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INTRODUCTION
REVIEW

Serial manipulators: One end fixed → links and joints → free end with
end-effector.
Kinematics → motion of (rigid) links without considering force and
torques.
Kinematics → study of “geometry” of motion.
Serial manipulators modeled using Denavit-Hartenberg parameters
(see Module 2).
Two main problems: Direct Kinematics and Inverse Kinematics
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INTRODUCTION
EXAMPLES OF SERIAL ROBOTS
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ŶTool

X̂0

Ŷ0
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INTRODUCTION
DEGREES OF FREEDOM

Grübler-Kutzbach’s criterion

DOF = λ (N−J−1)+
J

∑
i=1

Fi (1)

N – total number of links including the fixed link (or base),
J – total number of joints connecting only two links (if joint connects
three links then it must be counted as two joints),
Fi – degrees of freedom at the i th joint, and λ = 6 for spatial, 3 for
planar manipulators and mechanisms.
PUMA 560 – N = 7, J = 6, F1 = 1, λ = 6 → DOF = 6
Grübler criterion does not work for over-constrained mechanisms (see
Mavroidas and Roth (1995), Gan and Pellegrino(2003), review paper
by Gogu(2007)).
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INTRODUCTION
DEGREES OF FREEDOM (CONTD.)

DOF – the number of independent actuators.
DOF – capability of a manipulator with respect to λ .

...1 DOF = λ → End-effector can be positioned and oriented arbitrarily.

...2 DOF < λ → λ −DOF relationships containing the position and
orientation variables.

...3 DOF > λ → Position and orientation of the end-effector in ∞ ways –
redundant manipulators.

Serial manipulators with a fixed base, a free end-effector and two links
connected by a joint – N = J +1 and DOF = ∑J

i=1 Fi .
All actuated joints are one- degree-of-freedom joints → J = DOF .
J > DOF (in parallel manipulators) → J−DOF joints are passive.
J < DOF → one or more of the actuated joints are multi-
degree-of-freedom joints – rare in mechanical manipulators but
common in biological joints actuated with muscles.
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INTRODUCTION
DEGREES OF FREEDOM (CONTD.)

J joint variables – θi ’s or di ’s form the joint space.
Position and orientation variables form the task space.
For planar motion, λ = 3 – Task space (x ,y ,ϕ).
For spatial motion, λ = 6 – Task space (x ,y ,z ; [R])

Actuator space: due to mechanical linkages, gears, etc. between
actuators and joints, joint variables are not identical to actuator
variables.
Dimension of actuator space is more than λ – manipulator is
redundant.
Dimension of actuator space is less than λ – manipulator is
under-actuated.
Kinematics – functional relationship between joint space and task
space.
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TWO PROBLEMS IN KINEMATICS OF SERIAL ROBOTS

Direct Kinematics Problem:
Given the constant D-H link parameters and the joint variable, ai−1,
αi−1, di , and θi i = 1,2, ..n, find the position and orientation of the
last link in a fixed or reference coordinate system.

Most basic problem in serial manipulator kinematics.
Required to be solved for computer visualization of motion and in
off-line programming systems.
Used in advanced control schemes.

Inverse Kinematics Problem:
Given the constant D-H link parameters and the position and
orientation of the end-effector ({n}) with respect to the fixed frame
{0}, find the joint variables.

Harder than the direct kinematics problem.
Leads to the notion of workspace of a robot.
Required for computer visualization of motion and used in advanced
control schemes.
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DIRECT KINEMATICS PROBLEM

Since all D-H parameters are known → All 4×4 link transforms
i−1
i [T ], i = 1, ..,n are known (see Module 2, Lectures 2 and 3).
With respect to {0}, the position and orientation of {n} is
0
n[T ] = 0

1[T ]12[T ]......n−1
n [T ].

For another reference {Base}, Base
n [T ] = Base

0 [T ]0n[T ]. Note: Base
0 [T ]

must be known.
As in Module 2, the end-effector geometry does not appear in 0

n[T ] –
Base
Tool [T ] = Base

0 [T ]0n[T ]nTool [T ]; n
Tool [T ] is known.

One advantage of the used D-H convention: Manipulator transform
0
n[T ] can be computed only once and need not be changed if location
of {Base} or the geometry of end-effector n

Tool [T ] changes – Recall a
robot can have a variety of end-effectors!
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. . . . . .

DIRECT KINEMATICS PROBLEM (CONTD.)
The direct kinematics problem can be always solved for any serial
manipulator!
The solution procedure is simple – involves only multiplication of
matrices.

Examples 1: A planar 3R manipulator
(see Lecture 3, Module 2).

ϕ represents orientation of the
tool.
From 0

Tool [T ]

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123
ϕ = θ1+θ2+θ3

(2)

{2}

{3}

ŶTool

X̂0

Ŷ0

Link 1

{0}

{1}

Ŷ1

O2

l1

O1

θ2

l2

l3

Link 3

O3

X̂2

Link 2

X̂3, X̂Tool

{Tool}
θ3

Ŷ3

Ŷ2 X̂1

θ1

Figure 1: The planar 3R manipulator
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DIRECT KINEMATICS PROBLEM (CONTD.)
EXAMPLE 2 – A SCARA MANIPULATOR

O0, O1 O2

θ1

θ2

d3

{1}

{2}

O3, O4

{3}

{4}

Ẑ1

X̂1

Ẑ2

X̂2

X̂

Ẑ3

θ4

Figure 2: A SCARA manipulator

ϕ represents orientation of the
{4}.
The position, (x ,y ,z), and
orientation of {4} is

x = a1c1+a2c12
y = a1s1+a2s12
z = −d3
ϕ = θ1+θ2+θ4

(3)
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DIRECT KINEMATICS PROBLEM (CONTD.)
EXAMPLE 3 – THE PUMA 560 MANIPULATOR

0
6[T ] = 0

3[T ]36[T ] (see Lecture 3, Module 2)
Orientation and position of 0

6[T ]

r11 = c1{c23(c4c5c6− s4s6)− s23s5c6}+ s1(s4c5c6+ c4s6)
r21 = s1{c23(c4c5c6− s4s6)− s23s5c6}− c1(s4c5c6+ c4s6)
r31 = −s23(c4c5c6− s4s6)− c23s5c6
r12 = c1{c23(−c4c5s6− s4c6)+ s23s5s6}+ s1(−s4c5s6+ c4c6)
r22 = s1{c23(−c4c5s6− s4c6)+ s23s5s6}− c1(−s4c5s6+ c4c6)
r32 = −s23(c4c5s6− s4c6)+ c23s5s6
r13 = −c1(c23c4s5+ s23c5)− s1s4s5
r23 = −s1(c23c4s5+ s23c5)+ c1s4s5
r33 = s23c4s5− c23c5
O6x = x = c1(a2c2+a3c23−d4s23)−d3s1
O6y = y = s1(a2c2+a3c23−d4s23)+d3c1
O6z = z =−a2s2−a3s23−d4c23

(4)
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. . . . . .

INTRODUCTION

Inverse Kinematics Problem (restated): Given the constant D-H link
parameters and 0

n[T ], find the joint variables θi , i = 1, ..,n.
For 3D motion, 6 task space variables – 3 position + 3 orientation – in
0
n[T ]
For planar motion, 3 task space variables – 2 position + 1 orientation –
in 0

n[T ]

Following cases possible:
...1 n = 6 for 3D motion or n = 3 for planar motion → same number of

equations as unknowns.
...2 n < 6 for 3D motion or n < 3 for planar motion→ number of task space

variables larger than number of equations and hence there must be
6−n (3−n for planar) relationships involving the task space variables.

