

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 4 - KINEMATICS OF PARALLEL ROBOTS

Ashitava Ghosal¹

¹Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian Institute of Science Bangalore 560 012, India Email: asitava@mecheng.iisc.ernet.in

NPTEL, 2010

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 1/71

2 LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 Lecture 2
 - Direct Kinematics of Parallel Manipulators
- LECTURE 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators
- 6 Lecture 5
 - Direct Kinematics of Stewart Platform Manipulators
- 7 Additional Material Module 4
 - Problems, References and Suggested Reading

OUTLINE

CONTENTS

2 Lecture 1

- Introduction
- Loop-closure Constraint Equations
- LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- LECTURE 3
 - Mobility of Parallel Manipulators
- LECTURE 4
 - Inverse Kinematics of Parallel Manipulators

LECTURE 5

- Direct Kinematics of Stewart Platform Manipulators
- Additional Material Module 4
 - Problems, References and Suggested Reading

INTRODUCTION Review

- Parallel manipulators: One or more loops \rightarrow No first or last link.
- No natural choice of end-effector or output link \rightarrow Output link must be chosen.
- Number of joints is more than the degree-of-freedom \rightarrow several joints are *not* actuated.
- Un-actuated or *passive* joints can be multi- degree-of-freedom joints.
- Two main problems: Direct Kinematics and Inverse Kinematics.

- Parallel manipulators: One or more loops \rightarrow No first or last link.
- No natural choice of end-effector or output link \rightarrow Output link must be chosen.
- Number of joints is more than the degree-of-freedom \rightarrow several joints are *not* actuated.
- Un-actuated or *passive* joints can be multi- degree-of-freedom joints.
- Two main problems: Direct Kinematics and Inverse Kinematics.

- Parallel manipulators: One or more loops \rightarrow No first or last link.
- No natural choice of end-effector or output link \rightarrow Output link *must* be chosen.
- Number of joints is more than the degree-of-freedom \rightarrow several joints are *not* actuated.
- Un-actuated or *passive* joints can be multi- degree-of-freedom joints.
- Two main problems: Direct Kinematics and Inverse Kinematics.

- Parallel manipulators: One or more loops \rightarrow No first or last link.
- No natural choice of end-effector or output link \rightarrow Output link *must* be chosen.
- Number of joints is more than the degree-of-freedom \rightarrow several joints are *not* actuated.
- Un-actuated or *passive* joints can be multi- degree-of-freedom joints.
- Two main problems: Direct Kinematics and Inverse Kinematics.

- Parallel manipulators: One or more loops \rightarrow No first or last link.
- No natural choice of end-effector or output link \rightarrow Output link *must* be chosen.
- Number of joints is more than the degree-of-freedom \rightarrow several joints are *not* actuated.
- Un-actuated or *passive* joints can be multi- degree-of-freedom joints.
- Two main problems: Direct Kinematics and Inverse Kinematics.

EXAMPLES OF PARALLEL ROBOTS

(a) Planar 4-bar Mechanism

(b) Three- degree-of-freedom Manipulator

イロト イポト イヨト イヨト

EXAMPLES OF PARALLEL ROBOTS

(c) Original Stewart platform (1965) (d) Model of a three-fingered hand

Figure 1: Example of Parallel Manipulators - < = > < = >

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 6 / 71

DEGREES OF FREEDOM

• Grübler-Kutzbach's criterion

$$DOF = \lambda(N - J - 1) + \sum_{i=1}^{J} F_i$$
(1)

N – total number of links including the fixed link (or base), J – total number of joints connecting *only* two links (if joint connects three links then it must be counted as two joints), F_i – degrees of freedom at the i^{th} joint, and $\lambda = 6$ forspatial, 3 for planar manipulators and mechanisms.

- 4-bar mechanism N = 4, J = 4, $\sum_{i=1}^{J} F_i = 1 + 1 + 1 + 1 = 4$, $\lambda = 3$ $\rightarrow DOF = 1$
- 3-RPS manipulator N = 8, J = 9, $\sum_{i=1}^{J} F_i = 6 \times 1 + 3 \times 3 = 15$, $\lambda = 6 \rightarrow DOF = 3$.
- Three-fingered hand -N = 11, J = 12, $\sum_{i=1}^{J} F_i = 9 + 9 = 18$, $\lambda = 6$ $\rightarrow DOF = 6$

DEGREES OF FREEDOM

• Grübler-Kutzbach's criterion

$$DOF = \lambda(N-J-1) + \sum_{i=1}^{J} F_i$$
(1)

N – total number of links including the fixed link (or base),

J – total number of joints connecting *only* two links (if joint connects three links then it must be counted as two joints),

 F_i – degrees of freedom at the i^{th} joint, and $\lambda = 6$ forspatial, 3 for planar manipulators and mechanisms.

- 4-bar mechanism N = 4, J = 4, $\sum_{i=1}^{J} F_i = 1 + 1 + 1 + 1 = 4$, $\lambda = 3$ $\rightarrow DOF = 1$
- 3-RPS manipulator N = 8, J = 9, $\sum_{i=1}^{J} F_i = 6 \times 1 + 3 \times 3 = 15$, $\lambda = 6 \rightarrow DOF = 3$.
- Three-fingered hand -N = 11, J = 12, $\sum_{i=1}^{J} F_i = 9 + 9 = 18$, $\lambda = 6$ $\rightarrow DOF = 6$

DEGREES OF FREEDOM

• Grübler-Kutzbach's criterion

$$DOF = \lambda(N - J - 1) + \sum_{i=1}^{J} F_i$$
(1)

N – total number of links including the fixed link (or base),

J – total number of joints connecting *only* two links (if joint connects three links then it must be counted as two joints),

 F_i – degrees of freedom at the i^{th} joint, and $\lambda = 6$ forspatial, 3 for planar manipulators and mechanisms.

- 4-bar mechanism N = 4, J = 4, $\sum_{i=1}^{J} F_i = 1 + 1 + 1 + 1 = 4$, $\lambda = 3$ $\rightarrow DOF = 1$
- 3-RPS manipulator N = 8, J = 9, $\sum_{i=1}^{J} F_i = 6 \times 1 + 3 \times 3 = 15$, $\lambda = 6 \rightarrow DOF = 3$.
- Three-fingered hand -N = 11, J = 12, $\sum_{i=1}^{J} F_i = 9 + 9 = 18$, $\lambda = 6$ $\rightarrow DOF = 6$

DEGREES OF FREEDOM

• Grübler-Kutzbach's criterion

$$DOF = \lambda(N-J-1) + \sum_{i=1}^{J} F_i$$
(1)

N – total number of links including the fixed link (or base),

J – total number of joints connecting *only* two links (if joint connects three links then it must be counted as two joints),

 F_i – degrees of freedom at the i^{th} joint, and $\lambda = 6$ forspatial, 3 for planar manipulators and mechanisms.

- 4-bar mechanism N = 4, J = 4, $\sum_{i=1}^{J} F_i = 1 + 1 + 1 + 1 = 4$, $\lambda = 3$ $\rightarrow DOF = 1$
- 3-RPS manipulator N = 8, J = 9, $\sum_{i=1}^{J} F_i = 6 \times 1 + 3 \times 3 = 15$, $\lambda = 6 \rightarrow DOF = 3$.
- Three-fingered hand N = 11, J = 12, $\sum_{i=1}^{J} F_i = 9 + 9 = 18$, $\lambda = 6$ $\rightarrow DOF = 6$

DEGREES OF FREEDOM (CONTD.)

• DOF - the number of independent actuators.

- In parallel manipulators, $J > DOF \rightarrow J DOF$ joints are *passive*.
 - Example: 4-bar mechanism, J = 4 and $DOF = 1 \rightarrow only$ one joint is actuated and three are passive.
 - Example: 3-RPS manipulator, J = 9 and $DOF = 3 \rightarrow 6$ joints are passive.
- Passive joints can be multi- degree-of-freedom joints.
 - In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are passive.
 - In a Stewart platform, the S and U joints are passive.
- Configuration space $\mathbf{q} = (\theta, \phi)$
 - heta are actuated joints & $heta \in \mathfrak{R}^n$ (n = DOF)
 - ϕ is the set of passive joints & $\phi \in \Re^m$
- All passive joints $\notin \phi \Rightarrow (n+m) \leq J$

DEGREES OF FREEDOM (CONTD.)

- DOF the number of independent actuators.
- In parallel manipulators, $J > DOF \rightarrow J DOF$ joints are *passive*.
 - Example: 4-bar mechanism, J = 4 and $DOF = 1 \rightarrow only one joint is actuated and three are passive.$
 - Example: 3-RPS manipulator, J = 9 and $DOF = 3 \rightarrow 6$ joints are passive.
- Passive joints can be multi- degree-of-freedom joints.
 - In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are passive.
 - In a Stewart platform, the S and U joints are passive.
- Configuration space $\mathbf{q} = (\theta, \phi)$
 - θ are actuated joints & $\theta \in \mathfrak{R}^n$ (n = DOF)
 - ϕ is the set of passive joints & $\phi \in \Re^m$
- All passive joints $\notin \phi \Rightarrow (n+m) \leq J$

DEGREES OF FREEDOM (CONTD.)

- DOF the number of independent actuators.
- In parallel manipulators, $J > DOF \rightarrow J DOF$ joints are *passive*.
 - Example: 4-bar mechanism, J = 4 and $DOF = 1 \rightarrow only one joint is actuated and three are passive.$
 - Example: 3-RPS manipulator, J = 9 and $DOF = 3 \rightarrow 6$ joints are passive.
- Passive joints can be multi- degree-of-freedom joints.
 - In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are passive.
 - In a Stewart platform, the S and U joints are passive.
- Configuration space $\mathbf{q} = (\theta, \phi)$
 - θ are actuated joints & $\theta \in \mathfrak{R}^n$ (n = DOF)
 - ϕ is the set of passive joints & $\phi \in \Re^m$
- All passive joints $\notin \phi \Rightarrow (n+m) \leq J$

イロト イポト イヨト イヨト

DEGREES OF FREEDOM (CONTD.)

- DOF the number of independent actuators.
- In parallel manipulators, $J > DOF \rightarrow J DOF$ joints are *passive*.
 - Example: 4-bar mechanism, J = 4 and $DOF = 1 \rightarrow only one joint is actuated and three are passive.$
 - Example: 3-RPS manipulator, J = 9 and $DOF = 3 \rightarrow 6$ joints are passive.
- Passive joints can be multi- degree-of-freedom joints.
 - In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are passive.
 - In a Stewart platform, the S and U joints are passive.
- Configuration space $\mathbf{q} = (\mathbf{ heta}, \phi)$
 - heta are actuated joints & $heta \in \mathfrak{R}^n$ (n = DOF)
 - ϕ is the set of passive joints & $\phi\in\Re^m$
- All passive joints $\notin \phi \Rightarrow (n+m) \leq J$

- 4 同 5 - 4 目 5 - 4 目 5

DEGREES OF FREEDOM (CONTD.)

- DOF the number of independent actuators.
- In parallel manipulators, $J > DOF \rightarrow J DOF$ joints are *passive*.
 - Example: 4-bar mechanism, J = 4 and $DOF = 1 \rightarrow only one joint is actuated and three are passive.$
 - Example: 3-RPS manipulator, J = 9 and $DOF = 3 \rightarrow 6$ joints are passive.
- Passive joints can be multi- degree-of-freedom joints.
 - In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are passive.
 - In a Stewart platform, the S and U joints are passive.
- Configuration space $\mathbf{q} = (\mathbf{ heta}, \phi)$
 - heta are actuated joints & $heta \in \mathfrak{R}^n$ (n = DOF)
 - ϕ is the set of passive joints & $\phi \in \Re^m$
- All passive joints $\notin \phi \Rightarrow (n+m) \leq J$

- 4 回 ト - 4 回 ト

OUTLINE

D CONTENTS

LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 Lecture 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators
- 6 LECTURE 5
 - Direct Kinematics of Stewart Platform Manipulators
- 7 Additional Material Module 4
 - Problems, References and Suggested Reading

- *m* passive joint variables → *m* independent equations required to solve for φ for given *n* actuated variable, θ_i, i = 1, 2, ..., n.
- General approach to derive *m* loop-closure constraint equations.
 - () 'Break' parallel manipulator into 2 or more serial manipulators
 - Determine D-H parameters for serial chains and obtain position and orientation of the 'Break' for each chain
 - Use joint constraint (see <u>Module 2</u>, Lecture 2) at the 'Break(s)' to re-join (close) the parallel manipulator.
- Trick is to 'break' such that
 - The number of passive variables *m* is least, and
 - Minimum number of constraint equations, η_i(q) = 0, i = 1,..., m are used.

- *m* passive joint variables → *m* independent equations required to solve for φ for given *n* actuated variable, θ_i, i = 1,2,...,n.
- General approach to derive *m* loop-closure constraint equations.
 - Break' parallel manipulator into 2 or more serial manipulators
 - Determine D-H parameters for serial chains and obtain position and orientation of the 'Break' for each chain
 - Use joint constraint (see <u>Module 2</u>, Lecture 2) at the 'Break(s)' to re-join (close) the parallel manipulator.
- Trick is to 'break' such that
 - The number of passive variables *m* is least, and
 - Minimum number of constraint equations, η_i(q) = 0, i = 1, ..., m are used.

- *m* passive joint variables → *m* independent equations required to solve for φ for given *n* actuated variable, θ_i, i = 1,2,...,n.
- General approach to derive *m* loop-closure constraint equations.
 - Break' parallel manipulator into 2 or more serial manipulators
 - Determine D-H parameters for serial chains and obtain position and orientation of the 'Break' for each chain
 - Use joint constraint (see <u>Module 2</u>, Lecture 2) at the 'Break(s)' to re-join (close) the parallel manipulator.
- Trick is to 'break' such that
 - The number of passive variables *m* is least, and
 - Minimum number of constraint equations, η_i(q) = 0, i = 1, ..., m are used.

NPTEL, 2010 10 / 71

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

- One loop fixed frames {L} and {R}, {R} is translated by l₀ along the X – axis.
- {1}, {2}, {3}, and {*Tool*} are as shown. Note only X shown for convenience.
- The sequence O_L-O₁-O₂-O₃-O_{Tool} can be thought of as a planar 3R manipulator

Figure 2: The four-bar mechanism

NPTEL, 2010 11 / 71

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

• D-H parameters of the planar 3R manipulator are

i	$lpha_{i-1}$	a_{i-1}	di	θ_i
1	0	0	0	θ_1
2	0	/ ₁	0	ϕ_2
3	0	l_2	0	<i>ф</i> 3

- From D-H table find ${}_{3}^{0}[T]$ (See Lecture 2, Module 2)
- For planar 3R and tool of length I_3 , find $\frac{3}{Tool}[T]$.
- $R^{Tool}[T]$ is given

$${}^{Tool}_{R}[T] = \left(\begin{array}{ccc} -\cos\phi_1 & -\sin\phi_1 & 0 & 0\\ \sin\phi_1 & -\cos\phi_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array} \right)$$

• The loop-closure equations for the four-bar mechanism is

 ${}^{L}_{1}[T]{}^{1}_{2}[T]{}^{2}_{3}[T]{}^{3}_{Tool}[T]{}^{Tool}_{R}[T] = {}^{L}_{R}[T]$

 $\bullet~{\sf Planar}~{\sf loop}$ $\rightarrow~{\sf only}$ 3 independent equations

$$l_{1} \cos \theta_{1} + l_{2} \cos(\theta_{1} + \phi_{2}) + l_{3} \cos(\theta_{1} + \phi_{2} + \phi_{3}) = l_{0}$$

$$l_{1} \sin \theta_{1} + l_{2} \sin(\theta_{1} + \phi_{2}) + l_{3} \sin(\theta_{1} + \phi_{2} + \phi_{3}) = 0$$

$$\theta_{1} + \phi_{2} + \phi_{3} + (\pi - \phi_{1}) = 4\pi$$

• Loop-closure equations: *all* four joint variables present.

- $\mathbf{q} = (\theta_1, \phi_1, \phi_2, \phi_3)$
- The actuated joint $\theta = \theta_1$
- The passive joints $\phi = (\phi_1, \phi_2, \phi_3)$.
- In this approach n = 1, m = 3 and J = 4.

• The loop-closure equations for the four-bar mechanism is

 ${}^{L}_{1}[T]{}^{1}_{2}[T]{}^{2}_{3}[T]{}^{3}_{Tool}[T]{}^{Tool}_{R}[T] = {}^{L}_{R}[T]$

 $\bullet~\mbox{Planar}$ loop $\rightarrow~\mbox{only 3}$ independent equations

$$l_{1}\cos\theta_{1} + l_{2}\cos(\theta_{1} + \phi_{2}) + l_{3}\cos(\theta_{1} + \phi_{2} + \phi_{3}) = l_{0}$$

$$l_{1}\sin\theta_{1} + l_{2}\sin(\theta_{1} + \phi_{2}) + l_{3}\sin(\theta_{1} + \phi_{2} + \phi_{3}) = 0$$

$$\theta_{1} + \phi_{2} + \phi_{3} + (\pi - \phi_{1}) = 4\pi$$
(2)

• Loop-closure equations: all four joint variables present.

- $\mathbf{q} = (\theta_1, \phi_1, \phi_2, \phi_3)$
- The actuated joint $\theta = \theta_1$
- The passive joints $\phi = (\phi_1, \phi_2, \phi_3)$.
- In this approach n = 1, m = 3 and J = 4.

• The loop-closure equations for the four-bar mechanism is

 ${}^{L}_{1}[T]{}^{1}_{2}[T]{}^{2}_{3}[T]{}^{3}_{Tool}[T]{}^{Tool}_{R}[T] = {}^{L}_{R}[T]$

• Planar loop \rightarrow only 3 independent equations

$$l_{1}\cos\theta_{1} + l_{2}\cos(\theta_{1} + \phi_{2}) + l_{3}\cos(\theta_{1} + \phi_{2} + \phi_{3}) = l_{0}$$

$$l_{1}\sin\theta_{1} + l_{2}\sin(\theta_{1} + \phi_{2}) + l_{3}\sin(\theta_{1} + \phi_{2} + \phi_{3}) = 0$$

$$\theta_{1} + \phi_{2} + \phi_{3} + (\pi - \phi_{1}) = 4\pi$$
(2)

- Loop-closure equations: *all* four joint variables present.
 - $\mathbf{q} = (\theta_1, \phi_1, \phi_2, \phi_3)$
 - The actuated joint $heta= heta_1$
 - The passive joints $\phi = (\phi_1, \phi_2, \phi_3)$.

• In this approach n = 1, m = 3 and J = 4.

• The loop-closure equations for the four-bar mechanism is

 ${}^{L}_{1}[T]{}^{1}_{2}[T]{}^{2}_{3}[T]{}^{3}_{Tool}[T]{}^{Tool}_{R}[T] = {}^{L}_{R}[T]$

• Planar loop \rightarrow only 3 independent equations

$$l_{1}\cos\theta_{1} + l_{2}\cos(\theta_{1} + \phi_{2}) + l_{3}\cos(\theta_{1} + \phi_{2} + \phi_{3}) = l_{0}$$

$$l_{1}\sin\theta_{1} + l_{2}\sin(\theta_{1} + \phi_{2}) + l_{3}\sin(\theta_{1} + \phi_{2} + \phi_{3}) = 0$$

$$\theta_{1} + \phi_{2} + \phi_{3} + (\pi - \phi_{1}) = 4\pi$$
(2)

- Loop-closure equations: all four joint variables present.
 - $\mathbf{q} = (\theta_1, \phi_1, \phi_2, \phi_3)$
 - The actuated joint $heta= heta_1$
 - The passive joints $\phi = (\phi_1, \phi_2, \phi_3)$.
- In this approach n = 1, m = 3 and J = 4.

