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INTRODUCTION
REVIEW

Parallel manipulators: One or more loops → No first or last link.
No natural choice of end-effector or output link → Output link must
be chosen.
Number of joints is more than the degree-of-freedom → several joints
are not actuated.
Un-actuated or passive joints can be multi- degree-of-freedom joints.
Two main problems: Direct Kinematics and Inverse Kinematics.
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INTRODUCTION
EXAMPLES OF PARALLEL ROBOTS
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ŶL

X̂L

ŶR
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INTRODUCTION
EXAMPLES OF PARALLEL ROBOTS

(c) Original Stewart platform (1965)
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Figure 1: Example of Parallel Manipulators
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INTRODUCTION
DEGREES OF FREEDOM

Grübler-Kutzbach’s criterion

DOF = λ (N −J −1)+
J

∑
i=1

Fi (1)

N – total number of links including the fixed link (or base),
J – total number of joints connecting only two links (if joint connects
three links then it must be counted as two joints),
Fi – degrees of freedom at the i th joint, and λ = 6forspatial , 3 for
planar manipulators and mechanisms.
4-bar mechanism – N = 4, J = 4, ∑J

i=1 Fi = 1+1+1+1 = 4, λ = 3
→ DOF = 1
3-RPS manipulator – N = 8, J = 9, ∑J

i=1 Fi = 6×1+3×3 = 15,
λ = 6 → DOF = 3.
Three-fingered hand – N = 11, J = 12, ∑J

i=1 Fi = 9+9 = 18, λ = 6
→ DOF = 6
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INTRODUCTION
DEGREES OF FREEDOM (CONTD.)

DOF – the number of independent actuators.
In parallel manipulators, J > DOF → J −DOF joints are passive.

Example: 4-bar mechanism, J = 4 and DOF = 1 → only one joint is
actuated and three are passive.
Example: 3-RPS manipulator, J = 9 and DOF = 3 → 6 joints are
passive.

Passive joints can be multi- degree-of-freedom joints.
In 3-RPS manipulator, three- degree-of-freedom spherical (S) joints are
passive.
In a Stewart platform, the S and U joints are passive.

Configuration space q = (θ ,ϕ)
θ are actuated joints & θ ∈ ℜn (n = DOF )
ϕ is the set of passive joints & ϕ ∈ ℜm

All passive joints /∈ ϕ ⇒ (n+m)≤ J
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LOOP-CLOSURE CONSTRAINT EQUATIONS

m passive joint variables → m independent equations required to solve
for ϕ for given n actuated variable, θi , i = 1,2, ...,n.
General approach to derive m loop-closure constraint equations.

...1 ‘Break’ parallel manipulator into 2 or more serial manipulators

...2 Determine D-H parameters for serial chains and obtain position and
orientation of the ‘Break’ for each chain

...3 Use joint constraint (see Module 2, Lecture 2) at the ‘Break(s)’ to
re-join (close) the parallel manipulator.

Trick is to ‘break’ such that
...1 The number of passive variables m is least, and
...2 Minimum number of constraint equations, ηi (q) = 0, i = 1, ...,m are

used.
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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

One loop – fixed
frames {L} and {R},
{R} is translated by
l0 along the X− axis.
{1}, {2}, {3}, and
{Tool} are as shown.
Note only X̂ shown
for convenience.
The sequence
OL-O1-O2-O3-OTool
can be thought of as
a planar 3R
manipulator
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ŶL
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ŶR
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OL, O1
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Figure 2: The four-bar mechanism
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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

D-H parameters of the planar 3R manipulator are
i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l1 0 ϕ2
3 0 l2 0 ϕ3

From D-H table find 0
3[T ] (See Lecture 2, Module 2)

For planar 3R and tool of length l3, find 3
Tool [T ].

Tool
R [T ] is given

Tool
R [T ] =


−cosϕ1 −sinϕ1 0 0
sinϕ1 −cosϕ1 0 0

0 0 1 0
0 0 0 1


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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

The loop-closure equations for the four-bar mechanism is

L
1[T ]12[T ]23[T ]3Tool [T ]Tool

R [T ] = L
R [T ]

Planar loop → only 3 independent equations

l1 cosθ1+ l2 cos(θ1+ϕ2)+ l3 cos(θ1+ϕ2+ϕ3) = l0
l1 sinθ1+ l2 sin(θ1+ϕ2)+ l3 sin(θ1+ϕ2+ϕ3) = 0

θ1+ϕ2+ϕ3+(π −ϕ1) = 4π (2)

Loop-closure equations: all four joint variables present.
q = (θ1,ϕ1,ϕ2,ϕ3)
The actuated joint θ = θ1
The passive joints ϕ = (ϕ1,ϕ2,ϕ3).