...3 n > 6 for 3D motion or n > 3 for planar motion → more unknowns
than equations and hence infinite number of solutions – redundant
manipulators.

Start with the simplest case of planar 3R manipulator.
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. . . . . .

PLANAR 3R MANIPULATOR
REVIEW

Direct kinematics equations

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123
ϕ = θ1+θ2+θ3

Inverse Kinematics: Given
(x ,y ,ϕ) obtain θ1, θ2 and θ3.
Solution of system of non-linear
transcendental equations.
No general methods (as in linear
equations) exists – solution
procedure depends on problem.
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Figure 3: The planar 3R manipulator
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. . . . . .

PLANAR 3R MANIPULATOR
INVERSE KINEMATICS ALGORITHM

Define X = x− l3cϕ and Y = y − l3sϕ – X and Y are known since
x , y , ϕ and l3 are known.
Squaring and adding

X 2+Y 2 = l21 + l22 +2l1l2c2 (5)

From equation (5)

θ2 =±cos−1
(

X 2+Y 2− l21 − l22
2l1l2

)
(6)

Once θ2 is known

θ1 = Atan2(Y ,X )−Atan2(k2,k1) (7)

where k2 = l2s2 and k1 = l1+ l2c2. Note: Atan2(y ,x) is the four
quadrant arc-tangent function and θ1 ∈ [0,2π]
Finally, θ3 is obtained from

θ3 = ϕ −θ1−θ2 (8)
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. . . . . .

PLANAR 3R MANIPULATOR
EXISTENCE OF IK SOLUTION – WORKSPACE

Workspace: All (x ,y ,ϕ) such
that inverse kinematics solution
exists.
From equation (6)
−1≤ (

X 2+Y 2−l21−l22
2l1l2

)≤+1 or

(l1− l2)2 ≤ (X 2+Y 2)≤ (l1+ l2)2

(9)
where X = x− l3cϕ and
Y = y − l3sϕ .
Figure 4 shows the region in
{x ,y ,ϕ} space where the above
inequalities are satisfied and the
inverse kinematics solution
exists.
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Figure 4: Workspace of a planar 3R robot
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. . . . . .

PLANAR 3R MANIPULATOR
WORKSPACE (CONTD.)

X̂0

Ŷ0

Cofiguration 1

Configuration 2

l1 − l2 − l3

l1 + l2 + l3

l1 − l2 + l3

l1 + l2 − l3

Figure 5: Projection of workspace of a planar 3R robot

Projection of the workspace on X̂0− Ŷ0 plane for l1 > l2 > l3 – four
circles of radii l1+ l2+ l3, l1+ l2− l3, l1− l2+ l3 and l1− l2− l3.
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. . . . . .

PLANAR 3R MANIPULATOR
WORKSPACE (CONTD.)

Reachable Workspace: All (x ,y) between maximum reach (l1+ l2+ l3)
and minimum reach (l1− l2− l3).
Dexterous Workspace: All (x ,y) between maximum reach (l1+ l2− l3)
and minimum reach (l1− l2+ l3).
All points inside dexterous workspace can be reached with any ϕ
(Kumar and Waldron, 1980).
As size of end-effector l3 increases, reachable workspace increases and
dexterous workspace decreases!
Intuitively correct – with a long stick one can reach far but with less
freedom in orientation.
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. . . . . .

PLANAR 3R MANIPULATOR
UNIQUENESS OF INVERSE KINEMATICS SOLUTION

Equation (6) revisited:

θ2 =±cos−1
(

X 2+Y 2− l21 − l22
2l1l2

)
For any (X ,Y ) two values of θ2.
A given (X ,Y ) can be achieved by two configurations – shown in
figure 5.
For planar 3R manipulator – (x ,y ,ϕ) yields two sets of values of
θi , i = 1,2,3
Inverse kinematics problem does not give unique solution – compare
with direct kinematics!
Existence and uniqueness issues important and non-trivial in solutions
of all non-linear equations.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 22 / 93



. . . . . .

PLANAR 3R MANIPULATOR
UNIQUENESS OF INVERSE KINEMATICS SOLUTION

Equation (6) revisited:

θ2 =±cos−1
(

X 2+Y 2− l21 − l22
2l1l2

)
For any (X ,Y ) two values of θ2.
A given (X ,Y ) can be achieved by two configurations – shown in
figure 5.
For planar 3R manipulator – (x ,y ,ϕ) yields two sets of values of
θi , i = 1,2,3
Inverse kinematics problem does not give unique solution – compare
with direct kinematics!
Existence and uniqueness issues important and non-trivial in solutions
of all non-linear equations.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 22 / 93



. . . . . .

PLANAR 3R MANIPULATOR
UNIQUENESS OF INVERSE KINEMATICS SOLUTION

Equation (6) revisited:

θ2 =±cos−1
(

X 2+Y 2− l21 − l22
2l1l2

)
For any (X ,Y ) two values of θ2.
A given (X ,Y ) can be achieved by two configurations – shown in
figure 5.
For planar 3R manipulator – (x ,y ,ϕ) yields two sets of values of
θi , i = 1,2,3
Inverse kinematics problem does not give unique solution – compare
with direct kinematics!
Existence and uniqueness issues important and non-trivial in solutions
of all non-linear equations.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 22 / 93



. . . . . .

PLANAR 3R MANIPULATOR
UNIQUENESS OF INVERSE KINEMATICS SOLUTION

Equation (6) revisited:

θ2 =±cos−1
(

X 2+Y 2− l21 − l22
2l1l2

)
For any (X ,Y ) two values of θ2.
A given (X ,Y ) can be achieved by two configurations – shown in
figure 5.
For planar 3R manipulator – (x ,y ,ϕ) yields two sets of values of
θi , i = 1,2,3
Inverse kinematics problem does not give unique solution – compare
with direct kinematics!
Existence and uniqueness issues important and non-trivial in solutions
of all non-linear equations.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 22 / 93



. . . . . .

PUMA 560 MANIPULATOR
REVIEW

X̂1

Ŷ1

{1}

Ẑ1

X̂2

Ẑ2

Ŷ2

{2}

O1, O2

X̂3

Ŷ3

Ẑ3

{3}
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X̂4Ŷ4

Ẑ4

{4}

O4

a2

d3

(a) The PUMA 560 manipulator

d4

a3

Ŷ3

X̂3 Ẑ4

X̂4

Ẑ6

X̂6

Ŷ5

X̂5O3

{3}

{4}

{5}{6}

O4, O5, O6

(b) PUMA 560 - forearm and wrist

Figure 6: The PUMA 560 manipulator

Origins of {4}, {5} and {6} are coincident – wrist point.
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PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM

Position vector 0O6 of the wrist point is only a function of θ1, θ2 and
θ3.
From equation (4),

x = c1(a2c2+a3c23−d4s23)−d3s1
y = s1(a2c2+a3c23−d4s23)+d3c1 (10)
z = −a2s2−a3s23−d4c23

where ci , si denote cos(θi ), sin(θi ), respectively and a2,a3, d3, d4
denote constant D-H parameters.
From the first two equations: −s1x + c1y = d3

Transcendental equation in sine and cosine of θ1 – can be solved to
obtain two sets of values for θ1.
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PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM (CONTD.)

Substitute tangent half-angle formulas from trigonometry

x1 = tan
θ1

2
, c1 =

1− x2
1

1+ x2
1
, s1 =

2x1

1+ x2
1

(11)

in −s1x + c1y = d3
gives x2

1 (d3+ y)+(2x)x1+(d3− y) = 0
Solve quadratic in x1 and take tan−1 to get

θ1 = 2tan−1

−x±
√

x2+ y2−d2
3

y +d3

 (12)

Note 1: tan−1 gives an angle between 0 and π and hence 0≤ θ1 ≤ 2π.
Note 2: Two possible values of θ1 due to the ± before square root.
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PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM (CONTD.)