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

- Difficulties in multiplying 4×4 matrices and obtaining constraint equations:
 - Presence of multi- degree-of-freedom spherical (S) and Hooke (U) joints in a loop.
 - ② Obtaining *independent* loops in the presence of several loops.
- Represent multi- degree-of-freedom joint by two or more onedegree-of-freedom joints and obtain an equivalent 4 × 4 transformation matrix.
- Obtaining independent loops not easy in this way!

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

- Difficulties in multiplying 4×4 matrices and obtaining constraint equations:
 - Presence of multi- degree-of-freedom spherical (S) and Hooke (U) joints in a loop.
 - ② Obtaining *independent* loops in the presence of several loops.
- Represent multi- degree-of-freedom joint by two or more one-degree-of-freedom joints and obtain an equivalent 4×4 transformation matrix.
- Obtaining independent loops not easy in this way!

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

- Difficulties in multiplying 4×4 matrices and obtaining constraint equations:
 - Presence of multi- degree-of-freedom spherical (S) and Hooke (U) joints in a loop.
 - ② Obtaining *independent* loops in the presence of several loops.
- Represent multi- degree-of-freedom joint by two or more one-degree-of-freedom joints and obtain an equivalent 4×4 transformation matrix.
- Obtaining independent loops not easy in this way!

CONSTRAINT EQUATIONS - STEWART-GOUGH PLATFORM EXAMPLE

Figure 3: The Stewart-Gough platform

• Each leg is U-P-S chain, $\lambda = 6$, N = 14, J = 18, $\sum_{i=1}^{J} F_i = 36 \rightarrow DOF = 6$.

- 6 P joints actuated \rightarrow 30 passive variables.
- Many loops for example, 5 of the form $B_i P_i P_{i+1} B_{i+1} B_i, i = 1,..,5$ 4 of the form

 $B_i - P_i - P_{i+2} - B_{i+2} - B_i, i = 1, ..., 4$, and 3 of the form

$$B_i - P_i - P_{i+3} - B_{i+3} - B_i, i = 1, 2, 3.$$

 Each of the 12 loops can have (potentially) 6 independent equations
 → Which 30 equations to choose?!

・ロト ・四ト ・ヨト ・ヨト

CONSTRAINT EQUATIONS - STEWART-GOUGH PLATFORM EXAMPLE

- Each leg is U-P-S chain, $\lambda = 6$, N = 14, J = 18, $\sum_{i=1}^{J} F_i = 36 \rightarrow DOF = 6$.
- 6 P joints actuated \rightarrow 30 passive variables.
- Many loops for example, 5 of the form $B_i P_i P_{i+1} B_{i+1} B_i, i = 1,..,5$ 4 of the form

 $B_i - P_i - P_{i+2} - B_{i+2} - B_i, i = 1, ..., 4$, and 3 of the form

 $B_i - P_i - P_{i+3} - B_{i+3} - B_i, i = 1, 2, 3.$

 Each of the 12 loops can have (potentially) 6 independent equations
 → Which 30 equations to choose?!

・ロト ・四ト ・ヨト ・ヨト

CONSTRAINT EQUATIONS - STEWART-GOUGH PLATFORM EXAMPLE

- Each leg is U-P-S chain, $\lambda = 6$, N = 14, J = 18, $\sum_{i=1}^{J} F_i = 36 \rightarrow DOF = 6$.
- 6 P joints actuated \rightarrow 30 passive variables.
- Many loops for example, 5 of the form $B_i P_i P_{i+1} B_{i+1} B_i, i = 1,..,5$ 4 of the form

 $B_i - P_i - P_{i+2} - B_{i+2} - B_i, i = 1, ..., 4$, and 3 of the form

$$B_i - P_i - P_{i+3} - B_{i+3} - B_i$$
, $i = 1, 2, 3$.

 Each of the 12 loops can have (potentially) 6 independent equations
 → Which 30 equations to choose?!

CONSTRAINT EQUATIONS - STEWART-GOUGH PLATFORM EXAMPLE

Figure 3: The Stewart-Gough platform

- Each leg is U-P-S chain, $\lambda = 6$, N = 14, J = 18, $\sum_{i=1}^{J} F_i = 36 \rightarrow DOF = 6$.
- 6 P joints actuated \rightarrow 30 passive variables.
- Many loops for example, 5 of the form $B_i P_i P_{i+1} B_{i+1} B_i, i = 1,..,5$ 4 of the form

$$B_i - P_i - P_{i+2} - B_{i+2} - B_i, i = 1, ..., 4$$
,
and 3 of the form

$$B_i - P_i - P_{i+3} - B_{i+3} - B_i, i = 1, 2, 3.$$

 Each of the 12 loops can have (potentially) 6 independent equations
 → Which 30 equations to choose?!

A B A A B A

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Figure 4: The four-bar mechanism 'broken ' in different ways

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 16 / 71

< ∃⇒

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

- Alternate way 'break' loop at the third joint (see figure 4(a)).
 - One planar 2R manipulator + one planar 1R manipulator.
 - Easy to obtain the D-H tables for both (see Lecture 3, Module 2)
 - Easy to obtain $\frac{L}{1}[T]$, $\frac{1}{2}[T]$ & $\frac{R}{1}[T]$.
 - Using l_2 and l_3 , obtain $\frac{L}{Tool}[T]$ and $\frac{R}{Tool}[T]$.
 - From $\frac{L}{Tool}[T]$ extract vector $^{L}\mathbf{p}$. The X and Y components are

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2)$$

• From $\frac{R}{Tool}[T]$, extract vector $R\mathbf{p}$ to get

$$x = l_3 \cos \phi_1, \quad y = l_3 \sin \phi_1$$

• Use constraint for a rotary (R) joint (see Lecture 2, Module 2)

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2) = l_0 + l_3 \cos \phi_1$$

 $y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2) = l_3 \sin \phi_1$

 I_0 is the distance along the X- axis between $\{L\}$ and $\{R\}$.

 In this case only two constraint equation: q = (θ₁, φ₁, φ₂) - n = 1, m = 2 and J = 3

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 17 / 71

CONSTRAINT EQUATIONS - 4-BAR EXAMPLE REVISITED

- Alternate way 'break' loop at the third joint (see figure 4(a)).
 - One planar 2R manipulator + one planar 1R manipulator.
 - Easy to obtain the D-H tables for both (see Lecture 3, Module 2)
 - Easy to obtain $\frac{L}{1}[T]$, $\frac{1}{2}[T]$ & $\frac{R}{1}[T]$.
 - Using l_2 and l_3 , obtain $\frac{L}{Tool}[T]$ and $\frac{R}{Tool}[T]$.
 - From $\frac{L}{Tool}[T]$ extract vector $^{L}\mathbf{p}$. The X and Y components are

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2)$$

• From $\frac{R}{Tool}[T]$, extract vector $R\mathbf{p}$ to get

$$x = l_3 \cos \phi_1, \quad y = l_3 \sin \phi_1$$

• Use constraint for a rotary (R) joint (see Lecture 2, Module 2)

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2) = l_0 + l_3 \cos \phi_1$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2) = l_3 \sin \phi_1$$
(3)

 I_0 is the distance along the X- axis between $\{L\}$ and $\{R\}$.

 In this case only two constraint equation: q = (θ₁, φ₁, φ₂) - n = 1, m = 2 and J = 3

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 17 / 71

CONSTRAINT EQUATIONS - 4-BAR EXAMPLE REVISITED

- Alternate way 'break' loop at the third joint (see figure 4(a)).
 - One planar 2R manipulator + one planar 1R manipulator.
 - Easy to obtain the D-H tables for both (see Lecture 3, Module 2)
 - Easy to obtain $\frac{L}{1}[T]$, $\frac{1}{2}[T]$ & $\frac{R}{1}[T]$.
 - Using l_2 and l_3 , obtain $\frac{L}{Tool}[T]$ and $\frac{R}{Tool}[T]$.
 - From $\frac{L}{Tool}[T]$ extract vector $^{L}\mathbf{p}$. The X and Y components are

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2)$$

• From $\frac{R}{Tool}[T]$, extract vector $R\mathbf{p}$ to get

$$x = l_3 \cos \phi_1, \quad y = l_3 \sin \phi_1$$

• Use constraint for a rotary (R) joint (see Lecture 2, Module 2)

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \phi_2) = l_0 + l_3 \cos \phi_1$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \phi_2) = l_3 \sin \phi_1$$
(3)

*l*₀ is the distance along the X- axis between {L} and {R}.
In this case only two constraint equation: **q** = (θ₁, φ₁, φ₂) - n = 1, m = 2 and J = 3

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 17 / 71

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

- Another way to 'break' loop is to break the second link (see figure 4(b)).
- Two planar 2R manipulators
- Obtain the X and Y components of ^Lp as

 $x = l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2)$

• Likewise X and Y components of $^{R}\mathbf{p}$ are

 $x = l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3), \quad y = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$

where $l_2 = a + b$ and the angle ϕ_3 is as shown in figure 4(b). • Impose the constraint that the broken link is actually rigid

$$\begin{aligned} x &= l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2) &= l_0 + l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3) \\ y &= l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2) &= l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3) \\ \theta_1 + \phi_2 &= \phi_1 + \phi_3 + \pi \end{aligned}$$

CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

- Another way to 'break' loop is to break the second link (see figure 4(b)).
- Two planar 2R manipulators
- Obtain the X and Y components of ^Lp as

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Likewise X and Y components of $^{R}\mathbf{p}$ are

 $x = l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3), \quad y = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$

where $l_2 = a + b$ and the angle ϕ_3 is as shown in figure 4(b). • Impose the constraint that the broken link is actually rigid

$$\begin{aligned} x &= l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2) &= l_0 + l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3) \\ y &= l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2) &= l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3) \\ \theta_1 + \phi_2 &= \phi_1 + \phi_3 + \pi \end{aligned}$$

CONSTRAINT EQUATIONS-4-BAR EXAMPLE REVISITED

- Another way to 'break' loop is to break the second link (see figure 4(b)).
- Two planar 2R manipulators
- Obtain the X and Y components of $^{L}\mathbf{p}$ as

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Likewise X and Y components of $^{R}\mathbf{p}$ are

 $x = l_3 \cos \phi_1 + b \cos(\phi_1 + \phi_3), \quad y = l_3 \sin \phi_1 + b \sin(\phi_1 + \phi_3)$

where $l_2 = a + b$ and the angle ϕ_3 is as shown in figure 4(b). • Impose the constraint that the broken link is actually rigid

$$x = l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2) = l_0 + l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3)$$

$$y = l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2) = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$$

$$\theta_1 + \phi_2 = \phi_2 + \phi_2 + \pi$$

CONSTRAINT EQUATIONS-4-BAR EXAMPLE REVISITED

- Another way to 'break' loop is to break the second link (see figure 4(b)).
- Two planar 2R manipulators
- Obtain the X and Y components of $^{L}\mathbf{p}$ as

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Likewise X and Y components of $^{R}\mathbf{p}$ are

$$x = l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3), \quad y = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$$

where $l_2 = a + b$ and the angle ϕ_3 is as shown in figure 4(b). • Impose the constraint that the broken link is actually rigid

$$\begin{aligned} x &= l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2) &= l_0 + l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3) \\ y &= l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2) &= l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3) \\ \theta_1 + \phi_2 &= \phi_1 + \phi_3 + \pi \end{aligned}$$

CONSTRAINT EQUATIONS-4-BAR EXAMPLE REVISITED

- Another way to 'break' loop is to break the second link (see figure 4(b)).
- Two planar 2R manipulators
- Obtain the X and Y components of $^{L}\mathbf{p}$ as

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Likewise X and Y components of $^{R}\mathbf{p}$ are

$$x = l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3), \quad y = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$$

where $l_2 = a + b$ and the angle ϕ_3 is as shown in figure 4(b). • Impose the constraint that the broken link is actually rigid

$$x = l_1 \cos \theta_1 + a \, \cos(\theta_1 + \phi_2) = l_0 + l_3 \cos \phi_1 + b \, \cos(\phi_1 + \phi_3)$$

$$y = l_1 \sin \theta_1 + a \, \sin(\theta_1 + \phi_2) = l_3 \sin \phi_1 + b \, \sin(\phi_1 + \phi_3)$$

$$\theta_1 + \phi_2 = \phi_1 + \phi_3 + \pi$$
(4)

LOOP-CLOSURE CONSTRAINT EQUATIONS CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Yet another way to 'break' loop is shown in figure 4(c).
Obtain ^Lp and ^Rp as

$${}^{L}\mathbf{p} = (l_1 \cos \theta_1, l_1 \sin \theta_1)^T, \quad {}^{R}\mathbf{p} = (l_3 \cos \phi_1, l_3 \sin \phi_1)^T$$

• Enforce the constraint of constant length l_2 to obtain

$$\eta_1(\theta_1, \phi_1) = (l_1 \cos \theta_1 - l_0 - l_3 \cos \phi_1)^2 + (l_1 \sin \theta_1 - l_3 \sin \phi_1)^2 - l_2^2 = 0$$
(5)

This constraint is analogue of S - S pair constraint (see Lecture 2, Module 2) for planar R - R pair.

• Only one constraint equation¹ – $\mathbf{q} = (\theta_1, \phi_1)$, n = m = 1 & J = 4.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 19 / 71

¹In the four-bar kinematics this is the well known *Freudenstein's equation* (see Freudenstein 1954).

LOOP-CLOSURE CONSTRAINT EQUATIONS CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Yet another way to 'break' loop is shown in figure 4(c).
Obtain ^Lp and ^Rp as

$$^{L}\mathbf{p} = (l_{1}\cos\theta_{1}, l_{1}\sin\theta_{1})^{T}, \quad ^{R}\mathbf{p} = (l_{3}\cos\phi_{1}, l_{3}\sin\phi_{1})^{T}$$

• Enforce the constraint of constant length I_2 to obtain

 $\eta_1(\theta_1, \phi_1) = (l_1 \cos \theta_1 - l_0 - l_3 \cos \phi_1)^2 + (l_1 \sin \theta_1 - l_3 \sin \phi_1)^2 - l_2^2 = 0$

This constraint is analogue of S - S pair constraint (see Lecture 2, Module 2) for planar R - R pair.

• Only one constraint equation¹ – $\mathbf{q} = (\theta_1, \phi_1)$, n = m = 1 & J = 4.

¹In the four-bar kinematics this is the well known *Freudenstein's equation* (see Freudenstein 1954).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 19/71

LOOP-CLOSURE CONSTRAINT EQUATIONS CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

- $\bullet\,$ Yet another way to 'break' loop is shown in figure 4(c).
- Obtain ^L**p** and ^R**p** as

$$^{L}\mathbf{p} = (l_{1}\cos\theta_{1}, l_{1}\sin\theta_{1})^{T}, \quad ^{R}\mathbf{p} = (l_{3}\cos\phi_{1}, l_{3}\sin\phi_{1})^{T}$$

• Enforce the constraint of constant length l_2 to obtain

$$\eta_1(\theta_1, \phi_1) = (l_1 \cos \theta_1 - l_0 - l_3 \cos \phi_1)^2 + (l_1 \sin \theta_1 - l_3 \sin \phi_1)^2 - l_2^2 = 0$$
(5)

This constraint is analogue of S - S pair constraint (see Lecture 2, <u>Module 2</u>) for planar R - R pair.

• Only one constraint equation¹ – $\mathbf{q} = (\theta_1, \phi_1)$, n = m = 1 & J = 4.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 19 / 71

¹In the four-bar kinematics this is the well known *Freudenstein's equation* (see Freudenstein 1954).

LOOP-CLOSURE CONSTRAINT EQUATIONS CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

- $\bullet\,$ Yet another way to 'break' loop is shown in figure 4(c).
- Obtain ^L**p** and ^R**p** as

$$^{L}\mathbf{p} = (l_{1}\cos\theta_{1}, l_{1}\sin\theta_{1})^{T}, \quad ^{R}\mathbf{p} = (l_{3}\cos\phi_{1}, l_{3}\sin\phi_{1})^{T}$$

• Enforce the constraint of constant length l_2 to obtain

$$\eta_1(\theta_1, \phi_1) = (l_1 \cos \theta_1 - l_0 - l_3 \cos \phi_1)^2 + (l_1 \sin \theta_1 - l_3 \sin \phi_1)^2 - l_2^2 = 0$$
(5)

This constraint is analogue of S - S pair constraint (see Lecture 2, <u>Module 2</u>) for planar R - R pair.

• Only one constraint equation¹ – $\mathbf{q} = (\theta_1, \phi_1)$, n = m = 1 & J = 4.

NPTEL, 2010 19 / 71

¹In the four-bar kinematics this is the well known *Freudenstein's equation* (see Freudenstein 1954).

Two Problems in Kinematics of Parallel Manipulators

- Direct Kinematics Problem: Two-part problem statement
 - **Step 1**: Given the geometry of the manipulator and the *actuated* joint variables, obtain *passive* joint variables.
 - Step 2: Obtain position and orientation of a *chosen* output link.
- *Much harder* than the direct kinematics problem for a serial manipulator.
- Leads to the notion of *mobility* and *assemble-ability* of a parallel manipulator or a closed-loop mechanism.
- Inverse Kinematics Problem:

Given the geometry of the manipulator and the position and orientation of the *chosen* end-effector or output link, obtain the actuated *and* passive joint variables.

- Simpler than the direct kinematics problem.
- Generally simpler than inverse kinematics of serial manipulators.
- Often *done in parallel* one of the origins for the term "parallel" in parallel manipulators.

Two Problems in Kinematics of Parallel Manipulators

- Direct Kinematics Problem: Two-part problem statement
 - **Step 1**: Given the geometry of the manipulator and the *actuated* joint variables, obtain *passive* joint variables.
 - Step 2: Obtain position and orientation of a *chosen* output link.
- *Much harder* than the direct kinematics problem for a serial manipulator.
- Leads to the notion of *mobility* and *assemble-ability* of a parallel manipulator or a closed-loop mechanism.

• Inverse Kinematics Problem: Given the geometry of the manipulator and the position and orientation of the *chosen* end-effector or output link, obtain the actuated *and* passive joint variables.

- Simpler than the direct kinematics problem.
- Generally simpler than inverse kinematics of serial manipulators.
- Often *done in parallel* one of the origins for the term "parallel" in parallel manipulators.

TWO PROBLEMS IN KINEMATICS OF PARALLEL MANIPULATORS

- Direct Kinematics Problem: Two-part problem statement
 - **Step 1**: Given the geometry of the manipulator and the *actuated* joint variables, obtain *passive* joint variables.
 - Step 2: Obtain position and orientation of a *chosen* output link.
- *Much harder* than the direct kinematics problem for a serial manipulator.
- Leads to the notion of *mobility* and *assemble-ability* of a parallel manipulator or a closed-loop mechanism.

• Inverse Kinematics Problem:

Given the geometry of the manipulator and the position and orientation of the *chosen* end-effector or output link, obtain the actuated *and* passive joint variables.

- Simpler than the direct kinematics problem.
- Generally simpler than inverse kinematics of serial manipulators.
- Often *done in parallel* one of the origins for the term "parallel" in parallel manipulators.

OUTLINE

CONTENTS

2 LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators
- 6 Lecture 5
 - Direct Kinematics of Stewart Platform Manipulators
- 7 Additional Material Module 4
 - Problems, References and Suggested Reading

- The link dimensions and other geometrical parameters are known.
- The values of the *n* actuated joints are known.
- First obtain *m passive* joint variables.
 - Obtain (minimal) *m* loop-closure constraint equations in *m* passive and *n* active joint variables.
 - Use elimination theory/Sylvester's dialytic method/Bézout's method (see <u>Module 3</u>, Lecture 4)
 - Solve set of *m* non-linear equations, if possible, in closed-form for the passive joint variables ϕ_i , i = 1, ..., m
- Obtain position and orientation of *chosen output* link from known θ and ϕ Recall no natural end-effector and hence have to be chosen!
- No general method as compared to the direct kinematics of serial manipulator approach illustrated with three examples.

