masts (a) Fully deployed, (b) Partially deployed

Four SLE’s stacked on top of each other.
Deployment angle varies from fully folded (β = 0◦) to fully deployed
(β = 45◦).
8 passive cables and one active cable.
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INTRODUCTION
EXAMPLES OF DEPLOYABLE STRUCTURES

 

Figure 49: Deployment sequence of a cable stiffened pantograph deployable antennae (You &
Pellegrin (1997)
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INTRODUCTION
EXAMPLES OF DEPLOYABLE STRUCTURES

Figure 50: Schematic of a 5.6 m
EGS antennae

Circular pantograph ring and radial
tensioned membrane rib connected to a
central hub.
5.6 m by 6.4 m elliptical version tested
in MIR space station.
Made by Energia-GPI Space (EGS),
Russia. Visit website for more information.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 74 / 99

 http://www.egs.cosmos.ru/eng/reflector.htm


. . . . . .

OVER-CONSTRAINED MECHANISMS
EXAMPLES

(a) 3 sliders (Mallik
et al. 1994)

(b) RPPR
mechanism

(c) Parallelogram
linkage

(d)
Kempes-Burmester
focal mechanism
(Wunderlich (1968)

Figure 51: Over-constrained Mechanisms

Most well known DOF or mobility equation: Grübler-Kutzbach

M = λ (n− j −1)+
j

∑
i=1

fi , λ = 3 or6

M ̸= 1 in all example, although all can move!!
Case (a): Special geometry, Case (b): Passive DOF along PP line af ,
Case (c): Redundant link pq, and Case (d): Redundant R joint at d .
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. . . . . .

OVER-CONSTRAINED MECHANISMS AND DEPLOYABLE

STRUCTURES
DEGREE OF FREEDOM & MOBILITY

Many other well-known mechanisms – Bennett mechanism (Bennett,
1903), deployable pantograph masts – gives M ̸= 1 by
Grübler-Kutzbach formula.
Grübler-Kutzbach fails since special geometry is not taken in to
account → Formula based on counting alone!!
Many attempts to derive a “more universal” DOF/mobility formula
(see Gogu, 2005)
Passive DOF fp subtracted by Tsai (2001): S −S pair or P −P pair
cases.
Equivalent screw system to choose λ (Waldron, 1966).
Null space of Jacobian matrix (Freudenstein, 1962): M = Nullity([J])
– Used in this Lecture!!
Including state of self-stress s and number of internal mechanisms m
(Guest and Fowler, 2005).
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. . . . . .

DIFFERENT TYPES OF COORDINATES

(a) Relative or joint coordinates

(b) Reference point coordinates

(c) Cartesian coordinates

Figure 52: Three kinds of coordinates in RRPR mechanism

Relative coordinates are described with respect to previous link
(Denavit and Hartenberg, 1965).
Reference point ( or absolute) coordinates – planar body with 3
coordinate (x ,y ,ϕ) and by 6 coordinates in space (Nikravesh, 1988).
Cartesian (or natural coordinates) – reference point moved to joint
(Garcia de Jalon and Bayo, 1994).
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(a) Relative or joint coordinates

(b) Reference point coordinates

(c) Cartesian coordinates

Figure 52: Three kinds of coordinates in RRPR mechanism

Relative coordinates are described with respect to previous link
(Denavit and Hartenberg, 1965).
Reference point ( or absolute) coordinates – planar body with 3
coordinate (x ,y ,ϕ) and by 6 coordinates in space (Nikravesh, 1988).
Cartesian (or natural coordinates) – reference point moved to joint
(Garcia de Jalon and Bayo, 1994).
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. . . . . .

COORDINATES AND CONSTRAINTS

Constraint equations are different for different choice of coordinates.
For relative coordinates loop-closure constraints (see Module 4,
Lecture 1) for RRPR mechanism

l1 cosϕ1+d cos(ϕ1+ϕ2)+ l3 cos(ϕ1+ϕ2−π/2) = l4
l1 sinϕ1+d sin(ϕ1+ϕ2)+ l3 sin(ϕ1+ϕ2−π/2) = 0

where q = (ϕ1,ϕ2,d) are the coordinates (see figure).
For reference point coordinates, the constrains are

xa + l1/2cosϕ1 = x1, ya + l1/2sinϕ1 = y1

x1+ l1/2cosϕ1+ l2/2cosϕ2 = x2, y1+ l1/2sinϕ1+ l2/2sinϕ2 = y2

ϕ2−ϕ3 = π/2, (y2−y3)cosϕ2+(x3−x2)sinϕ2 = l3/2

x3+ l3/2cosϕ3 = xd , y3+ l3/2sinϕ3 = yd

where q = (x1,y1,ϕ1,x2,y2,ϕ2,x3,y3,ϕ3) are the coordinates (see figure).
For Cartesian coordinates