Squaring and adding expressions for x , y and z
x2+ y2+ z2 = d2

3 +a2
2 +a2

3 +d3
4 +2a2a3c3−2a2d4s3

Using tangent half-angle formulas

θ3 = 2tan−1(
−d4±

√
d2
4 +a2

3−K 2

K +a3
) (13)

K = (1/2a2)(x2+ y2+ z2−d2
3 −a2

2−a2
3−d2

4 ).
Two sets of values of θ3.
The expression for z is only a function of θ2 and θ3. Hence,
−s2(a2+a3c3−d4s3)+ c2(−a3s3−d4c3) = z
Solve for θ2 (known θ3) using tangent half-angle substitutions

θ2 = 2tan−1(
−a2−a3c3+d4s3±

√
a2
2 +a2

3 +d2
4 +2a2(a3c3−d4s3)− z2

z− (a3s3+d4c3)
)

(14)
Two possible values of θ2 in the range [0,2π].
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. . . . . .

PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM (CONTD.)
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. . . . . .

PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM (CONTD.)

To obtain θ4, θ5 and θ6, form

3
6[R] =

 c4c5c6− s4s6 −c4c5s6− s4c6 −c4s5
s5c6 −s5s6 c5

−s4c5c6− c4s6 s4c5s6− c4c6 s4s5

 (15)

Since
3
6[R] = 0

3[R]T 0
6[R] (16)

and since θ1, θ2 and θ3 are known, right-hand side is known!
Compare known right-hand side with elements of 3

6[R] and obtain θ4,
θ5 and θ6

Similar to Z −Y −Z Euler angles with Y rotation of −θ5 – see
Lecture 2, Module 2.
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. . . . . .

PUMA 560 MANIPULATOR
INVERSE KINEMATICS ALGORITHM (CONTD.)

Algorithm rij ⇒ θ4, θ5 and θ6
If r23 ̸=±1, then

θ5 = Atan2(±
√

(r2
21+ r2

22), r23)

θ4 = Atan2(r33/s5,−r13/s5),
θ6 = Atan2(−r22/s5, r21/s5)

Else
If r23 = 1, then

θ4 = 0
θ5 = 0,
θ6 = Atan2(−r12, r11),

If r23 =−1, then
θ4 = 0
θ5 = π,
θ6 =−Atan2(r12,−r11),
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. . . . . .

PUMA 560 MANIPULATOR
UNIQUENESS OF IK SOLUTION FOR PUMA 560

From equation (11) two sets of θ1

From equation (13) two sets of θ3

Since θ3 appears on the right-hand side of equation (14) → four
possible values of θ2.
Two possible sets of θ4, θ5 and θ6 from inverse Euler angle algorithm.
Overall eight possible sets of joint angles θi , i = 1, ..,6 for a given
0
6[T ].
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. . . . . .

PUMA 560 MANIPULATOR
WORKSPACE OF PUMA 560 MANIPULATOR

Usual definition: All 0
6[T ] (position and orientation of {6}) such that

inverse kinematics solution exists.
Six dimensional entity – difficult to imagine or describe!
Possible to derive the ‘position’ workspace of ‘wrist’ point. Position
vector of wrist point

x = c1(a2c2+a3c23−d4s23)−d3s1
y = s1(a2c2+a3c23−d4s23)+d3c1 (17)
z = −a2s2−a3s23−d4c23

(x ,y ,z) are functions of three independent variables θ1, θ2 and θ3 ⇒
represents a solid in 3D space.
Can obtain equation of bounding surfaces.
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. . . . . .

PUMA 560 MANIPULATOR
WORKSPACE OF PUMA 560 MANIPULATOR (CONTD.)

Squaring and adding the three equations in equation (17) gives

R2 = x2+ y2+ z2 = K1+K2c3−K3s3

where K1, K2, and K3 are constants.
The envelope of this family of surfaces must satisfy

∂R2

∂θ3
= 0

which gives
K2s3+K3c3 = 0

Eliminating θ3 and denoting a2
3 +d2

4 by l2, gives

[x2+ y2+ z2− ((a2+ l)2+d2
3 )][x

2+ y2+ z2− ((a2− l)2+d2
3 )] = 0

(18)
which implies that the bounding surfaces are spheres.
At every point in the solid all possible orientations, except two special
‘singular’ configurations when r23 =±1, are possible.
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PUMA 560 MANIPULATOR
INVERSE KINEMATICS & WORKSPACE OF PUMA 560 MANIPULATOR

Numerical example of a PUMA 560 manipulator
For the PUMA 560, the Denavit-Hartenberg parameters are

i αi−1 ai−1 di θi
degrees m m degrees

1 0 0 0 45
2 -90 0 0 60
3 0 0.4318 0.125 135
4 -90 0.019 0.432 30
5 90 0 0 -45
6 -90 0 0 120

For the above D-H table

0
6[T ] =


0.9749 −0.2192 −0.0388 0.1304
0.1643 0.8262 −0.5388 0.3071
0.1502 0.5190 0.8415 0.0482

0 0 0 1


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PUMA 560 MANIPULATOR
INVERSE KINEMATICS & WORKSPACE OF PUMA 560 MANIPULATOR

Numerical example of a PUMA 560 manipulator
For the above 0

6[T ], the inverse kinematics solutions are

i θ1 θ2 θ3 θ4 θ5 θ6

1 -91 120 50.04 177.51 -42.65 105.34
2 -91 120 50.04 -2.49 42.65 -74.66
3 45 -77.73 50.04 85.25 -159.22 -132.87
4 45 -77.73 50.04 -94.75 159.22 47.13
5 -91 -102.27 135 92.28 -178.31 15.79
6 -91 -102.27 135 -87.72 178.31 -164.21
7 45 60 135 30 -45 120
8 45 60 135 210 45 300

Note: As expected, one of the solutions (set 7) matches the chosen values
of θi , i = 1, ...,6, in the direct kinematics.
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PUMA 560 MANIPULATOR
INVERSE KINEMATICS & WORKSPACE OF PUMA 560 MANIPULATOR

Workspace of the wrist point of the PUMA shown in figure 7.
Note: Actual workspace is subset of shown workspace due to joint rotation
limits.
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Figure 7: Workspace of the wrist point of the PUMA
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. . . . . .

REVIEW OF IK
Transcendental equations → polynomial equations using tangent half
angle substitution.
Polynomial equation of higher degree – linear in sin(θ) or cos(θ) →
quadratic in x2 with x = tan(θ

2 ).
For analytical solutions to IK → eliminate joint variable(s) from set of
non-linear equations in several joint variables → a single equation in
one joint variable.

Planar 3R example – three equations in three joint variables → two
equations in θ1 and θ2 → one equation, equation (5), in θ2 alone.
Single equation solved for θ2 and then solve for θ1 and θ3.
For PUMA 560 – 3 equations in first 3 joint variables from the position
of the wrist point.
Solve for the first 3 joint joint variables and then for last 3 joint
variables using orientation information.
Decoupling of the position and orientation was first noticed by Pieper
(Pieper, 1968) for manipulators with intersecting wrist. Later
generalised to any six- degree-of-freedom serial manipulator where
three consecutive joint axes intersect.
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. . . . . .

REVIEW OF IK (CONTD.)