▲ □ ► ▲ □ ► ▲

- The link dimensions and other geometrical parameters are known.
- The values of the *n* actuated joints are known.
- First obtain *m passive* joint variables.
 - Obtain (minimal) *m* loop-closure constraint equations in *m* passive and *n* active joint variables.
 - Use elimination theory/Sylvester's dialytic method/Bézout's method (see <u>Module 3</u>, Lecture 4)
 - Solve set of *m* non-linear equations, if possible, in closed-form for the passive joint variables ϕ_i , i = 1, ..., m
- Obtain position and orientation of *chosen output* link from known θ and ϕ Recall no natural end-effector and hence have to be chosen!
- No general method as compared to the direct kinematics of serial manipulator approach illustrated with three examples.

▲ □ ► ▲ □ ► ▲

100

- The link dimensions and other geometrical parameters are known.
- The values of the *n* actuated joints are known.
- First obtain *m passive* joint variables.
 - Obtain (minimal) *m* loop-closure constraint equations in *m* passive and *n* active joint variables.
 - Use elimination theory/Sylvester's dialytic method/Bézout's method (see <u>Module 3</u>, Lecture 4)
 - Solve set of *m* non-linear equations, if possible, in closed-form for the passive joint variables ϕ_i , i = 1, ..., m
- Obtain position and orientation of *chosen output* link from known θ and ϕ Recall no natural end-effector and hence have to be chosen!
- No general method as compared to the direct kinematics of serial manipulator approach illustrated with three examples.

• • = • • = •

- The link dimensions and other geometrical parameters are known.
- The values of the *n* actuated joints are known.
- First obtain *m passive* joint variables.
 - Obtain (minimal) *m* loop-closure constraint equations in *m* passive and *n* active joint variables.
 - Use elimination theory/Sylvester's dialytic method/Bézout's method (see <u>Module 3</u>, Lecture 4)
 - Solve set of *m* non-linear equations, if possible, in closed-form for the passive joint variables ϕ_i , i = 1, ..., m
- Obtain position and orientation of *chosen output* link from known θ and ϕ Recall no natural end-effector and hence have to be chosen!
- No general method as compared to the direct kinematics of serial manipulator approach illustrated with three examples.

• • = • • = •

- The link dimensions and other geometrical parameters are known.
- The values of the *n* actuated joints are known.
- First obtain *m passive* joint variables.
 - Obtain (minimal) *m* loop-closure constraint equations in *m* passive and *n* active joint variables.
 - Use elimination theory/Sylvester's dialytic method/Bézout's method (see <u>Module 3</u>, Lecture 4)
 - Solve set of *m* non-linear equations, if possible, in closed-form for the passive joint variables ϕ_i , i = 1, ..., m
- Obtain position and orientation of *chosen output* link from known θ and ϕ Recall no natural end-effector and hence have to be chosen!
- No general method as compared to the direct kinematics of serial manipulator approach illustrated with three examples.

$\hat{\mathbf{X}}_1$

- manipulators!!
- Simple loop-closure equations \rightarrow All steps can be done manually!

Link 3 Link 1 $\{L\}$

DIRECT KINEMATICS OF PARALLEL MANIPULATORS PLANAR 4-BAR MECHANISM

- Simplest possible closed-loop mechanism and studied extensively (see, for example Uicker et al., 2003).
- A good example to illustrate all steps in kinematics of parallel

Link 2

 $\hat{\mathbf{X}}_{2}$

Figure 5: The four-bar mechanism - revisited

PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

• From loop-closure equations (4) (see figure 4(b)),

$$x - l_0 = l_3 \cos \phi_1 - b \cos(\theta_1 + \phi_2), \quad y = l_3 \sin \phi_1 - b \sin(\theta_1 + \phi_2)$$

• Denote $\delta = heta_1 + \phi_2$, squaring and adding

$$A_1\cos\delta + B_1\sin\delta + C_1 = 0 \tag{6}$$

where $A_1 = x - l_0$, $B_1 = y$, $C_1 = (1/2b)[(x - l_0)^2 + y^2 + b^2 - l_3^2]$ • From the first part of two equation (4)

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Squaring, adding, and after simplification gives

$$A_2\cos\delta + B_2\sin\delta + C_2 = 0 \tag{7}$$

where $A_2 = x$, $B_2 = y$, $C_2 = (1/2a)[l_1^2 - a^2 - x^2 - y^2]$

PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

• From loop-closure equations (4) (see figure 4(b)),

$$x - l_0 = l_3 \cos \phi_1 - b \cos(\theta_1 + \phi_2), \quad y = l_3 \sin \phi_1 - b \sin(\theta_1 + \phi_2)$$

• Denote $\delta = heta_1 + \phi_2$, squaring and adding

$$A_1\cos\delta + B_1\sin\delta + C_1 = 0 \tag{6}$$

where $A_1 = x - l_0$, $B_1 = y$, $C_1 = (1/2b)[(x - l_0)^2 + y^2 + b^2 - l_3^2]$ • From the first part of two equation (4)

 $x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$

• Squaring, adding, and after simplification gives

$$A_2\cos\delta + B_2\sin\delta + C_2 = 0 \tag{7}$$

where $A_2 = x$, $B_2 = y$, $C_2 = (1/2a)[l_1^2 - a^2 - x^2 - y^2]$

PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

• From loop-closure equations (4) (see figure 4(b)),

$$x - l_0 = l_3 \cos \phi_1 - b \cos(\theta_1 + \phi_2), \quad y = l_3 \sin \phi_1 - b \sin(\theta_1 + \phi_2)$$

• Denote $\delta = heta_1 + \phi_2$, squaring and adding

$$A_1\cos\delta + B_1\sin\delta + C_1 = 0 \tag{6}$$

where $A_1 = x - l_0$, $B_1 = y$, $C_1 = (1/2b)[(x - l_0)^2 + y^2 + b^2 - l_3^2]$ • From the first part of two equation (4)

$$x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$$

• Squaring, adding, and after simplification gives

$$A_2\cos\delta + B_2\sin\delta + C_2 = 0 \tag{7}$$

where $A_2 = x$, $B_2 = y$, $C_2 = (1/2a)[l_1^2 - a^2 - x^2 - y^2]$

DIRECT KINEMATICS OF PARALLEL MANIPULATORS

PLANAR 4-BAR MECHANISM – ELIMINATION

- Convert equations (6) and (7) to a pair of quadratics by using the tangent half-angle substitutions (see <u>Module 3</u>, Lecture 4)
- Following Sylvester's dialytic elimination method (see Module 3, Lecture 4), det[*SM*] = 0 gives

$$(A_1B_2 - A_2B_1)^2 = (A_1C_2 - A_2C_1)^2 + (B_1C_2 - B_2C_1)^2$$

and $\delta = -2\tan^{-1}(\frac{A_1C_2 - A_2C_1}{(B_1C_2 - B_2C_1) + (A_1B_2 - A_2B_1)}).$

• det[SM] = 0, after some simplification, gives

$$4a^{2}b^{2}l_{0}^{2}y^{2} = [b(x-l_{0})(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - ax\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2} + y^{2}[b(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - a\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2}$$
(8)

Equation (8) is known as the coupler curve² – a sixth-degree curve.

²The coupler curve is extensively studied in kinematics of mechanisms. For a more general form of the coupler curve and its interesting properties, see Chapter 6 of Hartenberg and Denavit (1964).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 25 / 71

DIRECT KINEMATICS OF PARALLEL MANIPULATORS

PLANAR 4-BAR MECHANISM – ELIMINATION

- Convert equations (6) and (7) to a pair of quadratics by using the tangent half-angle substitutions (see <u>Module 3</u>, Lecture 4)
- Following Sylvester's dialytic elimination method (see Module 3, Lecture 4), det[SM] = 0 gives

$$(A_1B_2 - A_2B_1)^2 = (A_1C_2 - A_2C_1)^2 + (B_1C_2 - B_2C_1)^2$$

and
$$\delta = -2 \tan^{-1}(\frac{A_1 C_2 - A_2 C_1}{(B_1 C_2 - B_2 C_1) + (A_1 B_2 - A_2 B_1)}).$$

• det[SM] = 0, after some simplification, gives

$$4a^{2}b^{2}l_{0}^{2}y^{2} = [b(x-l_{0})(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - ax\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2} + y^{2}[b(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - a\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2}$$
(8)

Equation (8) is known as the coupler curve² – a sixth-degree curve.

²The coupler curve is extensively studied in kinematics of mechanisms. For a more general form of the coupler curve and its interesting properties, see Chapter 6 of Hartenberg and Denavit (1964).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 25 / 71

DIRECT KINEMATICS OF PARALLEL MANIPULATORS

PLANAR 4-BAR MECHANISM – ELIMINATION

- Convert equations (6) and (7) to a pair of quadratics by using the tangent half-angle substitutions (see <u>Module 3</u>, Lecture 4)
- Following Sylvester's dialytic elimination method (see Module 3, Lecture 4), det[SM] = 0 gives

$$(A_1B_2 - A_2B_1)^2 = (A_1C_2 - A_2C_1)^2 + (B_1C_2 - B_2C_1)^2$$

- and $\delta = -2\tan^{-1}(\frac{A_1C_2 A_2C_1}{(B_1C_2 B_2C_1) + (A_1B_2 A_2B_1)}).$
- det[SM] = 0, after some simplification, gives

$$4a^{2}b^{2}l_{0}^{2}y^{2} = [b(x-l_{0})(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - ax\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2} + y^{2}[b(l_{1}^{2}-a^{2}-x^{2}-y^{2}) - a\{(x-l_{0})^{2}+y^{2}+b^{2}-l_{3}^{2}\}]^{2}$$
(8)

Equation (8) is known as the coupler curve²– a sixth-degree curve. ²The coupler curve is extensively studied in kinematics of mechanisms. For a more general form of the coupler curve and its interesting properties, see Chapter 6 of Hartenberg and Denavit (1964).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 25 / 71

- The elimination procedure gives δ as a function of (x, y) and the link lengths.
- Since θ_1 is given,

$$\phi_2 = \delta - \theta_1 = -2\tan^{-1}(\frac{A_1C_2 - A_2C_1}{(B_1C_2 - B_2C_1) + (A_1B_2 - A_2B_1)}) - \theta_1 \quad (9)$$

• The angle ϕ_1 can be obtained from equation (5).

$$l_0^2 + l_1^2 + l_3^2 - l_2^2 = \cos\phi_1(2l_1l_3\cos\theta_1 - 2l_0l_3) + \sin\phi_1(2l_1l_3)$$
(10)

$$\phi_3 = \theta_1 + \phi_2 - \phi_1 - \pi \tag{11}$$

PLANAR 4-BAR MECHANISM – SOLUTION FOR PASSIVE JOINT VARIABLES

- The elimination procedure gives δ as a function of (x, y) and the link lengths.
- Since θ_1 is given,

$$\phi_2 = \delta - \theta_1 = -2\tan^{-1}(\frac{A_1C_2 - A_2C_1}{(B_1C_2 - B_2C_1) + (A_1B_2 - A_2B_1)}) - \theta_1 \quad (9)$$

• The angle ϕ_1 can be obtained from equation (5).

$$l_0^2 + l_1^2 + l_3^2 - l_2^2 = \cos\phi_1(2l_1l_3\cos\theta_1 - 2l_0l_3) + \sin\phi_1(2l_1l_3)$$
(10)

$$\phi_3 = \theta_1 + \phi_2 - \phi_1 - \pi \tag{11}$$

- The elimination procedure gives δ as a function of (x, y) and the link lengths.
- Since θ_1 is given,

$$\phi_2 = \delta - \theta_1 = -2\tan^{-1}(\frac{A_1C_2 - A_2C_1}{(B_1C_2 - B_2C_1) + (A_1B_2 - A_2B_1)}) - \theta_1 \quad (9)$$

• The angle ϕ_1 can be obtained from equation (5).

$$l_0^2 + l_1^2 + l_3^2 - l_2^2 = \cos\phi_1(2l_1l_3\cos\theta_1 - 2l_0l_3) + \sin\phi_1(2l_1l_3)$$
(10)

$$\phi_3 = \theta_1 + \phi_2 - \phi_1 - \pi \tag{11}$$

PLANAR 4-BAR MECHANISM – SOLUTION FOR PASSIVE JOINT VARIABLES

- The elimination procedure gives δ as a function of (x, y) and the link lengths.
- Since θ_1 is given,

$$\phi_2 = \delta - \theta_1 = -2\tan^{-1}(\frac{A_1C_2 - A_2C_1}{(B_1C_2 - B_2C_1) + (A_1B_2 - A_2B_1)}) - \theta_1 \quad (9)$$

• The angle ϕ_1 can be obtained from equation (5).

$$l_0^2 + l_1^2 + l_3^2 - l_2^2 = \cos\phi_1(2l_1l_3\cos\theta_1 - 2l_0l_3) + \sin\phi_1(2l_1l_3)$$
(10)

$$\phi_3 = \theta_1 + \phi_2 - \phi_1 - \pi \tag{11}$$

PLANAR 4-BAR MECHANISM – NUMERICAL EXAMPLE

- $l_0 = 5.0$, $l_1 = 1.0$, $l_2 = 3.0$, and $l_3 = 4.0$ the input link rotates fully (*Grashof's criteria*)
- Figure 6(a) shows plot of ϕ_1 vs θ_1 both values are plotted.
- From ϕ_1 obtain ϕ_2 and $\phi_3 \rightarrow$ Two coupler curves shown in figure 6(b)

(a) ϕ_1 vs θ_1 for 4-bar mechanism

(b) Coupler curves for 4-bar mechanism

Figure 6: Numerical example for a 4-bar

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 27 / 71

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

Figure 7: The 3-RPS parallel manipulator – revisited

D-H Table for a R-P-S leg (see <u>Module 2</u>, Lecture 2)

i	$lpha_{i-1}$	a_{i-1}	di	θ_i
1	0	0	0	θ_1
2	$-\pi/2$	0	I_1	0

All legs are same. θ_1 , i = 1,2,3 are passive variables. l_i , i = 1,2,3 are actuated variables.

NPTEL, 2010 28 / 71

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Position vectors of three S joints (see <u>Module 2</u>, Lecture 2)

$${}^{Base}\mathbf{S}_{1} = (b - l_{1}\cos\theta_{1}, 0, l_{1}\sin\theta_{1})^{T}$$

$${}^{Base}\mathbf{S}_{2} = (-\frac{b}{2} + \frac{1}{2}l_{2}\cos\theta_{2}, \frac{\sqrt{3}}{2}b - \frac{\sqrt{3}}{2}l_{2}\cos\theta_{2}, l_{2}\sin\theta_{2})^{T}$$

$${}^{Base}\mathbf{S}_{3} = (-\frac{b}{2} + \frac{1}{2}l_{3}\cos\theta_{3}, -\frac{\sqrt{3}}{2}b + \frac{\sqrt{3}}{2}l_{3}\cos\theta_{3}, l_{3}\sin\theta_{3})^{T} (12)$$

Base an equilateral triangle circumscribed by circle of radius b. • Impose S - S pair constraint (see Module 2, Lecture 2)

 $\begin{aligned} \eta_1(l_1, \theta_1, l_2, \theta_2) &= ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) \cdot ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) = k_{12}^2 \\ \eta_2(l_2, \theta_2, l_3, \theta_3) &= ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) \cdot ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) = k_{23}^2 \\ \eta_3(l_3, \theta_3, l_1, \theta_1) &= ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) \cdot ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) = k_{31}^2 (13) \end{aligned}$

Spherical joint variables do not appear – due to S – S pair equations!
Three loop-closure equations in three passive variables – simplest!

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 29 / 71

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Position vectors of three S joints (see Module 2, Lecture 2)

$${}^{Base}\mathbf{S}_{1} = (b - l_{1}\cos\theta_{1}, 0, l_{1}\sin\theta_{1})^{T}$$

$${}^{Base}\mathbf{S}_{2} = (-\frac{b}{2} + \frac{1}{2}l_{2}\cos\theta_{2}, \frac{\sqrt{3}}{2}b - \frac{\sqrt{3}}{2}l_{2}\cos\theta_{2}, l_{2}\sin\theta_{2})^{T}$$

$${}^{Base}\mathbf{S}_{3} = (-\frac{b}{2} + \frac{1}{2}l_{3}\cos\theta_{3}, -\frac{\sqrt{3}}{2}b + \frac{\sqrt{3}}{2}l_{3}\cos\theta_{3}, l_{3}\sin\theta_{3})^{T} (12)$$

Base an equilateral triangle circumscribed by circle of radius b. • Impose S - S pair constraint (see <u>Module 2</u>, Lecture 2)

 $\begin{aligned} &\eta_1(l_1, \theta_1, l_2, \theta_2) &= ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) \cdot ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) = k_{12}^2 \\ &\eta_2(l_2, \theta_2, l_3, \theta_3) &= ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) \cdot ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) = k_{23}^2 \\ &\eta_3(l_3, \theta_3, l_1, \theta_1) &= ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) \cdot ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) = k_{31}^2 (13) \end{aligned}$

Spherical joint variables do not appear – due to S – S pair equations!
 Three loop-closure equations in three passive variables – simplest!

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Position vectors of three S joints (see Module 2, Lecture 2)

$${}^{Base}\mathbf{S}_{1} = (b - l_{1}\cos\theta_{1}, 0, l_{1}\sin\theta_{1})^{T}$$

$${}^{Base}\mathbf{S}_{2} = (-\frac{b}{2} + \frac{1}{2}l_{2}\cos\theta_{2}, \frac{\sqrt{3}}{2}b - \frac{\sqrt{3}}{2}l_{2}\cos\theta_{2}, l_{2}\sin\theta_{2})^{T}$$

$${}^{Base}\mathbf{S}_{3} = (-\frac{b}{2} + \frac{1}{2}l_{3}\cos\theta_{3}, -\frac{\sqrt{3}}{2}b + \frac{\sqrt{3}}{2}l_{3}\cos\theta_{3}, l_{3}\sin\theta_{3})^{T} (12)$$

Base an equilateral triangle circumscribed by circle of radius b. • Impose S - S pair constraint (see Module 2, Lecture 2)

 $\begin{aligned} &\eta_1(l_1, \theta_1, l_2, \theta_2) &= ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) \cdot ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) = k_{12}^2 \\ &\eta_2(l_2, \theta_2, l_3, \theta_3) &= ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) \cdot ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) = k_{23}^2 \\ &\eta_3(l_3, \theta_3, l_1, \theta_1) &= ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) \cdot ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) = k_{31}^2 (13) \end{aligned}$

Spherical joint variables do not appear – due to S – S pair equations!
 Three loop-closure equations in three passive variables – simplest!

ASHITAVA GHOSAL (IISC)

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Position vectors of three S joints (see Module 2, Lecture 2)

$${}^{Base}\mathbf{S}_{1} = (b - l_{1}\cos\theta_{1}, 0, l_{1}\sin\theta_{1})^{T}$$

$${}^{Base}\mathbf{S}_{2} = (-\frac{b}{2} + \frac{1}{2}l_{2}\cos\theta_{2}, \frac{\sqrt{3}}{2}b - \frac{\sqrt{3}}{2}l_{2}\cos\theta_{2}, l_{2}\sin\theta_{2})^{T}$$

$${}^{Base}\mathbf{S}_{3} = (-\frac{b}{2} + \frac{1}{2}l_{3}\cos\theta_{3}, -\frac{\sqrt{3}}{2}b + \frac{\sqrt{3}}{2}l_{3}\cos\theta_{3}, l_{3}\sin\theta_{3})^{T} (12)$$

Base an equilateral triangle circumscribed by circle of radius b. • Impose S - S pair constraint (see Module 2, Lecture 2)

 $\begin{aligned} &\eta_1(l_1, \theta_1, l_2, \theta_2) &= ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) \cdot ({}^{Base} \mathbf{S}_1 - {}^{Base} \mathbf{S}_2) = k_{12}^2 \\ &\eta_2(l_2, \theta_2, l_3, \theta_3) &= ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) \cdot ({}^{Base} \mathbf{S}_2 - {}^{Base} \mathbf{S}_3) = k_{23}^2 \\ &\eta_3(l_3, \theta_3, l_1, \theta_1) &= ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) \cdot ({}^{Base} \mathbf{S}_3 - {}^{Base} \mathbf{S}_1) = k_{31}^2 (13) \end{aligned}$

Spherical joint variables do not appear – due to S – S pair equations!
Three loop-closure equations in three passive variables – simplest!