(x1−xa)
2+(y1−ya)

2 = l12, (x2−x1)
2+(y2−y1)

2 = l22

(x3−xb)
2+(y3−yb)

2 = l32, (x2−x1)(x3−xb)+(y2−y1)(y3−yb) = l2l3 cosϕ
(x3−x1)/(x2−x1)− (y3−y1)/(y2−y1) = 0

where q = (x1,y1,x2,y2,x3,y3) are the coordinates (see figure).
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. . . . . .

CONSTRAINTS WITH NATURAL COORDINATES
RIGID BODY

 
 
 
 
 
 

k

ji
 

 

k ji
 

 

k

ji

α

 

Figure 53: Constraints
associated with rigid link

Distance between two points remain constant:
rij · rij = Lij

2

Link with three points: distance btween i , j and
k remain constant.

Link with 3 co-linear points: rij · rij = Lij
2 and

rij −krik = 0.

Link with three points and included angle.

rij · rij = Lij
2

rik · rik = Lik
2

rij · rik = LijLik cos(α)
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. . . . . .

CONSTRAINTS WITH NATURAL COORDINATES
JOINTS

 

 

 

Figure 54: Constraints associated
with joints

Spherical joint – two adjacent links
share a point.
Rotary joint constraints

rij ·um −Lij cos(αi ) = 0
rij ·un −Lij cos(αj) = 0
rij · rij = L2

ij , un ·um = cos(γ)
un ·un = um ·um = 1

γ is the angle shown in figure.
Cylindrical joint constraint

rik × rij = 0
rij ×uc = 0
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. . . . . .

CONSTRAINTS WITH NATURAL COORDINATES
SLE & BOUNDARY

 
Figure 55: Constraints associated
with SLE

Two length constraint equations

rij · rij = L2
ij

rkl · rkl = L2
kl

Two co-linearity constraints

rij −λ1rip = 0
rkl −λ2rkp = 0

λ1 =
a+b
a and λ2 =

c+d
c .

Simplifying, SLE constraints are

b
a+b

Pi +
a

a+b
Pj −

c
c +d

Pl −
d

c +d
Pk = 0

Pm (m = i , j ,k , l) are the position vectors of 4 points.

Boundary constraints: If point P is fixed, its coordinates are 0.
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. . . . . .

CONSTRAINTS WITH NATURAL COORDINATES
SYSTEM CONSTRAINTS AND CONSTRAINT JACOBIAN

Rigid, joint and boundary constraints together can be written as

fj(X1,Y1,Z1,X2, · · · ,Yn,Zn) = 0 for j = 1 to nc

nc is the total number of constraint equations and 3n is the number of
Cartesian coordinates of the system.
Derivative of all constraint equations in symbolic form

[J]δX = 0

Homogeneous equation ⇒ Non-trivial δX if dimension of null space of
[J] is at least one.
Dimension of null-space of [J] same as DOF of mechanism!!
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. . . . . .

ALGORITHM TO OBTAIN DOF

Add the derivative of the constraint equations one at a time in the
following order

arising out of length constraints
arising out of joint constraints

At each step evaluate dimension of null-space of [J].
Nullity([J]) doesn’t decrease when a constraint is added → Constraint
is redundant.
Boundary constraints are added last: Nullity([J]) doesn’t decrease →
Boundary constraint is redundant.
Final dimension of the null-space of [J] is the mobility/degree of
freedom of the system.
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. . . . . .

KINEMATIC ANALYSIS OF OVER-CONSTRAINED

MECHANISMS
EXAMPLES

                   

Figure 56: Constraints Jacobian analysis of three slider mechanism

Constraint Jacobian analysis correctly predicts DOF as 1.
Also determines redundant constraints which resulted in M ̸= 1.
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. . . . . .

KINEMATIC ANALYSIS OF OVER-CONSTRAINED

MECHANISMS

      

 

Joint d is seen to 
be redundant 
 
Link cd rotates 
about d without  
a joint at d !!  

Figure 57: Constraints Jacobian analysis of Kempes -Burmester mechanism
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. . . . . .