For all six- degree-of-freedom serial manipulators, with three joint axes
intersecting → at most a fourth-order polynomial in the tangent of a
joint angle need to be solved.
The manipulator wrist point can reach any position in the workspace
in at most four possible ways.
Fourth-degree polynomials can be solved in closed-form (Korn and
Korn, 1968) → IK of all six- degree-of-freedom serial manipulators
with three intersecting axes can be solved in closed-form.
For PUMA 560, the workspace of the wrist point is bounded by two
spheres and require solution of only a quadratic due to special
geometry.
In general geometry robot with intersecting wrist, boundaries of the
solid region traced by the wrist point form a torus which is a
fourth-degree surface (Tsai and Soni, 1984).
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. . . . . .

NON-INTERSECTING WRISTS

Difficult to design and manufacture three intersecting axis wrist.
Much easier if wrist has two intersecting axis.

θ1

θ2

θ3

θ4

θ5

θ6

R Joint

R Joint

R Joint

θ5

θ6

θ4

Figure 8: A robot with non-intersecting wrist

D-H parameters

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −π/2 0 0 θ2
3 0 a2 d3 θ3
4 −π/2 a3 d4 θ4
5 π/2 0 d5 θ5
6 −π/2 0 0 θ6
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. . . . . .

NON-INTERSECTING WRISTS

Figure 8 shows a six- degree-of-freedom robot – First 3 joint axis are
similar to PUMA 560.
Last three axes do not intersect and there is an offset d5.
From D-H table compute 0

1[T ], ...,56[T ] and then 0
6[T ].

Last column of 0
6[T ] is

x = c1(a2c2+a3c23−d4s23)−d3s1+d5(s1c4− c1s4c23)

y = s1(a2c2+a3c23−d4s23)+d3c1−d5(c1c4+ s1s4c23) (19)
z = −a2s2−a3s23−d4c23−d5s4s23

Note: (x ,y ,z) is a function of θ1, θ2, θ3 and θ4.
Need one more equation in the four joint variables!

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 38 / 93



. . . . . .

NON-INTERSECTING WRISTS

From 3
6[R] = 0

3[R]
T 0

6[R], c4c5c6− s4s6 −c4c5s6− s4c6 −c4s5
s5c6 −s5s6 c5

−s4c5c6− c4s6 s4c5s6− c4c6 s4s5

=

 c1c23 s1c23 s23
−c1s23 −s1s23 −c23
−s1 c1 0

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (20)

Divide the (1,3) and the (3,3) terms of the above matrix equation, to
get (for θ5 ̸= 0,π),

s4(r13c1c23+ r23s1c23+ r33s23) = c4(r13s1− r23c1) (21)

Equation (21) is the fourth equation!
Solve numerically equations (19) and (21) to obtain θi , i = 1,2,3,4.
Solve for θ4, θ5 and θ6 using Z − (−Y )−Z inverse Euler angle
algorithm (similar to the PUMA 560 example).
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. . . . . .

NON-INTERSECTING WRISTS
NUMERICAL EXAMPLE

Assume numerical values of the D-H parameters same as a PUMA 560.
Offset d5 is chosen to be 20 mm.
0
6[T ] same as used for the PUMA 560 example

0
6[T ] =


0.9749 −0.2192 −0.0388 0.1304
0.1643 0.8262 −0.5388 0.3071
0.1502 0.5190 0.8415 0.0482

0 0 0 1


Solve 4 non-linear equations numerically – fsolve in Matlab used here.

θ1 = 41.82, θ2 = 60.43,θ3 = 135.33,θ4 = 31.96

Using inverse Euler angle algorithm – 2 sets of values
θ4 = 31.96,−148.04, θ5 =−45.22,+45.22, and θ6 = 121.57,−58.43.
As a check – one value of θ4 matches.
θ5 = 0 or π is a singular configuration for the non-intersecting wrist
and only θ4±θ6 can be found.
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. . . . . .

INTRODUCTION
REVIEW

0
n[T ] define position and orientation of {n} with respect to {0}.
0
n[T ], in general, provide up to 6 (for 3D) and 3 (for planar) task space
pieces of information. Note: n is the number of unknown joint
variables.
If n < 6 for 3D motion or n < 3 for planar motion → there exists 6−n
(3−n for planar) functional relationships involving the task space
variables – constrained manipulators.
Functional relationships obtained by inspection of geometry or by
using theory of elimination (see Lecture 4).
Start with a simple example of n < 6.
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. . . . . .

INVERSE KINEMATICS FOR n < 6
SCARA ROBOT

O0, O1 O2

θ1

θ2

d3

{1}

{2}

O3, O4

{3}

{4}

Ẑ1

X̂1

Ẑ2

X̂2

X̂

Ẑ3

θ4

Figure 9: A SCARA manipulator

0
4[T ] can give position and
orientation (x ,y ,z ; [R]) of {4}.
Due to geometry and seen from
figure only angle ϕ represents
orientation of {4} – other two
Euler angles are zero!!.
Hence only the position (x ,y ,z)
and the angle ϕ of {4} is
relevant – equal number of
equations and unknowns.

x = a1c1+a2c12
y = a1s1+a2s12
z = −d3
ϕ = θ1+θ2+θ4

(22)
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. . . . . .

INVERSE KINEMATICS FOR n < 6
SCARA ROBOT (CONTD.)

Inverse kinematics solutions of SCARA robot can be obtained from
equation (22).
The unknown joint variables are:

θ2 = ±cos−1(
x2+y2−l21−l22

2l1l2
)

θ1 = Atan2(y ,x)−Atan2(l2s2, l1+ l2c2)
d3 = −z
θ4 = ϕ −θ1−θ2

(23)

Two possible sets of joint variables for a give (x ,y ,z ,ϕ).
Workspace: All reachable points (x ,y ,z) lie in an annular cylinder of
inner and outer radii given by l1− l2 and l1+ l2 (l1 > l2) respectively.
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. . . . . .

REDUNDANT MANIPULATORS
INTRODUCTION

If n > 6 for 3D motion or n > 3 for planar motion → more unknowns
than equations and hence infinite number of solutions – redundant
manipulators.
A simple example – planar 3R robot but not interested in orientation
of the last link.
Direct kinematics equations are

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123

(24)

Inverse kinematics: Given (x ,y) find θ1, θ2 and θ3.
Two equations and 3 variables – ∞ number of θi , i = 1,2,3.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 93



. . . . . .

REDUNDANT MANIPULATORS
INTRODUCTION

If n > 6 for 3D motion or n > 3 for planar motion → more unknowns
than equations and hence infinite number of solutions – redundant
manipulators.
A simple example – planar 3R robot but not interested in orientation
of the last link.
Direct kinematics equations are

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123

(24)

Inverse kinematics: Given (x ,y) find θ1, θ2 and θ3.
Two equations and 3 variables – ∞ number of θi , i = 1,2,3.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 93



. . . . . .

REDUNDANT MANIPULATORS
INTRODUCTION

If n > 6 for 3D motion or n > 3 for planar motion → more unknowns
than equations and hence infinite number of solutions – redundant
manipulators.
A simple example – planar 3R robot but not interested in orientation
of the last link.
Direct kinematics equations are

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123

(24)

Inverse kinematics: Given (x ,y) find θ1, θ2 and θ3.
Two equations and 3 variables – ∞ number of θi , i = 1,2,3.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 93



. . . . . .

REDUNDANT MANIPULATORS
INTRODUCTION

If n > 6 for 3D motion or n > 3 for planar motion → more unknowns
than equations and hence infinite number of solutions – redundant
manipulators.
A simple example – planar 3R robot but not interested in orientation
of the last link.
Direct kinematics equations are

x = l1c1+ l2c12+ l3c123
y = l1s1+ l2s12+ l3s123

(24)

Inverse kinematics: Given (x ,y) find θ1, θ2 and θ3.
Two equations and 3 variables – ∞ number of θi , i = 1,2,3.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 46 / 93



. . . . . .