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION

• Assume
$$b = 1$$
 and $k_{12} = k_{23} = k_{31} = \sqrt{3}a$.

• Eliminate using Sylvester's dialytic method (see <u>Module 3</u>, Lecture 4), θ_1 from $\eta_1(\cdot) = 0$ and $\eta_3(\cdot) = 0$

$$\eta_4(l_1, l_2, l_3, \theta_2, \theta_3) = (A_1 C_2 - A_2 C_1)^2 + (B_1 C_2 - B_2 C_1)^2 - (A_1 B_2 - A_2 B_1)^2 = 0$$

where

$$C_1 = 3 - 3a^2 + l_1^2 + l_2^2 - 3l_2c_2, A_1 = l_1l_2c_2 - 3l_1, B_1 = -2l_1l_2s_2$$

$$C_2 = 3 - 3a^2 + l_1^2 + l_3^2 - 3l_3c_3, A_2 = l_1l_3c_3 - 3l_1, B_2 = -2l_1l_3s_3$$

• Eliminate θ_2 from $\eta_4(\cdot) = 0$ and $\eta_2(\cdot) = 0$, with $x_3 = \tan(\theta_3/2)$.

$$q_8(x_3^2)^8 + q_7(x_3^2)^7 + \dots + q_1(x_3^2) + q_0 = 0$$
(14)

An eight degree polynomial in x_3^2

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION

- Assume b = 1 and $k_{12} = k_{23} = k_{31} = \sqrt{3}a$.
- Eliminate using Sylvester's dialytic method (see Module 3, Lecture 4), θ_1 from $\eta_1(\cdot) = 0$ and $\eta_3(\cdot) = 0$

$$\eta_4(l_1, l_2, l_3, \theta_2, \theta_3) = (A_1C_2 - A_2C_1)^2 + (B_1C_2 - B_2C_1)^2 - (A_1B_2 - A_2B_1)^2 = 0$$

where

$$C_1 = 3 - 3a^2 + l_1^2 + l_2^2 - 3l_2c_2, A_1 = l_1l_2c_2 - 3l_1, B_1 = -2l_1l_2s_2$$

$$C_2 = 3 - 3a^2 + l_1^2 + l_3^2 - 3l_3c_3, A_2 = l_1l_3c_3 - 3l_1, B_2 = -2l_1l_3s_3$$

• Eliminate θ_2 from $\eta_4(\cdot) = 0$ and $\eta_2(\cdot) = 0$, with $x_3 = \tan(\theta_3/2)$.

$$q_8(x_3^2)^8 + q_7(x_3^2)^7 + \dots + q_1(x_3^2) + q_0 = 0$$
(14)

An eight degree polynomial in x_3^2 .

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION

- Assume b = 1 and $k_{12} = k_{23} = k_{31} = \sqrt{3}a$.
- Eliminate using Sylvester's dialytic method (see Module 3, Lecture 4), θ_1 from $\eta_1(\cdot) = 0$ and $\eta_3(\cdot) = 0$

$$\eta_4(l_1, l_2, l_3, \theta_2, \theta_3) = (A_1C_2 - A_2C_1)^2 + (B_1C_2 - B_2C_1)^2 - (A_1B_2 - A_2B_1)^2 = 0$$

where

$$C_1 = 3 - 3a^2 + l_1^2 + l_2^2 - 3l_2c_2, A_1 = l_1l_2c_2 - 3l_1, B_1 = -2l_1l_2s_2$$

$$C_2 = 3 - 3a^2 + l_1^2 + l_3^2 - 3l_3c_3, A_2 = l_1l_3c_3 - 3l_1, B_2 = -2l_1l_3s_3$$

• Eliminate θ_2 from $\eta_4(\cdot) = 0$ and $\eta_2(\cdot) = 0$, with $x_3 = \tan(\theta_3/2)$.

$$q_8(x_3^2)^8 + q_7(x_3^2)^7 + \dots + q_1(x_3^2) + q_0 = 0$$
(14)

An eight degree polynomial in x_3^2 .

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION (CONTD.)

 Expressions for q_i obtained using symbolic algebra software, MAPLER, are very large. Two smaller ones are given

$$q_8 = (p_0a^4 + p_1a^3 + p_2a^2 + p_3a + p_4)^2(p_0a^4 - p_1a^3 + p_2a^2 - p_3a + p_4)^2$$

$$q_0 = (r_0a^4 + r_1a^3 + r_2a^2 + r_3a + r_4)^2(r_0a^4 - r_1a^3 + r_2a^2 - r_3a + r_4)^2$$

where
$$r_0 = p_0 = -9$$
, $r_1 = 12(l_3 - 3)$, $p_1 = 12(l_3 + 3)$,
 $r_2 = 3(l_1^2 + l_2^2 - l_3(l_3 - 10) - 15)$, $p_2 = 3(l_1^2 + l_2^2 - l_3(l_3 + 10) - 15)$,
 $r_3 = -2(l_3 - 3)(l_1^2 + l_2^2 + l_3^2 - 3)$, $p_3 = -2(l_3 + 3)(l_1^2 + l_2^2 + l_3^2 - 3)$,
 $r_4 = l_3^4 - 8l_3^3 + 3l_2^2 + 18l_3^2 - 2l_3(l_2^2 + 6) - l_1^2(l_2^2 + 2l_3 - 3)$, and
 $p_4 = l_3^4 + 8l_3^3 + 3l_2^2 + 18l_3^2 + 2l_3(l_2^2 + 6) + l_1^2(l_2^2 + 2l_3 - 3)$.

- 8 possible values of θ_3 for given a and actuated variables $(l_1, l_2, l_3)^T$.
- Once θ_3 is obtained, θ_2 obtained from $\eta_2(\cdot) = 0$ and θ_1 from $\eta_3(\cdot) = 0$.

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION (CONTD.)

 Expressions for q_i obtained using symbolic algebra software, MAPLER, are very large. Two smaller ones are given

$$q_8 = (p_0a^4 + p_1a^3 + p_2a^2 + p_3a + p_4)^2(p_0a^4 - p_1a^3 + p_2a^2 - p_3a + p_4)^2$$

$$q_0 = (r_0a^4 + r_1a^3 + r_2a^2 + r_3a + r_4)^2(r_0a^4 - r_1a^3 + r_2a^2 - r_3a + r_4)^2$$

where
$$r_0 = p_0 = -9$$
, $r_1 = 12(l_3 - 3)$, $p_1 = 12(l_3 + 3)$,
 $r_2 = 3(l_1^2 + l_2^2 - l_3(l_3 - 10) - 15)$, $p_2 = 3(l_1^2 + l_2^2 - l_3(l_3 + 10) - 15)$,
 $r_3 = -2(l_3 - 3)(l_1^2 + l_2^2 + l_3^2 - 3)$, $p_3 = -2(l_3 + 3)(l_1^2 + l_2^2 + l_3^2 - 3)$,
 $r_4 = l_3^4 - 8l_3^3 + 3l_2^2 + 18l_3^2 - 2l_3(l_2^2 + 6) - l_1^2(l_2^2 + 2l_3 - 3)$, and
 $p_4 = l_3^4 + 8l_3^3 + 3l_2^2 + 18l_3^2 + 2l_3(l_2^2 + 6) + l_1^2(l_2^2 + 2l_3 - 3)$.

- 8 possible values of θ_3 for given a and actuated variables $(l_1, l_2, l_3)^T$.
- Once θ_3 is obtained, θ_2 obtained from $\eta_2(\cdot) = 0$ and θ_1 from $\eta_3(\cdot) = 0$.

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION (CONTD.)

 Expressions for q_i obtained using symbolic algebra software, MAPLER, are very large. Two smaller ones are given

$$q_8 = (p_0a^4 + p_1a^3 + p_2a^2 + p_3a + p_4)^2(p_0a^4 - p_1a^3 + p_2a^2 - p_3a + p_4)^2$$

$$q_0 = (r_0a^4 + r_1a^3 + r_2a^2 + r_3a + r_4)^2(r_0a^4 - r_1a^3 + r_2a^2 - r_3a + r_4)^2$$

where
$$r_0 = p_0 = -9$$
, $r_1 = 12(l_3 - 3)$, $p_1 = 12(l_3 + 3)$,
 $r_2 = 3(l_1^2 + l_2^2 - l_3(l_3 - 10) - 15)$, $p_2 = 3(l_1^2 + l_2^2 - l_3(l_3 + 10) - 15)$,
 $r_3 = -2(l_3 - 3)(l_1^2 + l_2^2 + l_3^2 - 3)$, $p_3 = -2(l_3 + 3)(l_1^2 + l_2^2 + l_3^2 - 3)$,
 $r_4 = l_3^4 - 8l_3^3 + 3l_2^2 + 18l_3^2 - 2l_3(l_2^2 + 6) - l_1^2(l_2^2 + 2l_3 - 3)$, and
 $p_4 = l_3^4 + 8l_3^3 + 3l_2^2 + 18l_3^2 + 2l_3(l_2^2 + 6) + l_1^2(l_2^2 + 2l_3 - 3)$.

- 8 possible values of θ_3 for given a and actuated variables $(l_1, l_2, l_3)^T$.
- Once θ_3 is obtained, θ_2 obtained from $\eta_2(\cdot) = 0$ and θ_1 from $\eta_3(\cdot) = 0$.

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

• A natural output link is the moving platform.

- Position and orientation of the moving platform:
 - Centroid of moving platform,

$$^{Base}\mathbf{p} = \frac{1}{3} (^{Base}\mathbf{S}_1 + ^{Base}\mathbf{S}_2 + ^{Base}\mathbf{S}_3)$$
(15)

• Orientation of moving platform or $\frac{Base}{Top}[R]$ is

where $\hat{\mathbf{Y}}$ is obtained from the cross-product of the third and first columns.

- Once l_i, θ_i i = 1, 2, 3 are known $Base_{Top}[R]$ can be found.
- Key step was the elimination of passive variables and obtaining a single equation in one passive variable!

ASHITAVA GHOSAL (IISC)

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- A natural output link is the moving platform.
- Position and orientation of the moving platform:
 - Centroid of moving platform,

$$^{Base}\mathbf{p} = \frac{1}{3} (^{Base}\mathbf{S}_1 + ^{Base}\mathbf{S}_2 + ^{Base}\mathbf{S}_3)$$
(15)

• Orientation of moving platform or $\frac{Base}{Top}[R]$ is

where $\hat{\mathbf{Y}}$ is obtained from the cross-product of the third and first columns.

- Once l_i, θ_i i = 1, 2, 3 are known $Base_{Top}[R]$ can be found.
- Key step was the elimination of passive variables and obtaining a single equation in one passive variable!

ASHITAVA GHOSAL (IISC)

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- A natural output link is the moving platform.
- Position and orientation of the moving platform:
 - Centroid of moving platform,

$$^{Base}\mathbf{p} = \frac{1}{3} (^{Base}\mathbf{S}_1 + ^{Base}\mathbf{S}_2 + ^{Base}\mathbf{S}_3)$$
(15)

• Orientation of moving platform or $\frac{Base}{Top}[R]$ is

where $\hat{\boldsymbol{Y}}$ is obtained from the cross-product of the third and first columns.

• Once l_i, θ_i i = 1, 2, 3 are known $Base_{Top}[R]$ and $Base_{Top}[R]$ can be found.

• Key step was the elimination of passive variables and obtaining a single equation in one passive variable!

ASHITAVA GHOSAL (IISC)

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- A natural output link is the moving platform.
- Position and orientation of the moving platform:
 - Centroid of moving platform,

$$^{Base}\mathbf{p} = \frac{1}{3} (^{Base}\mathbf{S}_1 + ^{Base}\mathbf{S}_2 + ^{Base}\mathbf{S}_3)$$
(15)

• Orientation of moving platform or $\frac{Base}{Top}[R]$ is

where $\hat{\boldsymbol{Y}}$ is obtained from the cross-product of the third and first columns.

- Once l_i, θ_i i = 1, 2, 3 are known $Base \mathbf{p}$ and Base [R] can be found.
- Key step was the elimination of passive variables and obtaining a single equation in one passive variable!

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL EXAMPLE

- Polynomial in equation (14) is eight degree in $(\tan \theta_3/2)^2$
- Not possible to obtain closed-form expressions for θ_1 , θ_2 , and θ_3 .
- Numerical solution using *Matlab*®
 - For a = 1/2, and for $l_1 = 2/3$, $l_2 = 3/5$ and $l_3 = 3/4$
 - Two sets values $heta_3=\pm 0.8111,\ \pm 0.8028$ radians.
 - For the positive values of θ_3 , $\theta_2 = 0.4809$, 0.2851 radians and $\theta_1 = 0.7471$, 0.7593 radians respectively.
 - For the set (0.7471, 0.4809, 0.8111), ^{Base} $\mathbf{p} = (0.0117, -0.0044, 0.4248)^T$, and
 - The rotation matrix $\frac{Base}{Top}[R]$ is given by

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL EXAMPLE

- Polynomial in equation (14) is eight degree in $(\tan \theta_3/2)^2$
- Not possible to obtain closed-form expressions for θ_1 , θ_2 , and θ_3 .
- Numerical solution using *Matlab*®
 - For a = 1/2, and for $l_1 = 2/3$, $l_2 = 3/5$ and $l_3 = 3/4$
 - Two sets values $heta_3 = \pm 0.8111, \ \pm 0.8028$ radians.
 - For the positive values of θ_3 , $\theta_2 = 0.4809$, 0.2851 radians and $\theta_1 = 0.7471$, 0.7593 radians respectively.
 - For the set (0.7471, 0.4809, 0.8111), ^{Base} $\mathbf{p} = (0.0117, -0.0044, 0.4248)^T$, and
 - The rotation matrix $\frac{Base}{Top}[R]$ is given by

A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL EXAMPLE

- Polynomial in equation (14) is eight degree in $(\tan \theta_3/2)^2$
- Not possible to obtain closed-form expressions for θ_1 , θ_2 , and θ_3 .
- Numerical solution using *Matlab*®
 - For a = 1/2, and for $l_1 = 2/3$, $l_2 = 3/5$ and $l_3 = 3/4$
 - Two sets values $heta_3=\pm 0.8111,\ \pm 0.8028$ radians.
 - For the positive values of θ_3 , $\theta_2 = 0.4809$, 0.2851 radians and $\theta_1 = 0.7471$, 0.7593 radians respectively.
 - For the set (0.7471, 0.4809, 0.8111), ^{Base} $\mathbf{p} = (0.0117, -0.0044, 0.4248)^T$, and
 - The rotation matrix $\frac{Base}{Top}[R]$ is given by

$$B_{Top}^{Base}[R] = \begin{pmatrix} 0.8602 & 0.5069 & -0.0564 \\ -0.4681 & 0.8285 & 0.3074 \\ 0.2026 & -0.2380 & 0.9499 \end{pmatrix}$$

DIRECT KINEMATICS OF PARALLEL MANIPULATORS A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – D-H PARAMETERS

Figure 8: The 3-RRRS parallel manipulator – revisited

• D-H parameters for R-R-R-S chain (see <u>Module 2</u>, Lecture 2)

- D-H parameters for three fingers with respect to {F_i}, i = 1,2,3 identical.
- 6DOF parallel manipulator \rightarrow Only 6 out of 12 θ_i , ψ_i , ϕ_i are actuated.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

$$F_{i}\mathbf{p}_{i} = \begin{pmatrix} \cos\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ \sin\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ l_{i2}\sin\psi_{i} + l_{i3}\sin(\psi_{i} + \phi_{i}) \end{pmatrix}$$

- With respect to {Base}, the locations of { F_i }, i = 1, 2, 3, are known and constant $^{Base}\mathbf{b}_1 = (0, -d, h)^T \ ^{Base}\mathbf{b}_2 = (0, d, h)^T \ ^{Base}\mathbf{b}_3 = (0, 0, 0)^T$
- Orientation of $\{F_i\}$, i = 1, 2, 3, with respect to $\{Base\}$ are also known $\{F_1\}$ and $\{F_2\}$ are parallel to $\{Base\}$ and $\{F_3\}$ is rotated by γ about the $\hat{\Upsilon}$.
- The transformation matrices $\frac{Base}{p_i}[T]$ is $\frac{Base}{F_1}[T]_1^0[T]_2^1[T]_3^2[T]_{p_1}^3[T] last transformation includes <math>l_{13}$.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

$$F_{i}\mathbf{p}_{i} = \begin{pmatrix} \cos\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ \sin\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ l_{i2}\sin\psi_{i} + l_{i3}\sin(\psi_{i} + \phi_{i}) \end{pmatrix}$$

- With respect to {Base}, the locations of { F_i }, i = 1, 2, 3, are known and constant $^{Base}\mathbf{b}_1 = (0, -d, h)^T \ ^{Base}\mathbf{b}_2 = (0, d, h)^T \ ^{Base}\mathbf{b}_3 = (0, 0, 0)^T$
- Orientation of $\{F_i\}$, i = 1, 2, 3, with respect to $\{Base\}$ are also known $\{F_1\}$ and $\{F_2\}$ are parallel to $\{Base\}$ and $\{F_3\}$ is rotated by γ about the $\hat{\Upsilon}$.
- The transformation matrices $\frac{Base}{p_i}[T]$ is $\frac{Base}{F_1}[T]_1^0[T]_2^1[T]_3^2[T]_{p_1}^3[T] last transformation includes <math>l_{13}$.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

$$F_{i}\mathbf{p}_{i} = \begin{pmatrix} \cos\theta_{i}(l_{i1}+l_{i2}\cos\psi_{i}+l_{i3}\cos(\psi_{i}+\phi_{i}))\\ \sin\theta_{i}(l_{i1}+l_{i2}\cos\psi_{i}+l_{i3}\cos(\psi_{i}+\phi_{i}))\\ l_{i2}\sin\psi_{i}+l_{i3}\sin(\psi_{i}+\phi_{i}) \end{pmatrix}$$

- With respect to {*Base*}, the locations of {*F_i*}, *i* = 1,2,3, are known and constant *Baseb* (0, d, b)*T Baseb* (0, d, b)*T Baseb* (0, 0, 0)*T*
 - $^{Base}\mathbf{b}_1 = (0, -d, h)^T \ ^{Base}\mathbf{b}_2 = (0, d, h)^T \ ^{Base}\mathbf{b}_3 = (0, 0, 0)^T$
- Orientation of {F_i}, i = 1,2,3, with respect to {Base} are also known
 {F₁} and {F₂} are parallel to {Base} and {F₃} is rotated by γ about the Ŷ.
- The transformation matrices $\frac{Base}{p_i}[T]$ is $\frac{Base}{F_1}[T]_1^0[T]_2^1[T]_3^2[T]_{p_1}^3[T] last transformation includes <math>l_{13}$.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

$$F_{i}\mathbf{p}_{i} = \begin{pmatrix} \cos\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ \sin\theta_{i}(l_{i1} + l_{i2}\cos\psi_{i} + l_{i3}\cos(\psi_{i} + \phi_{i})) \\ l_{i2}\sin\psi_{i} + l_{i3}\sin(\psi_{i} + \phi_{i}) \end{pmatrix}$$