KINEMATIC ANALYSIS OF SLE BASED MASTS

   

 

Spherical joint replaced with  
Revolute joint shown above 
 
SLE - 2 and 3 are redundant 
DOF is 1 without SLE - 2 
and SLE - 3 

 
Figure 58: Constraints Jacobian analysis of triangular SLE mast with revolute joints
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. . . . . .

KINEMATIC ANALYSIS OF SLE BASED MASTS
EXAMPLES

             
 

           

Spherical joint replaced with  
Revolute joint shown above 
 
SLE - 3 and 4 are redundant 
DOF is 1 without SLE - 3 
and SLE - 4 

Figure 59: Constraints Jacobian analysis of box SLE mast with revolute joints
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. . . . . .

KINEMATIC ANALYSIS OF SLE BASED MASTS
EXAMPLES

 

 
SLE – 6 and R joints on 
FACE 5 & 6 are redundant 
DOF is 1 without Cable 
DOF is 0 with Cable 
(modeled as rigid rod) 

Figure 60: Constraints Jacobian analysis of hexagonal SLE mast with cables
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. . . . . .

KINEMATIC ANALYSIS OF SLE BASED MASTS
SIMULATION

Once redundancy identified → Can solve kinematics!
L = 30.0, Joint 2 moves horizontally and height decreases!!

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

coordinate of joints 2 and 3 along X axis

co
or

di
na

te
 o

f j
oi

nt
s 

2 
an

d 
3 

al
on

g 
Y

 a
xi

s

0 5 10 15 20 25 30
0

5

10

15

20

25

30

coordinate of joints 2 along X axis

co
or

di
na

te
 o

f j
oi

nt
s 

4/
5/

6 
al

on
g 

Z
 a

xi
s

Joint 3
Joint 2
Joint 2

Figure 61: Trajectory of joint coordinates for a triangular mast
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. . . . . .

SUMMARY OF KINEMATIC ANALYSIS OF

OVER-CONSTRAINED MECHANISMS

Over-constrained mechanisms do not give correct DOF from
Grübler-Kutzbach criterion.
Grübler-Kutzbach criterion does not take into account geometry!
Null space dimension of the constraint Jacobian

Correctly determines degrees of freedom.
Can identify redundant links, joints and boundary conditions.

Constraint Jacobian approach is local – results valid at a chosen
configuration & does not account for singularities.
Global analysis possible for pantograph masts and simple mechanisms.
Constraint Jacobian approach applied to SLE based masts –
redundant SLE’s can be identified!
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. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
OVERVIEW

At the end of deployment, the actuator is locked & Mechanism
becomes a structure.
Various approaches to analyse structures (see Kwan & Pellegrino
(1994), Shan (1992) and Gantes et al. (1994))
Constraint Jacobian matrix extended for static analysis.
Stiffness matrix obtained from each type of constraints and then
assembled.
Rank of system stiffness matrix gives redundant links and joints.
Deflection analysis from stiffness matrix.
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. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – AXIAL LOAD

For elastic members, [Sm]δL = δT; Elongation is δL for a load δT
The member stiffness matrix is

[Sm] =


A1E1

l1
0 0 0

0 A2E2
l2

0 0
0 0 A3E3

l3
0

0 0 0 A4E4
l4


where l , A and E are length, cross-sectional area and elastic modulus,
respectively.
External force is related to δT by the Jacobian matrix: [Jm]

T δT= δF
Hence, [Jm]

T [Sm][Jm]δX = δF.
Elastic stiffness matrix is [Km] = [Jm]

T [Sm][Jm].

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 92 / 99



. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – AXIAL LOAD

For elastic members, [Sm]δL = δT; Elongation is δL for a load δT
The member stiffness matrix is

[Sm] =


A1E1

l1
0 0 0

0 A2E2
l2

0 0
0 0 A3E3

l3
0

0 0 0 A4E4
l4


where l , A and E are length, cross-sectional area and elastic modulus,
respectively.
External force is related to δT by the Jacobian matrix: [Jm]

T δT= δF
Hence, [Jm]

T [Sm][Jm]δX = δF.
Elastic stiffness matrix is [Km] = [Jm]

T [Sm][Jm].

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 92 / 99



. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – AXIAL LOAD

For elastic members, [Sm]δL = δT; Elongation is δL for a load δT
The member stiffness matrix is

[Sm] =


A1E1

l1
0 0 0

0 A2E2
l2

0 0
0 0 A3E3

l3
0

0 0 0 A4E4
l4


where l , A and E are length, cross-sectional area and elastic modulus,
respectively.
External force is related to δT by the Jacobian matrix: [Jm]

T δT= δF
Hence, [Jm]

T [Sm][Jm]δX = δF.
Elastic stiffness matrix is [Km] = [Jm]

T [Sm][Jm].