REDUNDANT MANIPULATORS

Need to use additional equation so that unique θi , i = 1,2,3 can be
obtained.
Optimisation of a function of joint variables (Nakamura, 1991).

Minimisation of joint rotations, velocities and acceleration.
Avoiding obstacles and singularities.
Minimisation of actuator torques.

Resolution of redundancy: Obtaining additional useful and meaningful
equation(s) or constraint(s) to obtain unique joint values.
Two resolution schemes

...1 Minimise joint rotations – illustrated using the planar 3R example.

...2 Minimise Cartesian motion of links.
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. . . . . .

REDUNDANT MANIPULATORS
MINIMISE JOINT ROTATIONS

For planar 3R manipulator minimise joint rotation → minimise
θ2

1 +θ2
2 +θ2

3 .
Optimisation problem: Minimize f (θ) = θ2

1 +θ2
2 +θ2

3
subject to

g1(θ) = −x + l1c1+ l2c12+ l3c123 = 0
g2(θ) = −y + l1s1+ l2s12+ l3s123 = 0

θ = (θ1,θ2,θ3)
T , and (x ,y) denote trajectory of end-effector.

Solve using classical method of Lagrange multipliers.
Form the function

F (θ) = f (θ)−λ1g1(θ)−λ2g2(θ) (25)

Equate the derivatives of F (θ) to zero

∂ f
∂θ

= λ1
∂g1

∂θ
+λ2

∂g2

∂θ
g1(θ) = g2(θ) = 0 (26)
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. . . . . .

REDUNDANT MANIPULATORS
MINIMISE JOINT ROTATIONS

Eliminate λ1 and λ2 by rewriting the first equation as
∂ f
∂θ1

∂g1
∂θ1

∂g2
∂θ1

∂ f
∂θ2

∂g1
∂θ2

∂g2
∂θ2

∂ f
∂θ3

∂g1
∂θ3

∂g2
∂θ3


 1
−λ1
−λ2

= 0 (27)

For non-trivial λ1 and λ2 → equate determinant of the 3×3 matrix as
zero.

l1l2θ3s2+ l2l3(θ1−θ2)s3+ l3l1(θ3−θ2)s23 = 0 (28)

Solve equation (28) together with g1(θ) = 0 and g2(θ) = 0
numerically.
Figure 10 shows the plot of θ1, θ2, θ3, and f (θ)
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. . . . . .

REDUNDANT MANIPULATORS
MINIMISE JOINT ROTATIONS

l1, l2, and l3 are chosen to be 5, 3, and 1, respectively.
The end-effector traces a straight line parallel to the Y axis.
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The trajectory 
choosen 

Figure 10: Plot of joint variables for redundant planar 3R robot
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REDUNDANT MANIPULATORS
MINIMISE JOINT ROTATIONS WITH JOINT CONSTRAINTS

Solve same optimisation problem with −120◦ ≤ θ2 ≤ 120◦.
All joint variables different when θ2 is constrained.
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2.5
 Joint 2 restricted between −120 to 120 degrees
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Figure 11: Plot of joint variables for redundant planar 3R robot with joint limit
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. . . . . .

REDUNDANT MANIPULATORS
MINIMISE CARTESIAN MOTION OF LINKS

Classical tractrix curve – called
hund or hound curve by Leibniz
A link moves such that the head
P moves along the X axis and
the velocity of tail j0 is along the
link.
The curve traced by the tail is
the tractrix. 0 5 10 15
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Figure 12: Motion of a link when one end is
pulled parallel to X axis

See link for more details on tractrix curve.
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. . . . . .

REDUNDANT MANIPULATORS
TRACTRIX EQUATION

Since the velocity vector at j0 is always aligned with the link, the
tractrix equation is

dy
dx

=
−y√

L2− y2
(29)

where L is length of the link.
Solution in closed form and parametric form

x = L log
y

L−
√

L2− y2
−
√

L2− y2

x(p) = p−L tanh(
p
L
), y(p) = L sech(

p
L
) (30)

Some key properties of the tractrix curve
For an infinitesimal motion of head dp, the length of path traversed by
tail dr is minimum of all possible paths.
dr ≤ dp and equal when velocity of head is along link.
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. . . . . .

REDUNDANT MANIPULATORS
TRACTRIX – EXTENSION TO MOTION ALONG ARBITRARY DIRECTION
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Figure 13: Motion of a link when one end is
pulled along a line ye = mxe

Head moving along ye = mxe ,
m = yp/xp is slope and (xp,yp)
is the destination point.
Modified differential equation of
tractrix – dy

dx = y−ye
x−xe

Solution is xe =
−B±

√
B2−4AC
2A

where A = 1+m2,B =
2my +2x ,C = x2+ y2−L2.
Use + when slope of the link
(m1) in X ′−Y ′ is negative and
vice versa.
Initially as head moves along X ′,
the tail moves backward!

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 54 / 93



. . . . . .

REDUNDANT MANIPULATORS
TRACTRIX – EXTENSION TO SPATIAL MOTION (CONTD.)

Algorithm TRACTRIX3D
...1 Define S = Xp−Xh where Xh is the current location of the head.
...2 Define T = X−Xh where X = (x ,y ,z)T is the tail of the link lying on

the tractrix.
...3 Define reference coordinate system {r} with the X -axis along S.
...4 Define the Z -axis as Ẑr =

S×T
|S×T| .

...5 Define rotation matrix 0
r [R] from X , Y and Z axis.

...6 Obtain y = Ŷr ·T and parameter p from p = L sech−1( y
L )±|S|.

...7 From p obtain (xr ,yr ) in {r}

xr =±|S|−L tanh(
p
L
) yr = L sech(

p
L
) (31)

...8 Obtain (x ,y ,z)T in {0} by (x ,y ,z)T = Xh +
0
r [R](xr ,yr ,0)T .
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. . . . . .

REDUNDANT MANIPULATORS
RESOLUTION OF REDUNDANCY USING TRACTRIX

Consider a redundant manipulator with n links and joints j1, j2, ..., jn−1
where ji is the joint connecting link li and link li+1 – joints are either
spherical joints or rotary.
Consider the last two links ln and ln−1 – the head of the link ln
denoted by jn is to be moved to jnnew given by Xp = (xp,yp,zp)

T .
Obtain new displaced location of tail jn−1 using algorithm
TRACTRIX3D – denote by X = (x ,y ,z)T .
Tail of the link ln is the head of the link ln−1 – Desired location of
head of the link ln−1 is (x ,y ,z)T .
Obtain location of the tail of link ln−1 using algorithm TRACTRIX3D.
Recursively obtain the motion of the head and tail of all links down to
the first link l1.
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. . . . . .

REDUNDANT MANIPULATORS
ALGORITHM FOR RESOLUTION OF REDUNDANCY USING TRACTRIX

Algorithm RESOLUTION-TRACTRIX
...1 Input desired location of head of link ln (xp,yp,zp)

T and set
jnnew = (xp,yp,zp)

T .
...2 for i : n → 1

Call TRACTRIX3D and obtain location of the tail of link i (x ,y ,z)Ti−1
Set new location of head of link i −1, ji−1new ← (x ,y ,z)Ti−1

...3 At end of step 2, j0, would have moved. To fix j0
Move j0 to the origin (0,0,0)T and translate ’rigidly’ all other links
with no rotations at the joints.
Due to ’rigid’ translation, the end-effector will not be at the desired
(xp,yp,zp).
Repeat step 2 and 3 until the head reaches (xp,yp,zp) and the point j0
is within a prescribed error bound of (0,0,0).

See also Reznick and Lumelsky(1992, 1993, 1995).
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. . . . . .