- With respect to {Base}, the locations of { F_i }, i = 1, 2, 3, are known and constant $^{Base}\mathbf{b}_1 = (0, -d, h)^T \ ^{Base}\mathbf{b}_2 = (0, d, h)^T \ ^{Base}\mathbf{b}_3 = (0, 0, 0)^T$
- Orientation of $\{F_i\}$, i = 1, 2, 3, with respect to $\{Base\}$ are also known $\{F_1\}$ and $\{F_2\}$ are parallel to $\{Base\}$ and $\{F_3\}$ is rotated by γ about the $\hat{\mathbf{Y}}$.
- The transformation matrices $P_{p_i}^{Base}[T]$ is $P_{11}^{Base}[T]_1^0[T]_2^1[T]_3^2[T]_{p_1}^3[T] last transformation includes <math>l_{13}$.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Extract the position vector ^{Base} \mathbf{p}_1 from the last column of ^{Base}_{F1}[T] ^{Base} $\mathbf{p}_1 = {}^{Base} \mathbf{b}_1 + {}^{F_1} \mathbf{p}_1 =$ $\begin{pmatrix} \cos \theta_1 (l_{11} + l_{12} \cos \psi_1 + l_{13} \cos(\psi_1 + \phi_1)) \\ -d + \sin \theta_1 (l_{11} + l_{12} \cos \psi_1 + l_{13} \cos(\psi_1 + \phi_1)) \\ h + l_{12} \sin \psi_1 + l_{13} \sin(\psi_1 + \phi_1) \end{pmatrix}$

• Similarly for second leg

$${}^{Base}\mathbf{p}_2 = \begin{pmatrix} \cos\theta_2(l_{21}+l_{22}\cos\psi_2+l_{23}\cos(\psi_2+\phi_2)) \\ d+\sin\theta_2(l_{21}+l_{22}\cos\psi_2+l_{23}\cos(\psi_2+\phi_2)) \\ h+l_{22}\sin\psi_2+l_{23}\sin(\psi_2+\phi_2) \end{pmatrix}$$

• For third leg

$$,\gamma)] \left(\begin{array}{c} \cos\theta_3(l_{31}+l_{32}\cos\psi_3+l_{33}\cos(\psi_3+\phi_3)) \\ \sin\theta_3(l_{31}+l_{32}\cos\psi_3+l_{33}\cos(\psi_3+\phi_3)) \\ l_{32}\sin\psi_3+l_{33}\sin(\psi_3+\phi_3) \end{array}\right)$$

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Extract the position vector ${}^{Base}\mathbf{p}_1$ from the last column of ${}^{Base}_{F_1}[T]$ ${}^{Base}\mathbf{p}_1 = {}^{Base}\mathbf{b}_1 + {}^{F_1}\mathbf{p}_1 =$ $\begin{pmatrix} \cos\theta_1(l_{11} + l_{12}\cos\psi_1 + l_{13}\cos(\psi_1 + \phi_1)) \\ -d + \sin\theta_1(l_{11} + l_{12}\cos\psi_1 + l_{13}\cos(\psi_1 + \phi_1)) \\ h + l_{12}\sin\psi_1 + l_{13}\sin(\psi_1 + \phi_1) \end{pmatrix}$

• Similarly for second leg

$${}^{Base}\mathbf{p}_2 = \begin{pmatrix} \cos\theta_2(l_{21} + l_{22}\cos\psi_2 + l_{23}\cos(\psi_2 + \phi_2)) \\ d + \sin\theta_2(l_{21} + l_{22}\cos\psi_2 + l_{23}\cos(\psi_2 + \phi_2)) \\ h + l_{22}\sin\psi_2 + l_{23}\sin(\psi_2 + \phi_2) \end{pmatrix}$$

• For third leg

$$p_3 = [R(\hat{\mathbf{Y}}, \gamma)] \begin{pmatrix} \cos\theta_3(l_{31} + l_{32}\cos\psi_3 + l_{33}\cos(\psi_3 + \phi_3)) \\ \sin\theta_3(l_{31} + l_{32}\cos\psi_3 + l_{33}\cos(\psi_3 + \phi_3)) \\ l_{32}\sin\psi_3 + l_{33}\sin(\psi_3 + \phi_3) \end{pmatrix}$$

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Extract the position vector ^{Base} \mathbf{p}_1 from the last column of ^{Base}_{F1}[T] ^{Base} $\mathbf{p}_1 = {}^{Base} \mathbf{b}_1 + {}^{F_1} \mathbf{p}_1 =$ $\begin{pmatrix} \cos \theta_1 (l_{11} + l_{12} \cos \psi_1 + l_{13} \cos(\psi_1 + \phi_1)) \\ -d + \sin \theta_1 (l_{11} + l_{12} \cos \psi_1 + l_{13} \cos(\psi_1 + \phi_1)) \\ h + l_{12} \sin \psi_1 + l_{13} \sin(\psi_1 + \phi_1) \end{pmatrix}$

• Similarly for second leg

$${}^{Base}\mathbf{p}_2 = \begin{pmatrix} \cos\theta_2(l_{21} + l_{22}\cos\psi_2 + l_{23}\cos(\psi_2 + \phi_2)) \\ d + \sin\theta_2(l_{21} + l_{22}\cos\psi_2 + l_{23}\cos(\psi_2 + \phi_2)) \\ h + l_{22}\sin\psi_2 + l_{23}\sin(\psi_2 + \phi_2) \end{pmatrix}$$

• For third leg

$${}^{Base}\mathbf{p}_3 = [R(\hat{\mathbf{Y}}, \gamma)] \left(\begin{array}{c} \cos\theta_3(l_{31} + l_{32}\cos\psi_3 + l_{33}\cos(\psi_3 + \phi_3)) \\ \sin\theta_3(l_{31} + l_{32}\cos\psi_3 + l_{33}\cos(\psi_3 + \phi_3)) \\ l_{32}\sin\psi_3 + l_{33}\sin(\psi_3 + \phi_3) \end{array} \right)$$

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Use S - S pair constraint to get 3 loop-closure equations.

$$\begin{aligned} &\eta_1(\theta_1, \psi_1, \theta_1, \theta_2, \psi_2, \phi_2) = |^{Base} \mathbf{p}_1 - {}^{Base} \mathbf{p}_2|^2 = k_{12}^2 \\ &\eta_2(\theta_2, \psi_2, \theta_2, \theta_3, \psi_3, \phi_3) = |^{Base} \mathbf{p}_2 - {}^{Base} \mathbf{p}_3|^2 = k_{23}^2 \\ &\eta_3(\theta_3, \psi_3, \phi_3, \theta_1, \psi_1, \phi_1) = |^{Base} \mathbf{p}_3 - {}^{Base} \mathbf{p}_1|^2 = k_{31}^2 \end{aligned}$$
(17)

where k_{12} , k_{23} and k_{31} are constants.

- Actuated: $\theta_1, \psi_1, \theta_2, \psi_2, \theta_3$, and ψ_3 & Passive: ϕ_1, ϕ_2 , and ϕ_3 .
- Obtain explicit expressions for the passive variables using elimination.
- Eliminate ϕ_1 from first and third equation $(17) \rightarrow \eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$
- Eliminate ϕ_2 from $\eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$ and second equation (17) \rightarrow Single equation in ϕ_3 .
- Final equation is 16th degree polynomial in $tan(\phi_3/2)$ Obtained using symbolic algebra software *MAPLE*[®].
- Expressions for the coefficients of the polynomial very long! Numerical example shown next.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Use S - S pair constraint to get 3 loop-closure equations.

$$\begin{aligned} &\eta_1(\theta_1, \psi_1, \theta_1, \theta_2, \psi_2, \phi_2) = |^{Base} \mathbf{p}_1 - {}^{Base} \mathbf{p}_2|^2 = k_{12}^2 \\ &\eta_2(\theta_2, \psi_2, \theta_2, \theta_3, \psi_3, \phi_3) = |^{Base} \mathbf{p}_2 - {}^{Base} \mathbf{p}_3|^2 = k_{23}^2 \\ &\eta_3(\theta_3, \psi_3, \phi_3, \theta_1, \psi_1, \phi_1) = |^{Base} \mathbf{p}_3 - {}^{Base} \mathbf{p}_1|^2 = k_{31}^2 \end{aligned}$$
(17)

where k_{12} , k_{23} and k_{31} are constants.

- Actuated: $\theta_1, \psi_1, \theta_2, \psi_2, \theta_3$, and ψ_3 & Passive: ϕ_1, ϕ_2 , and ϕ_3 .
- Obtain explicit expressions for the passive variables using elimination.
- Eliminate ϕ_1 from first and third equation $(17) \rightarrow \eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$
- Eliminate ϕ_2 from $\eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$ and second equation (17) \rightarrow Single equation in ϕ_3 .
- Final equation is 16th degree polynomial in $tan(\phi_3/2)$ Obtained using symbolic algebra software *MAPLE*[®].
- Expressions for the coefficients of the polynomial very long! Numerical example shown next.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Use S - S pair constraint to get 3 loop-closure equations.

$$\begin{aligned} &\eta_1(\theta_1, \psi_1, \theta_1, \theta_2, \psi_2, \phi_2) = |^{Base} \mathbf{p}_1 - {}^{Base} \mathbf{p}_2|^2 = k_{12}^2 \\ &\eta_2(\theta_2, \psi_2, \theta_2, \theta_3, \psi_3, \phi_3) = |^{Base} \mathbf{p}_2 - {}^{Base} \mathbf{p}_3|^2 = k_{23}^2 \\ &\eta_3(\theta_3, \psi_3, \phi_3, \theta_1, \psi_1, \phi_1) = |^{Base} \mathbf{p}_3 - {}^{Base} \mathbf{p}_1|^2 = k_{31}^2 \end{aligned}$$
(17)

where k_{12} , k_{23} and k_{31} are constants.

- Actuated: $\theta_1, \psi_1, \theta_2, \psi_2, \theta_3$, and ψ_3 & Passive: ϕ_1, ϕ_2 , and ϕ_3 .
- Obtain explicit expressions for the passive variables using elimination.
- Eliminate ϕ_1 from first and third equation $(17) o \eta_4(\phi_2,\phi_3,\cdot,\cdot) = 0$
- Eliminate ϕ_2 from $\eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$ and second equation (17) \rightarrow Single equation in ϕ_3 .
- Final equation is 16th degree polynomial in $tan(\phi_3/2)$ Obtained using symbolic algebra software *MAPLE*[®].
- Expressions for the coefficients of the polynomial very long! Numerical example shown next.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Use S - S pair constraint to get 3 loop-closure equations.

$$\begin{aligned} &\eta_1(\theta_1, \psi_1, \theta_1, \theta_2, \psi_2, \phi_2) = |^{Base} \mathbf{p}_1 - {}^{Base} \mathbf{p}_2|^2 = k_{12}^2 \\ &\eta_2(\theta_2, \psi_2, \theta_2, \theta_3, \psi_3, \phi_3) = |^{Base} \mathbf{p}_2 - {}^{Base} \mathbf{p}_3|^2 = k_{23}^2 \\ &\eta_3(\theta_3, \psi_3, \phi_3, \theta_1, \psi_1, \phi_1) = |^{Base} \mathbf{p}_3 - {}^{Base} \mathbf{p}_1|^2 = k_{31}^2 \end{aligned}$$
(17)

where k_{12} , k_{23} and k_{31} are constants.

- Actuated: $\theta_1, \psi_1, \theta_2, \psi_2, \theta_3$, and ψ_3 & Passive: ϕ_1, ϕ_2 , and ϕ_3 .
- Obtain explicit expressions for the passive variables using elimination.
- Eliminate ϕ_1 from first and third equation $(17)
 ightarrow \eta_4(\phi_2,\phi_3,\cdot,\cdot)=0$
- Eliminate ϕ_2 from $\eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$ and second equation (17) \rightarrow Single equation in ϕ_3 .
- Final equation is 16th degree polynomial in tan(φ₃/2) Obtained using symbolic algebra software MAPLE[®].
- Expressions for the coefficients of the polynomial very long! Numerical example shown next.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

• Use S - S pair constraint to get 3 loop-closure equations.

$$\begin{aligned} &\eta_1(\theta_1, \psi_1, \theta_1, \theta_2, \psi_2, \phi_2) = |^{Base} \mathbf{p}_1 - {}^{Base} \mathbf{p}_2|^2 = k_{12}^2 \\ &\eta_2(\theta_2, \psi_2, \theta_2, \theta_3, \psi_3, \phi_3) = |^{Base} \mathbf{p}_2 - {}^{Base} \mathbf{p}_3|^2 = k_{23}^2 \\ &\eta_3(\theta_3, \psi_3, \phi_3, \theta_1, \psi_1, \phi_1) = |^{Base} \mathbf{p}_3 - {}^{Base} \mathbf{p}_1|^2 = k_{31}^2 \end{aligned}$$
(17)

where k_{12} , k_{23} and k_{31} are constants.

- Actuated: $\theta_1, \psi_1, \theta_2, \psi_2, \theta_3$, and ψ_3 & Passive: ϕ_1, ϕ_2 , and ϕ_3 .
- Obtain explicit expressions for the passive variables using elimination.
- Eliminate ϕ_1 from first and third equation $(17) \rightarrow \eta_4(\phi_2,\phi_3,\cdot,\cdot) = 0$
- Eliminate ϕ_2 from $\eta_4(\phi_2, \phi_3, \cdot, \cdot) = 0$ and second equation (17) \rightarrow Single equation in ϕ_3 .
- Final equation is 16^{th} degree polynomial in $tan(\phi_3/2)$ Obtained using symbolic algebra software $MAPLE\mathbb{R}$.
- Expressions for the coefficients of the polynomial very long! Numerical example shown next.

ASHITAVA GHOSAL (IISC)

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL RESULTS

- Assume d = 1/2, $h = \sqrt{3}/2$, $l_{i1} = 1$, $l_{i2} = 1/2$, $l_{i3} = 1/4$ (i = 1, 2, 3), $\gamma = \pi/4$ and $k_{12} = k_{23} = k_{13} = \sqrt{3}/2$.
- For the actuated joint variables, choose $\theta_1 = 0.1$, $\psi_1 = -1.0$, $\theta_2 = 0.1$, $\psi_2 = -1.2$, $\theta_3 = 0.3$, and $\psi_3 = 1.0$ in radians.
- The sixteenth degree polynomial is obtained as

where $t_3 = tan(\phi_3/2)$.

- Numerical solution gives two real values of ϕ_3 as (0.8831, 1.8239) radians.
- Corresponding values of ϕ_1 and ϕ_2 are (0.3679,0.1146) radians and (1.4548,1.0448) radians, respectively.

ASHITAVA GHOSAL (IISC)

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL RESULTS

• The position vector of centroid, computed as in the 3-RPS example, using the first set of θ_i , ψ_i , ϕ_i is

$${}^{Base}\mathbf{p} = rac{1}{3}({}^{Base}\mathbf{p}_1 + {}^{Base}\mathbf{p}_2 + {}^{Base}\mathbf{p}_3) = (1.3768, 0.2624, 0.1401)^T$$

• The rotation matrix $\frac{Base}{Object}[R]$, computed similar to the 3-RPS example, is

$$B_{ase}_{Object}[R] = \begin{pmatrix} 0.0306 & 0.2099 & -0.9773 \\ -0.9811 & 0.1806 & 0.0695 \\ 0.1910 & -0.9609 & 0.2004 \end{pmatrix}$$

100

OUTLINE

CONTENTS

2 LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators
- 6 Lecture 5
 - Direct Kinematics of Stewart Platform Manipulators
- 7 Additional Material Module 4
 - Problems, References and Suggested Reading

- Concept of workspace in serial manipulators → All (x, y, z; [R]) such that *real* solutions for the inverse kinematics exists.
- In parallel manipulators two concepts: mobility and workspace.
 - Workspace dependent on the choice of output link.
 - Mobility: range of possible motion of the actuated joints in a parallel manipulator.
 - Mobility is more important in parallel manipulators!
- Mobility is determined by geometry/linkage dimensions \rightarrow Loop-closure constraint equations.
- Mobility is related to the *ability to assemble* a parallel manipulator at a configuration.

- Concept of workspace in serial manipulators → All (x, y, z; [R]) such that real solutions for the inverse kinematics exists.
- In parallel manipulators two concepts: mobility and workspace.
 - Workspace dependent on the choice of output link.
 - Mobility: range of possible motion of the actuated joints in a parallel manipulator.
 - Mobility is more important in parallel manipulators!
- Mobility is determined by geometry/linkage dimensions \rightarrow Loop-closure constraint equations.
- Mobility is related to the *ability to assemble* a parallel manipulator at a configuration.

- Concept of workspace in serial manipulators → All (x, y, z; [R]) such that real solutions for the inverse kinematics exists.
- In parallel manipulators two concepts: mobility and workspace.
 - Workspace dependent on the choice of output link.
 - Mobility: range of possible motion of the actuated joints in a parallel manipulator.
 - Mobility is more important in parallel manipulators!
- Mobility is determined by geometry/linkage dimensions \rightarrow Loop-closure constraint equations.
- Mobility is related to the *ability to assemble* a parallel manipulator at a configuration.

- Concept of workspace in serial manipulators → All (x, y, z; [R]) such that real solutions for the inverse kinematics exists.
- In parallel manipulators two concepts: mobility and workspace.
 - Workspace dependent on the choice of output link.
 - Mobility: range of possible motion of the actuated joints in a parallel manipulator.
 - Mobility is more important in parallel manipulators!
- Mobility is determined by geometry/linkage dimensions \rightarrow Loop-closure constraint equations.
- Mobility is related to the *ability to assemble* a parallel manipulator at a configuration.

- Mobility: All values of actuated variables such that *real* value(s) of passive variables exists → determined by *direct kinematics*.
- No real value of passive variable \Rightarrow Cannot be assembled.
- Mobility → Obtain conditions for existence of real solutions for the polynomial in one passive variable obtained after *elimination*.
- Very few parallel manipulators where the polynomial degree is 4 or less.
- In most cases mobility determined numerically using search.
- In 4-bar mechanism, mobility can be obtained in closed-form.

- Mobility: All values of actuated variables such that *real* value(s) of passive variables exists → determined by *direct kinematics*.
- No real value of passive variable \Rightarrow Cannot be assembled.
- Mobility → Obtain conditions for existence of real solutions for the polynomial in one passive variable obtained after *elimination*.
- Very few parallel manipulators where the polynomial degree is 4 or less.
- In most cases mobility determined numerically using search.
- In 4-bar mechanism, mobility can be obtained in closed-form.

- Mobility: All values of actuated variables such that *real* value(s) of passive variables exists → determined by *direct kinematics*.
- No real value of passive variable \Rightarrow Cannot be assembled.
- Mobility → Obtain conditions for existence of real solutions for the polynomial in one passive variable obtained after *elimination*.
- Very few parallel manipulators where the polynomial degree is 4 or less.
- In most cases mobility determined numerically using search.
- In 4-bar mechanism, mobility can be obtained in closed-form.

100

- Mobility: All values of actuated variables such that *real* value(s) of passive variables exists → determined by *direct kinematics*.
- No real value of passive variable \Rightarrow Cannot be assembled.
- Mobility → Obtain conditions for existence of real solutions for the polynomial in one passive variable obtained after *elimination*.
- Very few parallel manipulators where the polynomial degree is 4 or less.
- In most cases mobility determined numerically using search.
- In 4-bar mechanism, mobility can be obtained in closed-form.