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 92 / 99



. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – AXIAL LOAD

For elastic members, [Sm]δL = δT; Elongation is δL for a load δT
The member stiffness matrix is

[Sm] =


A1E1

l1
0 0 0

0 A2E2
l2

0 0
0 0 A3E3

l3
0

0 0 0 A4E4
l4


where l , A and E are length, cross-sectional area and elastic modulus,
respectively.
External force is related to δT by the Jacobian matrix: [Jm]

T δT= δF
Hence, [Jm]

T [Sm][Jm]δX = δF.
Elastic stiffness matrix is [Km] = [Jm]

T [Sm][Jm].

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 92 / 99



. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – AXIAL LOAD

For elastic members, [Sm]δL = δT; Elongation is δL for a load δT
The member stiffness matrix is

[Sm] =


A1E1

l1
0 0 0

0 A2E2
l2

0 0
0 0 A3E3

l3
0

0 0 0 A4E4
l4


where l , A and E are length, cross-sectional area and elastic modulus,
respectively.
External force is related to δT by the Jacobian matrix: [Jm]

T δT= δF
Hence, [Jm]

T [Sm][Jm]δX = δF.
Elastic stiffness matrix is [Km] = [Jm]

T [Sm][Jm].

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 92 / 99



. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
LINKS SEGMENTS – BENDING

For rotations δϕ ′′ and member moments δM′′

[Sn]δϕ = δM

The member stiffness matrix [Sn] for the SLE is given by

[Sn] =


3E1Iz
l1+l2

0 0 0
0 3E1Iy

l1+l2
0 0

0 0 3E2Iz
l3+l4

0
0 0 0 3E2Iy

l3+l4


E is the Young’s modulus, Iz and Iy are moments of inertia.
Elastic stiffness matrix – [Kn] = [Jn]

T [Sn][Jn]

Combined stiffness matrix

[Ks ] = [Km]+ [Kn]
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. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
RANK OF STIFFNESS MATRIX

Stiffness matrix is given by [Ks ] = [Js ]
T [Ss ][Js ] where

[Ss ] =



A1E1
l1 0 0 0 0 0 0 0
0 A2E2

l2 0 0 0 0 0 0
0 0 A3E3

l3 0 0 0 0 0
0 0 0 A4E4

l4 0 0 0 0
0 0 0 0 3E1Iz

l1+l2 0 0 0

0 0 0 0 0 3E1Iy
l1+l2 0 0

0 0 0 0 0 0 3E2Iz
l3+l4 0

0 0 0 0 0 0 0 3E2Iy
l3+l4


Rank of stiffness matrix [Ks ] same as rank of Jacobian matrix

rank([Ks ]) = rank(([Js ][Ss ])
T ([Js ][Ss ])) = rank([Js ][Ss ]) = rank([Js ])

Cable modeled as bar capable of taking tension only.
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. . . . . .

STATIC ANALYSIS OF SLE BASED MASTS
EXAMPLES

 

Figure 62: Stacked SLE units
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Figure 63: Axial and lateral stiffness during deployment

Deployment from β = 0 to β = 45◦, 0.5 N applied along X and Y .
AE = 1.5×105 N, L = 1m, EIz = 9.6×107 Nmm2.
Results match with those presented in Kwan and Pellegrino (1994).
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STATIC ANALYSIS OF SLE BASED MASTS
EXAMPLES

 
 

Figure 64: Nested hexagonal SLE mast with cables

X stiffness Y stiffness in Z stiffness
(N/mm) (N/mm) (N/mm)

Top or bottom cables 32.01 104.31 17.56
Only vertical cables 40.46 81.17 10.28

Top and bottom cables 65.44 175.42 27.25
All cables 114.23 326.64 39.26

Table 3: Variation of stiffness with addition of cables for assembled hexagonal mast

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 96 / 99



. . . . . .

SUMMARY

Over-constrained mechanisms and many deployable structures do not
give correct DOF using Grübler-Kutzbach criterion.
Deployable structures are very important for space and other
applications.
A constraint Jacobian based approach is useful to

Determine correct DOF of over-constrained mechanisms and deployable
structures.
Determine redundant links and joints which make such mechanisms
violate Grübler-Kutzbach criterion.

Kinematic and static analysis of several pantograph based structures
performed.
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