REDUNDANT MANIPULATORS
PROPERTIES OF ALGORITHM RESOLUTION-TRACTRIX

...1 Algorithm complexity is O(n) where n is the number of rigid links →
amenable for real time computation.

...2 θi is given by θi = cos−1(
−−→
ji−1ji (k +1) ·−−→ji−1ji (k)) where

−−→
ji−1ji (k) is the

unit vector from the tail to the head of the i-th link at k-th instant.
...3 The resolution of redundancy is done in Cartesian space and then the

joint angles are computed.
...4 When the head of the link ln moves by drn the displacements obey the

inequality dr0 ≤ dr1 ≤ ...≤ drn−1 ≤ drn.
The motion of the links appears to ‘die’ out as we move toward the
first link.
Joints near to base ‘see’ large inertia and a desirable strategy would be
to move them the least.

...5 To ’fix’ the tail of the first link, perform iterations of step 3 –
convergence is guaranteed due to ‘dying’ out property.
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. . . . . .

REDUNDANT MANIPULATORS
EXPERIMENTAL HARDWARE

Experimental 8-link planar manipulator – each link is 70 mm long.
Joint driven by Futaba S3003 RC hobby servos.

Figure 14: Experimental 8-link hyper-redundant manipulator.
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REDUNDANT MANIPULATORS
SIMULATION RESULTS
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(a) Desired straight line motions
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(b) Desired circular motion

Figures show final configurations of robot using 3 approaches.
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. . . . . .

REDUNDANT MANIPULATORS (CONTD.)
SIMULATION RESULTS
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(c) Plot of joint variables for straight
line motions
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(d) Plot of joint variables for circular
motion

Joints toward the base move the least.
See references Ravi et al.(2010) for more details and comparison with other
approaches.
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. . . . . .

REDUNDANT MANIPULATORS
EXPERIMENTAL RESULTS

(e) Straight line motion (f) Circular motion
Minimising Cartesian motion of links as motion ‘die’ out from
end-effector to base.
Tractrix based resolution scheme is more natural.
Videos: Pseudo-inverse method, Modal approach, and Tractrix based
approach for straight line trajectory.
Videos: Pseudo-inverse method, Modal approach, and Tractrix
approach circular trajectory.
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. . . . . .

REDUNDANT MANIPULATORS
FREE MOTION

One end of redundant manipulator is not held fixed – becomes a snake.
Desired (xp,yp) provided from a computer and joint motions
computed using tractrix approach.
8-link planar manipulator moves in a snake-like manner.
Motion appears to be natural.

See movie – free motion of a hyper-redundant snake manipulator.
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. . . . . .

TYING KNOTS, SNAKE MOTION ....

Tractrix based approaches can be extended to spatial hyper-redundant
systems.
Link to videos on single-hand knot tying, two-hand knot tying and
simulated motion of a snake.
Each of the simulation uses a tractrix based approach (Goel et al.,
2010), and motion appears to be more natural.
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. . . . . .

REVIEW OF INVERSE KINEMATICS

Inverse kinematics involves solution of a set of non-linear
transcendental equations.
A closed-form (analytical) solution is desired over a purely iterative or
numerical approach.
Closed-form solutions provide criterion for workspace and multiple
configurations.
General approach for inverse kinematics:

Convert transcendental equations to polynomial equations using
tangent half angle substitution.
Eliminate sequentially (or if possible in one step) joint variables to
arrive at single polynomial in one joint variable.
Solve if possible in closed-form (for polynomials up to quartic – see
Korn and Korn, 1968) for the unknown joint variable.
Obtain other joint variables by back substitution.

Key step is to obtain the monomial by elimination.
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. . . . . .

ELIMINATION THEORY
INTRODUCTION

Polynomial equations f (x ,y) = 0 and g(x ,y) = 0 of degree m and n
Degree of a polynomial is sum of exponents of the highest degree term.
Bézout Theorem (Semple and Roth, 1949): a maximum of m×n
(x ,y) values satisfy both the equations.
Bézout Theorem give upper bound and includes real, complex
conjugate and solutions at infinity.
Example 1: x2+ y2 = 1 and y − x = 0 are satisfied by two sets of
(x ,y) values – ±( 1√

2
, 1√

2
).

Example 2: x2+ y2 = 1 and y − x = 2 are not satisfied by any real
values of (x ,y).
Example 3: x2+ y2 = 1 and y − x =

√
2 satisfied by two coincident

real values of (x ,y).
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. . . . . .

ELIMINATION THEORY
INTRODUCTION (CONTD.)

Example 1, 2 and 3 can also be interpreted geometrically.
Sketch show that line y −x = 0 intersects circle x2+ y2 = 1 at two
points.
Sketch show that line y −x = 2 does not intersects circle x2+ y2 = 1.
Sketch show that line y −x =

√
2 is tangent to circle x2+ y2 = 1.

Verify: Two parabolas, ellipses or hyperbolas (quadratic curves) can
intersect in 4 points.
Apparent contradiction: Two circles never intersect at 4 points.
Contradiction can be resolved if homogeneous coordinates (see
additional material in Module 2) (x ,y ,w) is used to represent
equations of circles.
In terms of homogeneous coordinates – two complex conjugates
solutions at ∞ for any two circles.
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. . . . . .

ELIMINATION THEORY
INTRODUCTION (CONTD.)

Bézout Theorem can be extended to two m− and n− order manifolds
→ they intersect in at most a m×n order sub-manifold.
Example 1: A sphere x2+y2+ z2 = 1 (m = 2) intersects a plane x = 0
(n = 1) in a circle y2+ z2 = 1 – a second-order curve.
Example 2: Two cylinders (m = n = 2) can intersect in a fourth degree
curve.
Bézout theorem is of no use in obtaining the solutions – it is not a
constructive theorem.
One constructive method is Sylvester’s dialytic elimination method
(Salmon, 1964).
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD

Two polynomials P(x) = ∑m
i=0 aix i = 0 and Q(x) = ∑n

i=0 bix i = 0, ai
and bi are co-efficients.
Construct the Sylvester’s matrix of P(x) and Q(x)

[SM] =



am am−1 ... a1 a0
am am−1 ... a1 a0

... ... ...
am ... ... a0

bn bn−1 ... b1 b0
bn bn−1 ... b1 b0

... ... ...
bn ... ... b0


(32)

where the unfilled entries are 0 & [SM] is (m+n)× (m+n).
The i th row of the top half are the co-efficients of P(x)× x i for
i = n−1,n−2, ...,1,0
The i th row in the bottom half are the co-efficients of Q(x)× x i for
i = m−1,m−2, ...,1,0.
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD (CONTD.)

Sylvester criterion1: P(x) = 0 and Q(x) = 0 have a non-trivial
common factor if and only if det[SM] = 0.
The Sylvester criterion follows from the analogy with linear equations.

The n equations P(x)× x i = 0, i = n−1,n−2, ...,1,0 and the m
equations Q(x)× x i for i = m−1,m−2, ...,1,0 can be written as

[SM](xm+n−1,xm+n−2, ....,x1,x0)T = 0 (33)

Note: all powers of x , xm+n−1,xm+n−2, ...,x1,x0, including the
constant term x0 are treated as linearly independent variables.
Note: The matrix [SM] is square and is of dimension (m+n)× (m+n).

The set of linear equations (33) can have a non-trivial solution if and
only if det[SM] = 0 – Same as the Sylvester’s criterion!

1Sylvester and Trudi worked in the late 19th century on the theory of equations, later
called the theory of algebraic curves, which forms the foundation of algebraic geometry.
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD (CONTD.)