MOBILITY OF 4-BAR MECHANISM

• Loop-closure constraint equation of a 4-bar

 $\eta_1(\theta_1,\phi_1) = (l_1\cos\theta_1 - l_0 - l_3\cos\phi_1)^2 + (l_1\sin\theta_1 - l_3\sin\phi_1)^2 - l_2^2 = 0$

• On simplification η_1 becomes

$$P\cos\phi_1 + Q\sin\phi_1 + R = 0 \tag{18}$$

where P, Q, and R are given by

$$P = 2l_0l_3 - 2l_1l_3c_1$$

$$Q = -2l_1l_3s_1$$

$$R = l_0^2 + l_1^2 + l_3^2 - l_2^2 - 2l_0l_1c_1$$

 l_0 , l_1 , l_2 , and l_3 are the link lengths (see figure 2), and c_1 , s_1 are the sine and cosine of the actuated joint angle θ_1 , respectively.

Using tangent half-angle substitutions (see <u>Module 3</u>, Lecture 3)

$$\phi_1 = 2\tan^{-1}\left(\frac{-Q \pm \sqrt{P^2 + Q^2 - R^2}}{R - P}\right)$$
(19)

100

MOBILITY OF PARALLEL MANIPULATORS

MOBILITY OF 4-BAR MECHANISM

• Loop-closure constraint equation of a 4-bar

$$\eta_1(\theta_1,\phi_1) = (l_1\cos\theta_1 - l_0 - l_3\cos\phi_1)^2 + (l_1\sin\theta_1 - l_3\sin\phi_1)^2 - l_2^2 = 0$$

• On simplification η_1 becomes

$$P\cos\phi_1 + Q\sin\phi_1 + R = 0 \tag{18}$$

where P, Q, and R are given by

$$P = 2l_0l_3 - 2l_1l_3c_1$$

$$Q = -2l_1l_3s_1$$

$$R = l_0^2 + l_1^2 + l_3^2 - l_2^2 - 2l_0l_1c_1$$

 l_0 , l_1 , l_2 , and l_3 are the link lengths (see figure 2), and c_1 , s_1 are the sine and cosine of the actuated joint angle θ_1 , respectively.

• Using tangent half-angle substitutions (see Module 3, Lecture 3)

$$\phi_1 = 2 \tan^{-1} (\frac{-Q \pm \sqrt{P^2 + Q^2 - R^2}}{R - P})$$

100

MOBILITY OF PARALLEL MANIPULATORS

MOBILITY OF 4-BAR MECHANISM

• Loop-closure constraint equation of a 4-bar

$$\eta_1(\theta_1,\phi_1) = (l_1\cos\theta_1 - l_0 - l_3\cos\phi_1)^2 + (l_1\sin\theta_1 - l_3\sin\phi_1)^2 - l_2^2 = 0$$

• On simplification η_1 becomes

$$P\cos\phi_1 + Q\sin\phi_1 + R = 0 \tag{18}$$

where P, Q, and R are given by

$$P = 2l_0l_3 - 2l_1l_3c_1$$

$$Q = -2l_1l_3s_1$$

$$R = l_0^2 + l_1^2 + l_3^2 - l_2^2 - 2l_0l_1c_1$$

 l_0 , l_1 , l_2 , and l_3 are the link lengths (see figure 2), and c_1 , s_1 are the sine and cosine of the actuated joint angle θ_1 , respectively.

• Using tangent half-angle substitutions (see Module 3, Lecture 3)

$$\phi_1 = 2\tan^{-1}\left(\frac{-Q \pm \sqrt{P^2 + Q^2 - R^2}}{R - P}\right) \tag{19}$$

100

MOBILITY OF PARALLEL MANIPULATORS

• For real
$$\phi_1$$
, $P^2 + Q^2 - R^2 \ge 0$

- Limiting case: $P^2 + Q^2 R^2 = 0 \rightarrow \text{two } \phi_1$'s coinciding.
- In the limiting case, the bounds on $heta_1$ are

$$c_1 = \frac{l_0^2 + l_1^2 - l_3^2 - l_2^2 \pm 2l_3 l_2}{2l_0 l_1}$$
(20)

- For full rotatability of $\theta_1(0 \le \theta_1 \le 2\pi)$, θ_1 cannot have any bounds.
- For θ₁ to have *full* rotatability there *cannot* be a solution to equation (20)!!
- For full rotatability of $heta_1$, $c_1 > 1$ or $c_1 < -1$ in equation (20)

MOBILITY OF 4-BAR MECHANISM - CONTD.

- For real ϕ_1 , $P^2 + Q^2 R^2 \ge 0$
- Limiting case: $P^2 + Q^2 R^2 = 0 \rightarrow \text{two } \phi_1$'s coinciding.

• In the limiting case, the bounds on $heta_1$ are

$$c_1 = \frac{l_0^2 + l_1^2 - l_3^2 - l_2^2 \pm 2l_3 l_2}{2l_0 l_1}$$
(20)

- For full rotatability of $\theta_1(0 \le \theta_1 \le 2\pi)$, θ_1 cannot have any bounds.
- For θ₁ to have *full* rotatability there *cannot* be a solution to equation (20)!!
- For full rotatability of θ_1 , $c_1 > 1$ or $c_1 < -1$ in equation (20)

• For real
$$\phi_1$$
, $P^2 + Q^2 - R^2 \ge 0$

- Limiting case: $P^2 + Q^2 R^2 = 0 \rightarrow \text{two } \phi_1$'s coinciding.
- In the limiting case, the bounds on $heta_1$ are

$$c_1 = \frac{l_0^2 + l_1^2 - l_3^2 - l_2^2 \pm 2l_3 l_2}{2l_0 l_1}$$
(20)

- For full rotatability of $\theta_1(0 \le \theta_1 \le 2\pi)$, θ_1 cannot have any bounds.
- For θ₁ to have *full* rotatability there *cannot* be a solution to equation (20)!!
- For full rotatability of θ_1 , $c_1 > 1$ or $c_1 < -1$ in equation (20)

• For real
$$\phi_1$$
, $P^2+Q^2-R^2\geq 0$

- Limiting case: $P^2 + Q^2 R^2 = 0 \rightarrow$ two ϕ_1 's coinciding.
- In the limiting case, the bounds on $heta_1$ are

$$c_1 = \frac{l_0^2 + l_1^2 - l_3^2 - l_2^2 \pm 2l_3 l_2}{2l_0 l_1}$$
(20)

- For full rotatability of $\theta_1(0 \le \theta_1 \le 2\pi)$, θ_1 cannot have any bounds.
- For θ₁ to have *full* rotatability there *cannot* be a solution to equation (20)!!
- For full rotatability of θ_1 , $c_1 > 1$ or $c_1 < -1$ in equation (20)

- For real ϕ_1 , $P^2+Q^2-R^2\geq 0$
- Limiting case: $P^2 + Q^2 R^2 = 0 \rightarrow$ two ϕ_1 's coinciding.
- In the limiting case, the bounds on $heta_1$ are

$$c_1 = \frac{l_0^2 + l_1^2 - l_3^2 - l_2^2 \pm 2l_3 l_2}{2l_0 l_1}$$
(20)

- For full rotatability of $\theta_1(0 \le \theta_1 \le 2\pi)$, θ_1 cannot have any bounds.
- For θ₁ to have *full* rotatability there *cannot* be a solution to equation (20)!!
- For full rotatability of θ_1 , $c_1 > 1$ or $c_1 < -1$ in equation (20)

MOBILITY OF 4-BAR MECHANISM - CONTD.

- For full rotatability/mobility of θ₁, first φ₁ be real and then θ₁ be imaginary. -> Note the order of φ₁ and θ₁.
- The condition $c_1 > 1$ and $c_1 < -1$ leads to

$$(l_0 - l_1)^2 > (l_3 - l_2)^2$$
⁽²¹⁾

$$(l_0 + l_1) < (l_3 + l_2) \tag{22}$$

- Two additional conditions from $c_1 > 1$, $c_1 < -1$ lead to $l_3 + l_2 + l_1 < l_0$ and $l_0 + l_1 + l_2 < l_3 \rightarrow$ violates triangle inequality.
- Equation (21) gives rise to four inequalities

$$l_{0} - l_{1} > l_{3} - l_{2}$$

$$l_{0} - l_{1} > l_{2} - l_{3}$$

$$l_{1} - l_{0} > l_{3} - l_{2}$$

$$l_{1} - l_{0} > l_{2} - l_{3}$$
(23)

MOBILITY OF 4-BAR MECHANISM - CONTD.

- For full rotatability/mobility of θ₁, first φ₁ be real and then θ₁ be imaginary. -> Note the order of φ₁ and θ₁.
- The condition $c_1>1$ and $c_1<-1$ leads to

$$(l_0 - l_1)^2 > (l_3 - l_2)^2 \tag{21}$$

$$(l_0 + l_1) < (l_3 + l_2) \tag{22}$$

- Two additional conditions from $c_1 > 1$, $c_1 < -1$ lead to $l_3 + l_2 + l_1 < l_0$ and $l_0 + l_1 + l_2 < l_3 \rightarrow$ violates triangle inequality.
- Equation (21) gives rise to four inequalities

$$l_{0} - l_{1} > l_{3} - l_{2}$$

$$l_{0} - l_{1} > l_{2} - l_{3}$$

$$l_{1} - l_{0} > l_{3} - l_{2}$$

$$l_{1} - l_{0} > l_{2} - l_{3}$$
(23)

MOBILITY OF 4-BAR MECHANISM - CONTD.

- For full rotatability/mobility of θ₁, first φ₁ be real and then θ₁ be imaginary. -> Note the order of φ₁ and θ₁.
- The condition $c_1>1$ and $c_1<-1$ leads to

$$(l_0 - l_1)^2 > (l_3 - l_2)^2 \tag{21}$$

$$(l_0 + l_1) < (l_3 + l_2) \tag{22}$$

- Two additional conditions from $c_1 > 1$, $c_1 < -1$ lead to $l_3 + l_2 + l_1 < l_0$ and $l_0 + l_1 + l_2 < l_3 \rightarrow$ violates triangle inequality.
- Equation (21) gives rise to four inequalities

$$\begin{split} l_0 - l_1 &> l_3 - l_2 \\ l_0 - l_1 &> l_2 - l_3 \\ l_1 - l_0 &> l_3 - l_2 \\ l_1 - l_0 &> l_2 - l_3 \end{split}$$

MOBILITY OF 4-BAR MECHANISM - CONTD.

- For full rotatability/mobility of θ₁, first φ₁ be real and then θ₁ be imaginary. -> Note the order of φ₁ and θ₁.
- The condition $c_1>1$ and $c_1<-1$ leads to

$$(l_0 - l_1)^2 > (l_3 - l_2)^2 \tag{21}$$

$$(l_0 + l_1) < (l_3 + l_2) \tag{22}$$

- Two additional conditions from $c_1 > 1$, $c_1 < -1$ lead to $l_3 + l_2 + l_1 < l_0$ and $l_0 + l_1 + l_2 < l_3 \rightarrow$ violates triangle inequality.
- Equation (21) gives rise to four inequalities

$$l_{0} - l_{1} > l_{3} - l_{2}$$

$$l_{0} - l_{1} > l_{2} - l_{3}$$

$$l_{1} - l_{0} > l_{3} - l_{2}$$

$$l_{1} - l_{0} > l_{2} - l_{3}$$
(23)

MOBILITY OF 4-BAR MECHANISM - CONTD.

• For the case of $l_1 < l_0$

$$l_0 + l_2 > l_1 + l_3$$

 $l_0 + l_3 > l_1 + l_2$ (24)

- Equations (22) and (24) imply that l_0 , l_2 and l_3 are all larger than l_1 .
- Equations (22) and (24)→ *l*+*s* < *p*+*q*, *s*, *l* are the shortest and largest links, and *p*, *p* are intermediate links.
- Likewise, for $l_1 > l_0$

and again l_0 is the shortest link.

• Concisely represent equations (22) and (25) as l + s Criterion for 4-bar linkage.

MOBILITY OF 4-BAR MECHANISM - CONTD.

• For the case of $l_1 < l_0$

- Equations (22) and (24) imply that l_0 , l_2 and l_3 are all larger than l_1 .
- Equations (22) and (24)→ *l*+*s* < *p*+*q*, *s*, *l* are the shortest and largest links, and *p*, *p* are intermediate links.
- Likewise, for $l_1 > l_0$

$$l_1 + l_2 > l_0 + l_3 l_1 + l_3 > l_0 + l_2$$
 (25)

and again l_0 is the shortest link.

• Concisely represent equations (22) and (25) as l + s Criterion for 4-bar linkage.

MOBILITY OF 4-BAR MECHANISM - CONTD.

• For the case of $l_1 < l_0$

$$l_0 + l_2 > l_1 + l_3$$

 $l_0 + l_3 > l_1 + l_2$ (24)

- Equations (22) and (24) imply that l_0 , l_2 and l_3 are all larger than l_1 .
- Equations (22) and (24) \rightarrow l+s < p+q, s, l are the shortest and largest links, and p, p are intermediate links.

• Likewise, for $l_1 > l_0$

$$l_1 + l_2 > l_0 + l_3 l_1 + l_3 > l_0 + l_2$$
 (25)

and again l_0 is the shortest link.

• Concisely represent equations (22) and (25) as l + s Criterion for 4-bar linkage.

MOBILITY OF 4-BAR MECHANISM - CONTD.

• For the case of $l_1 < l_0$

$$l_0 + l_2 > l_1 + l_3$$

 $l_0 + l_3 > l_1 + l_2$ (24)

- Equations (22) and (24) imply that l_0 , l_2 and l_3 are all larger than l_1 .
- Equations (22) and (24)→ *l*+*s* < *p*+*q*, *s*, *l* are the shortest and largest links, and *p*, *p* are intermediate links.
- Likewise, for $l_1 > l_0$

and again l_0 is the shortest link.

• Concisely represent equations (22) and (25) as l + s Criterion for 4-bar linkage.

MOBILITY OF 4-BAR MECHANISM - CONTD.

• For the case of $I_1 < I_0$

$$l_0 + l_2 > l_1 + l_3$$

 $l_0 + l_3 > l_1 + l_2$ (24)

- Equations (22) and (24) imply that l_0 , l_2 and l_3 are all larger than l_1 .
- Equations (22) and (24)→ *l*+*s* < *p*+*q*, *s*, *l* are the shortest and largest links, and *p*, *p* are intermediate links.
- Likewise, for $l_1 > l_0$

and again l_0 is the shortest link.

• Concisely represent equations (22) and (25) as l + s Criterion for 4-bar linkage.

MOBILITY OF THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- Three- degree-of-freedom parallel manipulator – polynomial is eight degree in x₃².
- a = 0.5 and $(l_1, l_2, l_3) \in [0.5, 1.5].$
- Points marked as '*' no real and positive values of x₃².
- Finer search → More accurate the mobility region.

Figure 9: Values of (l_1, l_2, l_3) for imaginary θ_3 (marked by *)

OUTLINE

CONTENTS

2 LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators

6 LECTURE 5

- Direct Kinematics of Stewart Platform Manipulators
- Additional Material Module 4
 - Problems, References and Suggested Reading

- Problem statement: given
 - geometry and link parameters,
 - position and orientation of a *chosen output link* with respect to a fixed frame,

- Simpler than the direct kinematics problem since no need to worry about the multiple loops or the loop-closure constraint equations.
- Key idea is to 'break' the mechanism into serial chains and obtain the joint angles of each chain in 'parallel'.
- Break parallel manipulators into chains such that no chain is *redundant*.
- Worst case: Solution of inverse kinematics of a general 6R serial manipulator (See <u>Module 3</u>, Lecture 4).

- Problem statement: given
 - geometry and link parameters,
 - position and orientation of a *chosen output link* with respect to a fixed frame,

- Simpler than the direct kinematics problem since no need to worry about the multiple loops or the loop-closure constraint equations.
- Key idea is to 'break' the mechanism into serial chains and obtain the joint angles of each chain in 'parallel'.
- Break parallel manipulators into chains such that no chain is *redundant*.
- Worst case: Solution of inverse kinematics of a general 6R serial manipulator (See <u>Module 3</u>, Lecture 4).

- Problem statement: given
 - geometry and link parameters,
 - position and orientation of a *chosen output link* with respect to a fixed frame,

- Simpler than the direct kinematics problem since no need to worry about the multiple loops or the loop-closure constraint equations.
- Key idea is to 'break' the mechanism into serial chains and obtain the joint angles of each chain in 'parallel'.
- Break parallel manipulators into chains such that no chain is *redundant*.
- Worst case: Solution of inverse kinematics of a general 6R serial manipulator (See <u>Module 3</u>, Lecture 4).

- Problem statement: given
 - geometry and link parameters,
 - position and orientation of a *chosen output link* with respect to a fixed frame,

- Simpler than the direct kinematics problem since no need to worry about the multiple loops or the loop-closure constraint equations.
- Key idea is to 'break' the mechanism into serial chains and obtain the joint angles of each chain in 'parallel'.
- Break parallel manipulators into chains such that no chain is *redundant*.
- Worst case: Solution of inverse kinematics of a general 6R serial manipulator (See <u>Module 3</u>, Lecture 4).

- Problem statement: given
 - geometry and link parameters,
 - position and orientation of a *chosen output link* with respect to a fixed frame,

- Simpler than the direct kinematics problem since no need to worry about the multiple loops or the loop-closure constraint equations.
- Key idea is to 'break' the mechanism into serial chains and obtain the joint angles of each chain in 'parallel'.
- Break parallel manipulators into chains such that no chain is *redundant*.
- Worst case: Solution of inverse kinematics of a general 6R serial manipulator (See <u>Module 3</u>, Lecture 4).

Figure 10: Inverse kinematics of a four-bar mechanism

- Coupler is the *chosen output link*.
- Given the position of a point ^Lp and the rotation matrix ^L₂[R] of the coupler link.
- Planar case → x, y coordinates and the
 orientation angle φ given.
- Lengths l₀, l₁, l₂ = a + b, a, b and l₃ are known.

NPTEL, 2010 50 / 71

We have

$$x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$$

where x and y are known.

• The angle ϕ denoting the orientation of link 2 is given by

$$\phi = \theta_1 + \phi_2 - 2\pi$$

• Solve for θ_1 and ϕ_2 as

$$\theta_1 = \operatorname{Atan2}(y - a\sin\phi, x - a\cos\phi), \quad \phi_2 = \phi - \theta_1$$

• In a similar manner, considering the equations

$$x = l_0 + l_3 \cos \phi_1 + b \cos(\phi_1 + \phi_3), \ y = l_3 \sin \phi_1 + b \sin(\phi_1 + \phi_3)$$

$$\phi = \phi_1 + \phi_3 - \pi$$

solve for ϕ_1 and ϕ_3

We have

$$x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$$

where x and y are known.

• The angle ϕ denoting the orientation of link 2 is given by

$$\phi = \theta_1 + \phi_2 - 2\pi$$

• Solve for θ_1 and ϕ_2 as

$$\theta_1 = \operatorname{Atan2}(y - a\sin\phi, x - a\cos\phi), \quad \phi_2 = \phi - \theta_1$$

• In a similar manner, considering the equations

$$\begin{aligned} x &= l_0 + l_3 \cos \phi_1 + b \cos(\phi_1 + \phi_3), \ y &= l_3 \sin \phi_1 + b \sin(\phi_1 + \phi_3) \\ \phi &= \phi_1 + \phi_3 - \pi \end{aligned}$$

solve for ϕ_1 and ϕ_3

We have

$$x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$$

where x and y are known.

• The angle ϕ denoting the orientation of link 2 is given by

$$\phi = \theta_1 + \phi_2 - 2\pi$$

• Solve for $heta_1$ and ϕ_2 as

$$\theta_1 = \operatorname{Atan2}(y - a\sin\phi, x - a\cos\phi), \quad \phi_2 = \phi - \theta_1$$

• In a similar manner, considering the equations

$$\begin{aligned} x &= l_0 + l_3 \cos \phi_1 + b \cos(\phi_1 + \phi_3), \ y &= l_3 \sin \phi_1 + b \sin(\phi_1 + \phi_3) \\ \phi &= \phi_1 + \phi_3 - \pi \end{aligned}$$

solve for ϕ_1 and ϕ_3

We have

$$x = l_1 \cos \theta_1 + a \cos(\theta_1 + \phi_2), \quad y = l_1 \sin \theta_1 + a \sin(\theta_1 + \phi_2)$$

where x and y are known.

• The angle ϕ denoting the orientation of link 2 is given by

$$\phi = \theta_1 + \phi_2 - 2\pi$$

• Solve for $heta_1$ and ϕ_2 as

$$\theta_1 = \operatorname{Atan2}(y - a\sin\phi, x - a\cos\phi), \quad \phi_2 = \phi - \theta_1$$

• In a similar manner, considering the equations

$$x = l_0 + l_3 \cos \phi_1 + b \cos(\phi_1 + \phi_3), \ y = l_3 \sin \phi_1 + b \sin(\phi_1 + \phi_3)$$

$$\phi = \phi_1 + \phi_3 - \pi$$

solve for ϕ_1 and ϕ_3 .

- ϕ obtained as $\theta_1 + \phi_2 2\pi$ and as $\phi_1 + \phi_3 \pi$ must be same.
- The four-bar mechanism is a one- degree-of-freedom mechanism and only one of (x, y, ϕ) can be independent.
 - x and y are related through the sixth-degree coupler curve (see equation (8))
 - ϕ must satisfy

$$x\cos\phi + y\sin\phi = (1/2a)(x^2 + y^2 - a^2 - l_1^2)$$

- The constraints on the given position and orientation of the chosen output link, x, y, φ, are analogous to the case of the inverse kinematics of serial manipulators when n < 6 (see <u>Module 3</u>, Lecture 3).
- The inverse kinematics of a four-bar mechanism *can be solved when the given position and orientation is consistent.*

- ϕ obtained as $\theta_1 + \phi_2 2\pi$ and as $\phi_1 + \phi_3 \pi$ must be same.
- The four-bar mechanism is a one- degree-of-freedom mechanism and only one of (x, y, ϕ) can be independent.
 - x and y are related through the sixth-degree coupler curve (see equation (8))
 - ϕ must satisfy

$$x\cos\phi + y\sin\phi = (1/2a)(x^2 + y^2 - a^2 - l_1^2)$$

- The constraints on the given position and orientation of the chosen output link, x, y, φ, are analogous to the case of the inverse kinematics of serial manipulators when n < 6 (see <u>Module 3</u>, Lecture 3).
- The inverse kinematics of a four-bar mechanism *can be solved when the given position and orientation is consistent.*

- ϕ obtained as $\theta_1 + \phi_2 2\pi$ and as $\phi_1 + \phi_3 \pi$ must be same.
- The four-bar mechanism is a one- degree-of-freedom mechanism and only one of (x, y, ϕ) can be independent.
 - x and y are related through the sixth-degree coupler curve (see equation (8))
 - ϕ must satisfy

$$x\cos\phi + y\sin\phi = (1/2a)(x^2 + y^2 - a^2 - l_1^2)$$

 The constraints on the given position and orientation of the chosen output link, x, y, φ, are analogous to the case of the inverse kinematics of serial manipulators when n < 6 (see <u>Module 3</u>, Lecture 3).

• The inverse kinematics of a four-bar mechanism *can be solved when the given position and orientation is consistent.*
- ϕ obtained as $\theta_1 + \phi_2 2\pi$ and as $\phi_1 + \phi_3 \pi$ must be same.
- The four-bar mechanism is a one- degree-of-freedom mechanism and only one of (x, y, ϕ) can be independent.
 - x and y are related through the sixth-degree coupler curve (see equation (8))
 - ϕ must satisfy

$$x\cos\phi + y\sin\phi = (1/2a)(x^2 + y^2 - a^2 - l_1^2)$$

- The constraints on the given position and orientation of the chosen output link, x, y, φ, are analogous to the case of the inverse kinematics of serial manipulators when n < 6 (see <u>Module 3</u>, Lecture 3).
- The inverse kinematics of a four-bar mechanism *can be solved when the given position and orientation is consistent.*

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

Figure 11: Inverse kinematics of sixdegree-of-freedom parallel manipulator

- Figure shows one 'finger' RRRS chain.
- Given the position and orientation of the 'gripped' object with respect to {*Base*}.
- Obtain the rotations at the nine joints in the three 'fingers'.

NPTEL, 2010 53 / 71

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

• Vector ${}^{Base}\mathbf{p}$ locates the centroid of the gripped object.

- ^{Base} [R]is also available.
- In {*Object*}, the location of S_1 , ^{*Object*} S_1 , is known. Hence, $(x,y,z)^T = Base = S_1 = Base = Object = R^{Object} = P_{Object} = P_{Object}$ is known.
- From above

$$(x, y, z)^{T} = \begin{pmatrix} \cos \theta_{1}(l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ -d + \sin \theta_{1}(l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ h + l_{12} \sin \psi_{1} + l_{13} \sin(\psi_{1} + \phi_{1}) \end{pmatrix}$$
(26)

Equation (26) can be solved for θ₁, ψ₁ and φ₁ using elimination (see <u>Module 3</u>, Lecture 4) from known (x, y, z)^T.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- $\bullet~$ Vector ${}^{\textit{Base}}p$ locates the centroid of the gripped object.
- ^{Base} [R]is also available.
- In {*Object*}, the location of S_1 , ^{*Object*} S_1 , is known. Hence, $(x,y,z)^T = Base = S_1 = Base = Object = R^{Object} = P_{Object} = P_{Object}$ is known.
- From above

$$(x, y, z)^{T} = \begin{pmatrix} \cos \theta_{1} (l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ -d + \sin \theta_{1} (l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ h + l_{12} \sin \psi_{1} + l_{13} \sin(\psi_{1} + \phi_{1}) \end{pmatrix}$$
(26)

Equation (26) can be solved for θ₁, ψ₁ and φ₁ using elimination (see <u>Module 3</u>, Lecture 4) from known (x, y, z)^T.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- $\bullet~$ Vector ${}^{\textit{Base}}p$ locates the centroid of the gripped object.
- ^{Base} _{Object} [R]is also available.
- In {*Object*}, the location of S_1 , ^{*Object*} \mathbf{S}_1 , is known. Hence, $(x, y, z)^T = {}^{Base} \mathbf{S}_1 = {}^{Base}_{Object}[R]^{Object} \mathbf{S}_1 + {}^{Base} \mathbf{p}_{Object}$ is known.

From above

$$(x, y, z)^{T} = \begin{pmatrix} \cos \theta_{1}(l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ -d + \sin \theta_{1}(l_{11} + l_{12} \cos \psi_{1} + l_{13} \cos(\psi_{1} + \phi_{1})) \\ h + l_{12} \sin \psi_{1} + l_{13} \sin(\psi_{1} + \phi_{1}) \end{pmatrix}$$
(26)

• Equation (26) can be solved for θ_1 , ψ_1 and ϕ_1 using elimination (see <u>Module 3</u>, Lecture 4) from known $(x, y, z)^T$.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- $\bullet~$ Vector ${}^{\textit{Base}}p$ locates the centroid of the gripped object.
- ^{Base} _{Object} [R]is also available.
- In {*Object*}, the location of S_1 , ${}^{Object}\mathbf{S}_1$, is known. Hence, $(x, y, z)^T = {}^{Base}\mathbf{S}_1 = {}^{Base}_{Object}[R]^{Object}\mathbf{S}_1 + {}^{Base}\mathbf{p}_{Object}$ is known.
- From above

$$(x,y,z)^{T} = \begin{pmatrix} \cos\theta_{1}(l_{11} + l_{12}\cos\psi_{1} + l_{13}\cos(\psi_{1} + \phi_{1})) \\ -d + \sin\theta_{1}(l_{11} + l_{12}\cos\psi_{1} + l_{13}\cos(\psi_{1} + \phi_{1})) \\ h + l_{12}\sin\psi_{1} + l_{13}\sin(\psi_{1} + \phi_{1}) \end{pmatrix}$$
(26)

Equation (26) can be solved for θ₁, ψ₁ and φ₁ using elimination (see <u>Module 3</u>, Lecture 4) from known (x, y, z)^T.

A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

- $\bullet~$ Vector ${}^{\textit{Base}}p$ locates the centroid of the gripped object.
- ^{Base} _{Object} [R]is also available.
- In {*Object*}, the location of S_1 , ${}^{Object}\mathbf{S}_1$, is known. Hence, $(x, y, z)^T = {}^{Base}\mathbf{S}_1 = {}^{Base}_{Object}[R]^{Object}\mathbf{S}_1 + {}^{Base}\mathbf{p}_{Object}$ is known.
- From above

$$(x,y,z)^{T} = \begin{pmatrix} \cos\theta_{1}(l_{11} + l_{12}\cos\psi_{1} + l_{13}\cos(\psi_{1} + \phi_{1})) \\ -d + \sin\theta_{1}(l_{11} + l_{12}\cos\psi_{1} + l_{13}\cos(\psi_{1} + \phi_{1})) \\ h + l_{12}\sin\psi_{1} + l_{13}\sin(\psi_{1} + \phi_{1}) \end{pmatrix}$$
(26)

• Equation (26) can be solved for θ_1 , ψ_1 and ϕ_1 using elimination (see <u>Module 3</u>, Lecture 4) from known $(x, y, z)^T$.

elimination (see Module 3, Lecture 4). the eliminant is

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 55 / 71

э

イロト イポト イヨト イヨ

Figure 12: A leg of a Stewart platform

 From figure 12, an arbitrary platform point P_i can be written in {B₀} as

$${}^{B_0}\mathbf{p}_i = {}^{B_0}_{P_0}[R]^{P_0}\mathbf{p}_i + {}^{B_0}\mathbf{t}$$
 (27)

- The ^{P₀}**p**_i is a known constant vector in {P₀}.
- The location of the base connection points ^{B0}b_i are known.

NPTEL, 2010 55 / 71

• From known $\frac{B_0}{P_0}[R]$ and translation vector $^{B_0}\mathbf{t}$, obtain $^{B_0}\mathbf{p}_1$

$$[R(\hat{\mathbf{Z}},\gamma_i)]^T((x,y,z)^T - {}^{B_0}\mathbf{b}_1) = [R(\hat{\mathbf{Y}},\phi_i)][R(\hat{\mathbf{X}},\psi_i)](0,0,l_i)^T$$
$$= l_1 \begin{pmatrix} \sin\phi_1\cos\psi_1\\ -\sin\psi_1\\ \cos\phi_1\cos\psi_1 \end{pmatrix}$$
(28)

where ${}^{B_0}\mathbf{p}_1$ is denoted by $(x, y, z)^T$.

• Three non-linear equations in $l_1, \ \psi_1, \ \phi_1
ightarrow$ solution

$$l_{1} = \pm \sqrt{[(x, y, z)^{T} - B_{0} \mathbf{b}_{1}]^{2}}$$

$$\psi_{1} = \operatorname{Atan2}(-Y, \pm \sqrt{X^{2} + Z^{2}})$$

$$\phi_{1} = \operatorname{Atan2}(X/\cos\psi_{1}, Z/\cos\psi_{1})$$
(29)

where X, Y, Z are the components of $[R(\hat{\mathbf{Z}}, \gamma_i)]^T((x, y, z)^T - B_0 \mathbf{b}_1)$. • Perform for each leg to obtain l_i , ψ_i and ϕ_i for i = 1, ..., 6.

• From known $\frac{B_0}{P_0}[R]$ and translation vector $^{B_0}\mathbf{t}$, obtain $^{B_0}\mathbf{p}_1$

$$[R(\hat{\mathbf{Z}},\gamma_i)]^T((x,y,z)^T - {}^{B_0}\mathbf{b}_1) = [R(\hat{\mathbf{Y}},\phi_i)][R(\hat{\mathbf{X}},\psi_i)](0,0,l_i)^T$$
$$= l_1 \begin{pmatrix} \sin\phi_1\cos\psi_1\\ -\sin\psi_1\\ \cos\phi_1\cos\psi_1 \end{pmatrix}$$
(28)

where ${}^{B_0}\mathbf{p}_1$ is denoted by $(x, y, z)^T$.

 $\bullet\,$ Three non-linear equations in $\it I_1,\ \psi_1,\ \phi_1 \rightarrow$ solution

$$l_{1} = \pm \sqrt{[(x, y, z)^{T} - B_{0} \mathbf{b}_{1}]^{2}}$$

$$\psi_{1} = \operatorname{Atan2}(-Y, \pm \sqrt{X^{2} + Z^{2}})$$

$$\psi_{1} = \operatorname{Atan2}(X/\cos\psi_{1}, Z/\cos\psi_{1})$$
(29)

where X, Y, Z are the components of $[R(\hat{\mathbf{Z}}, \gamma_i)]^T((x, y, z)^T - B_0 \mathbf{b}_1)$. • Perform for each leg to obtain l_i , ψ_i and ϕ_i for i = 1, ..., 6.

- INVERSE KINEMATICS OF STEWART PLATFORM (CONTD.)
 - From known $\frac{B_0}{P_0}[R]$ and translation vector $^{B_0}\mathbf{t}$, obtain $^{B_0}\mathbf{p}_1$

$$R(\hat{\mathbf{Z}},\gamma_i)]^T((x,y,z)^T - {}^{B_0}\mathbf{b}_1) = [R(\hat{\mathbf{Y}},\phi_i)][R(\hat{\mathbf{X}},\psi_i)](0,0,l_i)^T$$
$$= l_1 \begin{pmatrix} \sin\phi_1\cos\psi_1\\ -\sin\psi_1\\ \cos\phi_1\cos\psi_1 \end{pmatrix}$$
(28)

where ${}^{B_0}\mathbf{p}_1$ is denoted by $(x, y, z)^T$.

 $\bullet\,$ Three non-linear equations in $\it I_1,\ \psi_1,\ \phi_1 \rightarrow$ solution

$$l_{1} = \pm \sqrt{[(x, y, z)^{T} - B_{0} \mathbf{b}_{1}]^{2}}$$

$$\psi_{1} = \operatorname{Atan2}(-Y, \pm \sqrt{X^{2} + Z^{2}})$$

$$\psi_{1} = \operatorname{Atan2}(X/\cos\psi_{1}, Z/\cos\psi_{1})$$
(29)

where X, Y, Z are the components of $[R(\hat{\mathbf{Z}}, \gamma_i)]^T((x, y, z)^T - B_0 \mathbf{b}_1)$. • Perform for each leg to obtain I_i , ψ_i and ϕ_i for i = 1, ..., 6.

OUTLINE

CONTENTS

- 2 Lecture 1
 - Introduction
 - Loop-closure Constraint Equations
- 3 LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators

6 Lecture 5

- Direct Kinematics of Stewart Platform Manipulators
- 7 Additional Material Module 4
 - Problems, References and Suggested Reading

- Gough-Stewart platform six- degree-of-freedom parallel manipulator.
- Extensively used in flight simulators, machine tools, force-torque sensors, orienting device etc. (see Merlet, 2001).

Figure 13: Three configurations of Stewart platform manipulator

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 58 / 71

- Hooke ('U') joint modeled as 2 intersecting R joint \rightarrow Each leg R-R-P-S chain.
- Hooke joint equivalent to successive Euler rotations (see <u>Module 2</u>, Lecture 2) φ_i about Ŷ_i and ψ_i about Â_i.

Figure 14: A leg of a Stewart platform -revisited

NPTEL, 2010 59 / 71

GEOMETRY OF A LEG (CONTD.)

• The vector ${}^{B_0}\mathbf{p}_i$ locating the spherical joint can be written as

$${}^{B_{0}}\mathbf{p}_{i} = {}^{B_{0}}\mathbf{b}_{i} + [R(\hat{\mathbf{Z}},\gamma_{i})][R(\hat{\mathbf{Y}},\phi_{i})][R(\hat{\mathbf{X}},\psi_{i})](0,0,l_{i})^{T}$$

$$= {}^{B_{0}}\mathbf{b}_{i} + l_{i} \begin{pmatrix} \cos\gamma_{i}\sin\phi_{i}\cos\psi_{i}+\sin\gamma_{i}\sin\psi_{i}\\\sin\gamma_{i}\sin\phi_{i}\cos\psi_{i}-\cos\gamma_{i}\sin\psi_{i}\\\cos\phi_{i}\cos\psi_{i} \end{pmatrix} (30)$$

- Constant vector ${}^{B_0}\mathbf{b}_i$ locates the origin O_i $\{i\}$ at the Hooke joint i,
- Constant angle γ_i determines the orientation of $\{i\}$ with respect to $\{B_0\},$ and
- I_i is the translation of the prismatic (P) joint in leg *i*.
- ${}^{B_0}\mathbf{p}_i$ is a function of two passive joint variables, ϕ_i and ψ_i , and the actuated joint variable I_i .

GEOMETRY OF A LEG (CONTD.)

• The vector ${}^{B_0}\mathbf{p}_i$ locating the spherical joint can be written as

$${}^{B_{0}}\mathbf{p}_{i} = {}^{B_{0}}\mathbf{b}_{i} + [R(\hat{\mathbf{Z}},\gamma_{i})][R(\hat{\mathbf{Y}},\phi_{i})][R(\hat{\mathbf{X}},\psi_{i})](0,0,l_{i})^{T}$$

$$= {}^{B_{0}}\mathbf{b}_{i} + l_{i} \begin{pmatrix} \cos\gamma_{i}\sin\phi_{i}\cos\psi_{i}+\sin\gamma_{i}\sin\psi_{i}\\\sin\gamma_{i}\sin\phi_{i}\cos\psi_{i}-\cos\gamma_{i}\sin\psi_{i}\\\cos\phi_{i}\cos\psi_{i} \end{pmatrix} (30)$$

- Constant vector ${}^{B_0}\mathbf{b}_i$ locates the origin O_i $\{i\}$ at the Hooke joint i,
- Constant angle γ_i determines the orientation of $\{i\}$ with respect to $\{B_0\},$ and
- I_i is the translation of the prismatic (P) joint in leg *i*.
- ${}^{B_0}\mathbf{p}_i$ is a function of two passive joint variables, ϕ_i and ψ_i , and the actuated joint variable I_i .

STEWART PLATFORM MANIPULATORS

DIRECT KINEMATICS OF 3–3 CONFIGURATION

- 6 legs are $B_1 P_1$, $B_1 P_3$, $B_2 P_1$, $B_2 P_2$, $B_3 P_2$ and $B_3 P_3$ (see figure 13(a)).
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- Point P_1 reached in *two ways*: 3 vector equations or 9 scalar equations.

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_2} & = & {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_3} & = & {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_3} \end{array}$$

DIRECT KINEMATICS OF 3–3 CONFIGURATION

- 6 legs are $B_1 P_1$, $B_1 P_3$, $B_2 P_1$, $B_2 P_2$, $B_3 P_2$ and $B_3 P_3$ (see figure 13(a)).
- 6 actuated and 12 passive variables \rightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- Point P_1 reached in *two ways*: 3 vector equations or 9 scalar equations.

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_2} & = & {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_3} & = & {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_3} \end{array}$$

STEWART PLATFORM MANIPULATORS

DIRECT KINEMATICS OF 3–3 CONFIGURATION

- 6 legs are $B_1 P_1$, $B_1 P_3$, $B_2 P_1$, $B_2 P_2$, $B_3 P_2$ and $B_3 P_3$ (see figure 13(a)).
- 6 actuated and 12 passive variables \rightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- Point P_1 reached in *two ways*: 3 vector equations or 9 scalar equations.