Algorithm to solve two polynomials, f (x ,y) = 0 and g(x ,y) = 0
...1 Rewrite f (x ,y) = 0 and g(x ,y) = 0 as P(x) = ∑m

i=0 ai (y)x i = 0 and
Q(x) = ∑n

i=0 bi (y)x i = 0. Note: all coefficients function of y or
constant.

...2 Obtain [SM](y) and compute det[SM](y) = 0 → A polynomial in y
alone.

...3 Solve det[SM](y) = 0 for all roots analytically (if possible) or
numerically.

...4 Linear equations (33) can be solved, using linear algebra techniques,
for the linearly independent unknowns xm+n−1,xm+n−2, ...,x1,x0.

...5 The integrity of the numerical procedure can be verified by checking
that x1 and say x2 are related by (x1)2 = x2.
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD – EXAMPLE

Consider two polynomial equations

f1(x ,y) = a2(y)x2+a1(y)x +a0(y) = 0
f2(x ,y) = b2(y)x2+b1(y)x +b0(y) = 0 (34)

where ai and bi , i = 0,1,2 are arbitrary polynomials in y or constants.
Sylvester’s matrix is given by

[SM] =


a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0

 (35)

det[SM](y) = 0 reduces to
(a2b1−b2a1)(a1b0−b1a0)− (a2b0−b2a0)

2 = 0
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD – EXAMPLE

The variable x can be obtained from the set of ‘linear equations’
a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0




x3

x2

x1

x0

= 0 (36)

as
x = x1 =−a1b0−b1a0

a2b0−b2a0
=−a2b0−b2a0

a1b2−a2b1
(37)

Note: x computed using the two expressions on the right-hand side
must be same and can be used as a programming/numerical
consistency check
Note: a1b0−b1a0

a2b0−b2a0
= a2b0−b2a0

a1b2−a2b1
is same as det[SM](y) = 0!
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. . . . . .

ELIMINATION THEORY
SYLVESTER’S METHOD – EXAMPLE
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. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX

det[SM] is also called the resultant of P(x) and Q(x) and is denoted
by res(P,Q).
[SM] is (m+n)× (m+n) and res(P ,Q) can become computationally
expensive.
Bézout in the 18th century proposed a method where res(P,Q) can
be computed as a determinant of order max(m,n).
The key idea is to divide instead of multiplying to get required number
of independent equations and a square matrix.
Although dimension of matrix is less, each element of the matrix is
more complex.
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. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX (CONTD.)

Consider P(x) = ∑m
i=0 aix i = 0 and Q(x) = ∑n

i=0 bix i = 0 with m > n.
Eliminate xm from P(x) = 0 and xm−nQ(x) = 0 by writing

am

bn
=

am−1xm−1+ ....+a0

bn−1xm−1+ ...+b0xm−n to get

(am−1bn−ambn−1)xm−1+(am−2bn−ambn−2)xm−2+ ....+a0bn = 0
(38)

Also eliminate xm by writing

amx +am−1

bnx +bn−1
=

am−2xm−2+ ....+a0

bn−2xm−2+ ...+b0xm−n to get

(am−2bn−bn−2am)xm−1+

[(am−3bn−bn−3am)+(am−2bn−1−bn−2am−1)]xm−2

+...+a0bn−1 = 0 (39)
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. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX (CONTD.)

Repeat to obtain n equations with the nth equation given by

(am−nbn−amb0)xm−1+(am−n−1bn +am−nbn−1−am−1b0)xm−2

+....+a0b1 = 0 (40)

Construct m−n equations

xm−n−1Q(x) = bnxm−1+bn−1xm−2+ ...+b0xm−n−1 = 0
xm−n−2Q(x) = bnxm−2+ ...+b0xm−n−2 = 0

..... = 0
Q(x) = bnxn + ...+b0 = 0 (41)
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. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX (CONTD.)

The Bézout matrix is given as

am−1bn−ambn−1 am−2bn−ambn−2 .. .. a0bn
... ... .. .. ..

am−nbn−amb0 am−n−1bn +am−nbn−1−am−1b0 .. .. a0b1
bn bn−1 b0

bn .. b0
... .. .. ...

.. .. b0


(42)

where the unfilled entries are 0’s.
The criterion for a non-trivial common factor is det[BM] = 0.
If m = n, then in equations (38) - (40), a set of n ‘linearly independent
equations’ in n unknowns xn−1, ....,x0 are already available.
Solve for the unknowns by standard linear algebra techniques.
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. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX - ILLUSTRATION

Consider two cubics of the form

a3x3+a2x2+a1x +a0 = 0
b3x3+b2x2+b1x +b0 = 0 (43)

The Bézout matrix is given by

[BM] =

 b3a2−a3b2 b3a1−a3b1 b3a0−a3b0
b3a1−a3b1 (b3a0−a3b0)+(b2a1−a2b1) b2a0−a2b0
b3a0−a0b3 b2a0−a2b0 b1a0−a1b0


(44)

Note: [BM] is 3×3 while [SM] would be 6×6 for this case.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 79 / 93



. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX - ILLUSTRATION

Consider two cubics of the form

a3x3+a2x2+a1x +a0 = 0
b3x3+b2x2+b1x +b0 = 0 (43)

The Bézout matrix is given by

[BM] =

 b3a2−a3b2 b3a1−a3b1 b3a0−a3b0
b3a1−a3b1 (b3a0−a3b0)+(b2a1−a2b1) b2a0−a2b0
b3a0−a0b3 b2a0−a2b0 b1a0−a1b0


(44)

Note: [BM] is 3×3 while [SM] would be 6×6 for this case.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 79 / 93



. . . . . .

ELIMINATION THEORY
BÉZOUTS MATRIX - ILLUSTRATION

Consider two cubics of the form

a3x3+a2x2+a1x +a0 = 0
b3x3+b2x2+b1x +b0 = 0 (43)

The Bézout matrix is given by

[BM] =

 b3a2−a3b2 b3a1−a3b1 b3a0−a3b0
b3a1−a3b1 (b3a0−a3b0)+(b2a1−a2b1) b2a0−a2b0
b3a0−a0b3 b2a0−a2b0 b1a0−a1b0


(44)

Note: [BM] is 3×3 while [SM] would be 6×6 for this case.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 79 / 93



. . . . . .

ELIMINATION THEORY
EQUIVALENCE OF [BM] AND [SM]

Intuitively – Bézout matrix and Sylvester matrix should be related as
no new information is possible!
Example: Consider P(x) = a3x3+a2x2+a1x +a0 = 0 and
Q(x) = b2x2+b1x +b0 = 0.
Sylvester’s matrix is given by

[SM] =


a3 a2 a1 a0 0
0 a3 a2 a1 a0
b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0

 (45)

The Bézout matrix is given as

[BM] =

 a1b2−a3b0 a0b2+a1b1−a2b0 a0b1
a2b2−a3b1 a1b2−a3b0 a0b2

b2 b1 b0

 (46)
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. . . . . .

ELIMINATION THEORY
EQUIVALENCE OF [BM] AND [SM] - CONTD.

Pre-multiply [SM] by matrix

[A] =


1 0 0 0 0
0 1 0 0 0
b2 b1 −a3 −a2 0
0 b2 0 −a3 0
0 0 0 0 1

 (47)

to get

[B] =


a3 a2 a1 a0 0
0 a3 a2 a1 a0
0 0 a1b2−a3b0 a0b2+a1b1−a2b0 a0b1
0 0 a2b2−a3b1 a1b2−a3b0 a0b2
0 0 b2 b1 b0

 (48)

Observe that det[A]det[SM] = (a3)
2 det[SM] = det[B] = (a3)

2 det[BM]
which shows that det[SM] = det[BM].
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. . . . . .