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_2} & = & {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_3} & = & {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_3} \end{array}$$

STEWART PLATFORM MANIPULATORS

DIRECT KINEMATICS OF 3–3 CONFIGURATION

- 6 legs are $B_1 P_1$, $B_1 P_3$, $B_2 P_1$, $B_2 P_2$, $B_3 P_2$ and $B_3 P_3$ (see figure 13(a)).
- 6 actuated and 12 passive variables \rightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- Point P_1 reached in *two ways*: 3 vector equations or 9 scalar equations.

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_2} & = & {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_3} & = & {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_3} \end{array}$$

STEWART PLATFORM MANIPULATORS

DIRECT KINEMATICS OF 3–3 CONFIGURATION

- 6 legs are $B_1 P_1$, $B_1 P_3$, $B_2 P_1$, $B_2 P_2$, $B_3 P_2$ and $B_3 P_3$ (see figure 13(a)).
- 6 actuated and 12 passive variables \rightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- Point P₁ reached in *two ways*: 3 vector equations or 9 scalar equations.

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_2} & = & {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_3} & = & {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3–3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1+\overrightarrow{B_1P_1}&=&{}^{B_0}\mathbf{b}_2+\overrightarrow{B_2P_1}\\ {}^{B_0}\mathbf{b}_3+\overrightarrow{B_3P_2}&=&{}^{B_0}\mathbf{b}_4+\overrightarrow{B_4P_2}\\ {}^{B_0}\mathbf{b}_5+\overrightarrow{B_5P_3}&=&{}^{B_0}\mathbf{b}_6+\overrightarrow{B_6P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3–3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1+\overrightarrow{B_1P_1}&=&{}^{B_0}\mathbf{b}_2+\overrightarrow{B_2P_1}\\ {}^{B_0}\mathbf{b}_3+\overrightarrow{B_3P_2}&=&{}^{B_0}\mathbf{b}_4+\overrightarrow{B_4P_2}\\ {}^{B_0}\mathbf{b}_5+\overrightarrow{B_5P_3}&=&{}^{B_0}\mathbf{b}_6+\overrightarrow{B_6P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3-3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables \rightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} & = & {}^{B_0}\mathbf{b}_4 + \overrightarrow{B_4P_2} \\ {}^{B_0}\mathbf{b}_5 + \overrightarrow{B_5P_3} & = & {}^{B_0}\mathbf{b}_6 + \overrightarrow{B_6P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3-3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} & = & {}^{B_0}\mathbf{b}_4 + \overrightarrow{B_4P_2} \\ {}^{B_0}\mathbf{b}_5 + \overrightarrow{B_5P_3} & = & {}^{B_0}\mathbf{b}_6 + \overrightarrow{B_6P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3–3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1 + \overrightarrow{B_1P_1} & = & {}^{B_0}\mathbf{b}_2 + \overrightarrow{B_2P_1} \\ {}^{B_0}\mathbf{b}_3 + \overrightarrow{B_3P_2} & = & {}^{B_0}\mathbf{b}_4 + \overrightarrow{B_4P_2} \\ {}^{B_0}\mathbf{b}_5 + \overrightarrow{B_5P_3} & = & {}^{B_0}\mathbf{b}_6 + \overrightarrow{B_6P_3} \end{array}$$

DIRECT KINEMATICS OF 6–3 CONFIGURATION

- Direct kinematics similar to 3–3 configurations (see figure 13(b))
- 6 legs are $B_1 P_1$, $B_2 P_1$, $B_3 P_2$, $B_4 P_2$, $B_5 P_3$ and $B_6 P_3$.
- 6 actuated and 12 passive variables ightarrow 12 constraint equations needed.
- Three constraints: Distances between *P*₁, *P*₂ and *P*₃ are constant (similar to 3-RPS).
- P_1 , P_2 and P_3 reached in two ways ightarrow 9 scalar equations

$$\begin{array}{rcl} {}^{B_0}\mathbf{b}_1+\overrightarrow{B_1P_1}&=&{}^{B_0}\mathbf{b}_2+\overrightarrow{B_2P_1}\\ {}^{B_0}\mathbf{b}_3+\overrightarrow{B_3P_2}&=&{}^{B_0}\mathbf{b}_4+\overrightarrow{B_4P_2}\\ {}^{B_0}\mathbf{b}_5+\overrightarrow{B_5P_3}&=&{}^{B_0}\mathbf{b}_6+\overrightarrow{B_6P_3} \end{array}$$

GOUGH-STEWART PLATFORM MANIPULATOR Direct kinematics of 6–6 configuration in joint space

- 6 distinct points in the fixed base and moving platform (see figure 13(c))
- Hooke joint modeled as 2 intersecting rotary (R) joint \rightarrow 6 actuated and 12 passive variables \rightarrow Need 12 constraint equations!.
- $B_0 \mathbf{p}_i$ revisited

GOUGH-STEWART PLATFORM MANIPULATOR

Direct kinematics of 6-6 configuration in joint space

- 6 distinct points in the fixed base and moving platform (see figure 13(c))
- Hooke joint modeled as 2 intersecting rotary (R) joint \rightarrow 6 actuated and 12 passive variables \rightarrow Need 12 constraint equations!.

• $B_0 \mathbf{p}_i$ revisited

$$B_{0}\mathbf{p}_{i} = B_{0}\mathbf{b}_{i} + [R(\hat{\mathbf{Z}},\gamma_{i})][R(\hat{\mathbf{Y}},\phi_{i})][R(\hat{\mathbf{X}},\psi_{i})](0,0,l_{i})^{T}$$

$$= B_{0}\mathbf{b}_{i} + l_{i}\begin{pmatrix}\cos\gamma_{i}\sin\phi_{i}\cos\psi_{i}+\sin\gamma_{i}\sin\psi_{i}\\\sin\gamma_{i}\sin\phi_{i}\cos\psi_{i}-\cos\gamma_{i}\sin\psi_{i}\\\cos\phi_{i}\cos\psi_{i}\end{pmatrix} (31)$$

GOUGH-STEWART PLATFORM MANIPULATOR

Direct kinematics of 6-6 configuration in joint space

- 6 distinct points in the fixed base and moving platform (see figure 13(c))
- Hooke joint modeled as 2 intersecting rotary (R) joint \rightarrow 6 actuated and 12 passive variables \rightarrow Need 12 constraint equations!.
- ${}^{B_0}\mathbf{p}_i$ revisited

GOUGH-STEWART PLATFORM MANIPULATOR

Direct kinematics of 6-6 configuration in joint space

- 6 distinct points in the fixed base and moving platform (see figure 13(c))
- Hooke joint modeled as 2 intersecting rotary (R) joint \rightarrow 6 actuated and 12 passive variables \rightarrow Need 12 constraint equations!.
- ${}^{B_0}\mathbf{p}_i$ revisited

$$B_{0}\mathbf{p}_{i} = B_{0}\mathbf{b}_{i} + [R(\hat{\mathbf{Z}},\gamma_{i})][R(\hat{\mathbf{Y}},\phi_{i})][R(\hat{\mathbf{X}},\psi_{i})](0,0,l_{i})^{T} \\
 = B_{0}\mathbf{b}_{i} + l_{i}\begin{pmatrix} \cos\gamma_{i}\sin\phi_{i}\cos\psi_{i}+\sin\gamma_{i}\sin\psi_{i}\\ \sin\gamma_{i}\sin\phi_{i}\cos\psi_{i}-\cos\gamma_{i}\sin\psi_{i}\\ \cos\phi_{i}\cos\psi_{i}\end{pmatrix}$$
(31)

GOUGH-STEWART PLATFORM MANIPULATOR

DIRECT KINEMATICS OF 6-6 CONFIGURATION IN JOINT SPACE

• 6 S-S pair constraints

$$\begin{aligned} \eta_1(\mathbf{q}) &= |^{B_0}\mathbf{p}_1 - {}^{B_0}\mathbf{p}_2|^2 - d_{12}^2 &= 0\\ \eta_2(\mathbf{q}) &= |^{B_0}\mathbf{p}_2 - {}^{B_0}\mathbf{p}_3|^2 - d_{23}^2 &= 0\\ \eta_3(\mathbf{q}) &= |^{B_0}\mathbf{p}_3 - {}^{B_0}\mathbf{p}_4|^2 - d_{34}^2 &= 0\\ \eta_4(\mathbf{q}) &= |^{B_0}\mathbf{p}_4 - {}^{B_0}\mathbf{p}_5|^2 - d_{45}^2 &= 0\\ \eta_5(\mathbf{q}) &= |^{B_0}\mathbf{p}_5 - {}^{B_0}\mathbf{p}_6|^2 - d_{56}^2 &= 0\\ \eta_6(\mathbf{q}) &= |^{B_0}\mathbf{p}_6 - {}^{B_0}\mathbf{p}_1|^2 - d_{61}^2 &= 0 \end{aligned}$$

• Need another 6 constraint equations.

GOUGH-STEWART PLATFORM MANIPULATOR

DIRECT KINEMATICS OF 6-6 CONFIGURATION IN JOINT SPACE

• 6 S-S pair constraints

$$\eta_1(\mathbf{q}) = |^{B_0} \mathbf{p}_1 - {}^{B_0} \mathbf{p}_2|^2 - d_{12}^2 = 0 \eta_2(\mathbf{q}) = |^{B_0} \mathbf{p}_2 - {}^{B_0} \mathbf{p}_3|^2 - d_{23}^2 = 0 \eta_3(\mathbf{q}) = |^{B_0} \mathbf{p}_3 - {}^{B_0} \mathbf{p}_4|^2 - d_{34}^2 = 0 \eta_4(\mathbf{q}) = |^{B_0} \mathbf{p}_4 - {}^{B_0} \mathbf{p}_5|^2 - d_{45}^2 = 0 \eta_5(\mathbf{q}) = |^{B_0} \mathbf{p}_5 - {}^{B_0} \mathbf{p}_6|^2 - d_{56}^2 = 0 \eta_6(\mathbf{q}) = |^{B_0} \mathbf{p}_6 - {}^{B_0} \mathbf{p}_1|^2 - d_{61}^2 = 0$$

(32)

• Need another 6 constraint equations.

LATOR

GOUGH-STEWART PLATFORM MANIPULATOR Direct kinematics of 6–6 configuration in joint space

• All six points P_i , i = 1, ..., 6 must lie on a plane

$$\begin{aligned} \eta_{7}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}|^{2} - d_{13}^{2} = 0\\ \eta_{8}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}|^{2} - d_{14}^{2} = 0\\ \eta_{9}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}|^{2} - d_{15}^{2} = 0 \end{aligned} (33) \\ \eta_{10}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{2}) = 0\\ \eta_{11}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}) = 0\\ \eta_{12}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{6}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) = 0 \end{aligned}$$

• *d_{ij}* is the known distance between the spherical joints *S_i* and *S_j* on the top platform.

GOUGH-STEWART PLATFORM MANIPULATOR

DIRECT KINEMATICS OF 6-6 CONFIGURATION IN JOINT SPACE

• All six points P_i , i = 1, ..., 6 must lie on a plane

$$\begin{aligned} \eta_{7}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}|^{2} - d_{13}^{2} = 0 \\ \eta_{8}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}|^{2} - d_{14}^{2} = 0 \\ \eta_{9}(\mathbf{q}) &= |^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}|^{2} - d_{15}^{2} = 0 \\ \eta_{10}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{2}) = 0 \\ \eta_{11}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{3}) = 0 \\ \eta_{12}(\mathbf{q}) &= (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{5}) \times (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{6}) \cdot (^{B_{0}}\mathbf{p}_{1} - ^{B_{0}}\mathbf{p}_{4}) = 0 \end{aligned}$$

• d_{ij} is the known distance between the spherical joints S_i and S_j on the top platform.

・ 同 ト ・ 三 ト ・ 三

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $I_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

Direct kinematics of 6-6 configuration in joint space

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $l_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $I_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $I_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $I_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

- 12 non-linear equations in twelve passive variables $\phi_i, \psi_i, i = 1, ..., 6$, and six actuated joint variables $I_i, i = 1, ..., 6$.
- All equations do not contain *all* passive variables \rightarrow first equation in (32) is a function of only ϕ_1 , ψ_1 , l_1 , ϕ_2 , ψ_2 , and l_2 .
- 12 equations are not unique and one can have other combinations.
- For direct kinematics, eliminate 11 passive variables from these 12 equations.
- Very hard and not yet done!!
- Direct kinematics of Gough-Stewart platform easier with *task* space variables.

DIRECT KINEMATICS OF 6-6 CONFIGURATION IN TASK SPACE

Figure 15: A leg of a Stewart platform -revisited

• The point P_i in $\{B_0\}$

$$^{B_0}\mathbf{p}_i = ^{B_0}_{P_0}[R]^{P_0}\mathbf{p}_i + ^{B_0}\mathbf{t}$$
 (34)

where
$$P_0 \mathbf{p}_i = (p_{i_x}, p_{i_y}, 0)^T$$
.

Denoting point B_i by ^{B₀}B_i, the leg vector ^{B₀}S_i is

$${}^{B_0}\mathbf{S}_i = {}^{B_0}_{P_0}[R]^{P_0}\mathbf{p}_i + {}^{B_0}\mathbf{t} - {}^{B_0}\mathbf{b}_i$$
(35)
where ${}^{B_0}\mathbf{b}_i = (b_{i_x}, b_{i_y}, 0)^T$.

Direct kinematics of 6-6 configuration in task space

• The magnitude of the leg vector is

$$l_{i}^{2} = (r_{11}p_{i_{x}} + r_{12}p_{i_{y}} + t_{x} - b_{i_{x}})^{2} + (r_{21}p_{i_{x}} + r_{22}p_{i_{y}} + t_{y} - b_{i_{y}})^{2} + (r_{31}p_{i_{x}} + r_{32}p_{i_{y}} + t_{z} - b_{i_{z}})^{2}$$
(36)

• Using properties of the elements r_{ij} , get

$$(t_{x}^{2} + t_{y}^{2} + t_{z}^{2}) + 2p_{i_{x}}(r_{11}t_{x} + r_{21}t_{y} + r_{31}t_{z}) + 2p_{i_{y}}(r_{12}t_{x} + r_{22}t_{y} + r_{32}t_{z}) -2b_{i_{x}}(t_{x} + p_{i_{x}}r_{11} + p_{i_{y}}r_{12}) - 2b_{i_{y}}(t_{y} + p_{i_{x}}r_{21} + p_{i_{y}}r_{22}) +b_{i_{x}}^{2} + b_{i_{y}}^{2} + p_{i_{x}}^{2} + p_{i_{y}}^{2} - l_{i}^{2} = 0$$
(37)

For the six legs, i = 1,...,6, six equations of the type shown above.
Additional 3 constraints

$$r_{11}^2 + r_{21}^2 + r_{31}^2 = 1$$

$$r_{12}^2 + r_{22}^2 + r_{32}^2 = 1$$
(38)

$$r_{11}r_{12} + r_{21}r_{22} + r_{31}r_{32} = 0$$

Direct kinematics of 6-6 configuration in task space

• The magnitude of the leg vector is

$$l_{i}^{2} = (r_{11}p_{i_{x}} + r_{12}p_{i_{y}} + t_{x} - b_{i_{x}})^{2} + (r_{21}p_{i_{x}} + r_{22}p_{i_{y}} + t_{y} - b_{i_{y}})^{2} + (r_{31}p_{i_{x}} + r_{32}p_{i_{y}} + t_{z} - b_{i_{z}})^{2}$$
(36)

• Using properties of the elements r_{ij} , get

$$(t_{x}^{2} + t_{y}^{2} + t_{z}^{2}) + 2p_{i_{x}}(r_{11}t_{x} + r_{21}t_{y} + r_{31}t_{z}) + 2p_{i_{y}}(r_{12}t_{x} + r_{22}t_{y} + r_{32}t_{z}) -2b_{i_{x}}(t_{x} + p_{i_{x}}r_{11} + p_{i_{y}}r_{12}) - 2b_{i_{y}}(t_{y} + p_{i_{x}}r_{21} + p_{i_{y}}r_{22}) +b_{i_{x}}^{2} + b_{i_{y}}^{2} + p_{i_{x}}^{2} + p_{i_{y}}^{2} - l_{i}^{2} = 0$$
(37)

For the six legs, i = 1,...,6, six equations of the type shown above.
Additional 3 constraints

$$r_{11}^{2} + r_{21}^{2} + r_{31}^{2} = 1$$

$$r_{12}^{2} + r_{22}^{2} + r_{32}^{2} = 1$$
(38)

Direct kinematics of 6-6 configuration in task space

• The magnitude of the leg vector is

$$l_{i}^{2} = (r_{11}p_{i_{x}} + r_{12}p_{i_{y}} + t_{x} - b_{i_{x}})^{2} + (r_{21}p_{i_{x}} + r_{22}p_{i_{y}} + t_{y} - b_{i_{y}})^{2} + (r_{31}p_{i_{x}} + r_{32}p_{i_{y}} + t_{z} - b_{i_{z}})^{2}$$
(36)

• Using properties of the elements r_{ij} , get

$$(t_{x}^{2} + t_{y}^{2} + t_{z}^{2}) + 2p_{i_{x}}(r_{11}t_{x} + r_{21}t_{y} + r_{31}t_{z}) + 2p_{i_{y}}(r_{12}t_{x} + r_{22}t_{y} + r_{32}t_{z}) -2b_{i_{x}}(t_{x} + p_{i_{x}}r_{11} + p_{i_{y}}r_{12}) - 2b_{i_{y}}(t_{y} + p_{i_{x}}r_{21} + p_{i_{y}}r_{22}) +b_{i_{x}}^{2} + b_{i_{y}}^{2} + p_{i_{x}}^{2} + p_{i_{y}}^{2} - l_{i}^{2} = 0$$
(37)

For the six legs, i = 1,...,6, six equations of the type shown above.
Additional 3 constraints

$$r_{11}^{2} + r_{21}^{2} + r_{31}^{2} = 1$$

$$r_{12}^{2} + r_{22}^{2} + r_{32}^{2} = 1$$

$$r_{11}r_{12} + r_{21}r_{22} + r_{31}r_{32} = 0$$
(38)

DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

- Equations (37) and (38) are nine *quadratic* equations in nine unknowns, t_x , t_y , t_z , r_{11} , r_{12} , r_{21} , r_{22} , r_{31} , and r_{32} (see Dasgupta and Mruthyunjaya, 1994)
- All quadratic terms in equation (37) are square of the magnitude of the translation vector $(t_x^2 + t_y^2 + t_z^2)$, and as X and Y component of the vector ${}^{B_0}\mathbf{t}$, $(r_{11}t_x + r_{21}t_y + r_{31}t_z)$ and $(r_{12}t_x + r_{22}t_y + r_{32}t_z)$, respectively.
- Reduce the set of nine quadratics to six quadratic and three linear equations in nine unknowns → Starting point of elimination.
- Very hard to eliminate eight variables from the nine equations to arrive at a univariate polynomial in one unknown.
- Univariate polynomial widely accepted to be of 40th degree (Raghavan 1993).
- Continuing attempts to obtain the simplest explicit expressions for the co-efficients of this 40th-degree polynomial.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

OUTLINE

CONTENTS

2 LECTURE 1

- Introduction
- Loop-closure Constraint Equations
- 3 LECTURE 2
 - Direct Kinematics of Parallel Manipulators
- 4 Lecture 3
 - Mobility of Parallel Manipulators
- 5 Lecture 4
 - Inverse Kinematics of Parallel Manipulators

DECTURE 5

- Direct Kinematics of Stewart Platform Manipulators
- Additional Material Module 4
 - Problems, References and Suggested Reading

MODULE 4 – ADDITIONAL MATERIAL

• Exercise Problems

• References & Suggested Reading

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 71 / 71