INVERSE KINEMATICS OF A GENERAL 6R ROBOT
INTRODUCTION

General 6R robot: No constant D-H link parameters have special
values, such as 0, π/2, or π.
Special D-H values (such as in PUMA 560) result in easier elimination.
If Prismatic joint is present → elimination is easier.
Inverse kinematics of a general 6R was unsolved for a long time.

Several researchers worked on it – Duffy and Crane (1980) first derived
a 32nd order polynomial in one joint angle.
Eventually Raghavan and Roth (1993) derived a 16th degree polynomial
in one joint angle.

Follow the development in Raghavan and Roth (1993) & Extensive
use elimination theory discussed in Lecture 3.
The direct kinematics equations for a general 6R manipulator is

0
6[T ] = 0

1[T ]12[T ]23[T ]34[T ]45[T ]56[T ] (49)
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Recall with respect to equation (49)
i−1
i [T ] is a function of only one joint variable θi and three D-H
parameters which are constants.
For IK problem, 0

6[T ] is given → find the six joint variables in each of
i−1
i [T ], i = 1,2, ...,6.

Step 1: write i−1
i [T ] as product of two matrices (i−1

i [T ])st(
i−1
i [T ])jt .

i−1
i [T ] = (i−1

i [T ])st(
i−1
i [T ])jt

=


1 0 0 ai−1
0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1




cθi −sθi 0 0
sθi cθi 0 0
0 0 1 di
0 0 0 1

 (50)

The matrix (i−1
i [T ])st is constant

The matrix (i−1
i [T ])jt is a function of the joint variable θi (for a rotary

joint) or di (for a prismatic joint).
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 2: Reorganize equation of direct kinematics
Rewrite equation (49) as

(23[T ])jt
3
4[T ]45[T ](56[T ])st = (23[T ])−1

st (12[T ])−1(01[T ])−1 0
6[T ](56[T ])−1

jt
(51)

The left-hand side is only a function of (θ3,θ4,θ5)
The right-hand side is only a function of (θ1,θ2,θ6).
Six scalar equations obtained by equating the top three elements of
columns 3 and 4 on both sides of equation (51) do not contain θ6.

[A](s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T

= [B](s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2)
T (52)

where [A] is 6×9 matrix whose elements are linear in s3, c3, 1, and [B]
is 6×8 matrix of constants.
Denote columns 3 and 4 by p and l
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 3: Eliminate four of five variables, θi , i = 1, ..,5 in equation (52).
Key step is to obtain minimal set of equations.
The minimal set of equations is 14 (Raghavan & Roth, 1993).

Three equations from p.
Three equations from l.
One scalar equation from the scalar dot product p ·p
One scalar equation from the scalar dot product p · l
Three equations from the vector cross product p× l
Three scalar equations from (p ·p)l− (2p · l)p.

The 14 equations can be written as

[P] (s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T

= [Q] (s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2)
T (53)

[P] is a 14×9 matrix whose elements are linear in c3, s3, 1, and [Q] is
a 14×8 matrix of constants.
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 3: Elimination of four θi (Contd.)
First use any eight of the 14 equations in equation (53) and solve for
the eight variables s1s2,s1c2,c1s2,c1c2,s1,c1,s2,c2.
Always possible to solve eight linear equations in eight unknowns.
Substitute the eight variables in the rest of the six equations to get

[R] (s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T = 0 (54)

[R] is a 6×9 matrix whose elements are linear in s3 and c3.
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 4: Elimination of θ4 and θ5

Use tangent half-angle formulas for s3, c3, s4, c4, s5, and c5.
On simplifying get

[S ]
(
x2
4 x2

5 x2
4 x5 x2

4 x4x2
5 x4x5 x4 x2

5 x5 1
)T

= 0 (55)

where [S ] is a 6×9 matrix and x(·) = tan(θ·
2 ).

Eliminate x4 and x5 using Sylvester’s dialytic method.
Six additional equations are generated by multiplying equations in
equation (55) by x4.
Three additional ‘linearly’ independent variables, namely, x3

4 x2
5 , x3

4 x5,
and x3

4 , are generated.
A system of 12 equations in 12 unknowns.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 88 / 93



. . . . . .

INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 4: Elimination of θ4 and θ5

Use tangent half-angle formulas for s3, c3, s4, c4, s5, and c5.
On simplifying get

[S ]
(
x2
4 x2

5 x2
4 x5 x2

4 x4x2
5 x4x5 x4 x2

5 x5 1
)T

= 0 (55)

where [S ] is a 6×9 matrix and x(·) = tan(θ·
2 ).

Eliminate x4 and x5 using Sylvester’s dialytic method.
Six additional equations are generated by multiplying equations in
equation (55) by x4.
Three additional ‘linearly’ independent variables, namely, x3

4 x2
5 , x3

4 x5,
and x3

4 , are generated.
A system of 12 equations in 12 unknowns.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 88 / 93



. . . . . .

INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 4: Elimination of θ4 and θ5

Use tangent half-angle formulas for s3, c3, s4, c4, s5, and c5.
On simplifying get

[S ]
(
x2
4 x2

5 x2
4 x5 x2

4 x4x2
5 x4x5 x4 x2

5 x5 1
)T

= 0 (55)

where [S ] is a 6×9 matrix and x(·) = tan(θ·
2 ).

Eliminate x4 and x5 using Sylvester’s dialytic method.
Six additional equations are generated by multiplying equations in
equation (55) by x4.
Three additional ‘linearly’ independent variables, namely, x3

4 x2
5 , x3

4 x5,
and x3

4 , are generated.
A system of 12 equations in 12 unknowns.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 88 / 93



. . . . . .

INVERSE KINEMATICS OF A GENERAL 6R ROBOT
Step 4: Elimination of θ4 and θ5 (Contd.)

The 12 equations can be written
as

(
S 0
0 S

)



x3
4 x2

5
x3
4 x5
x3
4

x2
4 x2

5
x2
4 x5
x2
4

x4x2
5

x4x5
x4
x2
5

x5
1



= 0

(56)

Following Sylvester’s method,

set det
(

S 0
0 S

)
= 0

On simplification, a 16th-degree
polynomial in x3 is obtained.
Solve for roots of this polynomial
and find θ3 = 2tan−1(x3).
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT

Step 5: Obtain other joint angles
Once θ3 is known, find x4 and x5 from equation (56) using standard
linear algebra.
From x4 and x5 find θ4 and θ5.
Once θ3, θ4, and θ5 are known, solve s1s2, s1c2, ..., s2, c2 from eight
linearly independent equations (53).
Obtain unique θ1 and θ2.
To obtain θ6, rewrite equation (49) as

5
6[T ] = 4

5[T ]
−13

4[T ]
−12

3[T ]
−11

2[T ]
−10

1[T ]
−10

6[T ] (57)

θi , i = 1,2, ...,5 are known → (1,1) and (2,1) elements gives two
equations in s6 and c6 → unique value of θ6.
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INVERSE KINEMATICS OF A GENERAL 6R ROBOT
SUMMARY

A sixteenth degree polynomial in x3 is obtained in Step 4 → general
6R serial manipulator has 16 possible solutions.
A 6R manipulator with special geometry → 16th-degree polynomial in
x3 can be of lower order.
If one or more joints are prismatic → Inverse kinematics becomes
simpler since the prismatic joint variable is not in terms of sines or
cosines.
Not possible to find general expression for workspace boundary since
closed-form solution for 16th-degree polynomial not possible.
Check: If all the roots of the 16th-degree polynomial are complex,
then 0

6[T ] is not in the workspace of the manipulator.
All the inverse kinematics solutions & entire workspace may not be
available due to the presence of joint limits and limitations of hardware
(see, Rastegar and Deravi, 1987 & Dwarakanath et al. 1992).
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