In this approach n = 1, m = 3 and J = 4.
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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE

Difficulties in multiplying 4×4 matrices and obtaining constraint
equations:

...1 Presence of multi- degree-of-freedom spherical (S) and Hooke (U)
joints in a loop.

...2 Obtaining independent loops in the presence of several loops.

Represent multi- degree-of-freedom joint by two or more one-
degree-of-freedom joints and obtain an equivalent 4×4 transformation
matrix.
Obtaining independent loops not easy in this way!
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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – STEWART-GOUGH PLATFORM EXAMPLE

U Joint

Extensible Leg

Fixed Base

Spherical Joint

P1

P4

P5

P6

Prismatic
Joint

P2

P3

Top Platform

B1

B2

B3

B4

B5

{B0}

{P0}

B6

Figure 3: The Stewart-Gough
platform

Each leg is U-P-S chain, λ = 6, N = 14,
J = 18, ∑J

i=1 Fi = 36 → DOF = 6.
6 P joints actuated → 30 passive
variables.
Many loops – for example, 5 of the form
Bi −Pi −Pi+1−Bi+1−Bi , i = 1, ..,5
4 of the form
Bi −Pi −Pi+2−Bi+2−Bi , i = 1, ..,4,
and 3 of the form
Bi −Pi −Pi+3−Bi+3−Bi , i = 1,2,3.
Each of the 12 loops can have
(potentially) 6 independent equations
→ Which 30 equations to choose?!
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Each of the 12 loops can have
(potentially) 6 independent equations
→ Which 30 equations to choose?!
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LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – STEWART-GOUGH PLATFORM EXAMPLE
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. . . . . .

LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED
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ŶR

X̂R

{R}

OL, O1

a
b

Break Link 2
φ3

OR

(x, y)

Lp

Rp

Fig b

l0

{L}

φ1

ŶL
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Figure 4: The four-bar mechanism ‘broken ’ in different ways
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. . . . . .

LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Alternate way – ‘break’ loop at the third joint (see figure 4(a)).
One planar 2R manipulator + one planar 1R manipulator.
Easy to obtain the D-H tables for both (see Lecture 3, Module 2)
Easy to obtain L

1[T ], 1
2[T ] & R

1 [T ].
Using l2 and l3, obtain L

Tool [T ] and R
Tool [T ].

From L
Tool [T ] extract vector Lp. The X and Y components are

x = l1 cosθ1+ l2 cos(θ1+ϕ2), y = l1 sinθ1+ l2 sin(θ1+ϕ2)

From R
Tool [T ], extract vector Rp to get

x = l3 cosϕ1, y = l3 sinϕ1

Use constraint for a rotary (R) joint (see Lecture 2, Module 2)

x = l1 cosθ1+ l2 cos(θ1+ϕ2) = l0+ l3 cosϕ1

y = l1 sinθ1+ l2 sin(θ1+ϕ2) = l3 sinϕ1 (3)

l0 is the distance along the X− axis between {L} and {R}.
In this case only two constraint equation: q = (θ1,ϕ1,ϕ2) – n = 1,
m = 2 and J = 3
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. . . . . .

LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Another way to ‘break’ loop is to break the second link (see
figure 4(b)).
Two planar 2R manipulators
Obtain the X and Y components of Lp as

x = l1 cosθ1+a cos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Likewise X and Y components of Rp are

x = l3 cosϕ1+b cos(ϕ1+ϕ3), y = l3 sinϕ1+b sin(ϕ1+ϕ3)

where l2 = a+b and the angle ϕ3 is as shown in figure 4(b).
Impose the constraint that the broken link is actually rigid

x = l1 cosθ1+a cos(θ1+ϕ2) = l0+ l3 cosϕ1+b cos(ϕ1+ϕ3)

y = l1 sinθ1+a sin(θ1+ϕ2) = l3 sinϕ1+b sin(ϕ1+ϕ3)

θ1+ϕ2 = ϕ1+ϕ3+π (4)

Similar to equation (2) – n = 1, m = 3 and J = 4
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. . . . . .

LOOP-CLOSURE CONSTRAINT EQUATIONS
CONSTRAINT EQUATIONS – 4-BAR EXAMPLE REVISITED

Yet another way to ‘break’ loop is shown in figure 4(c).
Obtain Lp and Rp as

Lp = (l1 cosθ1, l1 sinθ1)
T , Rp = (l3 cosϕ1, l3 sinϕ1)

T

Enforce the constraint of constant length l2 to obtain

η1(θ1,ϕ1) = (l1 cosθ1− l0− l3 cosϕ1)
2+(l1 sinθ1− l3 sinϕ1)

2− l22 = 0
(5)

This constraint is analogue of S −S pair constraint (see Lecture 2,
Module 2) for planar R −R pair.
Only one constraint equation1 – q = (θ1,ϕ1), n = m = 1 & J = 4.

1In the four-bar kinematics this is the well known Freudenstein’s equation (see
Freudenstein 1954).
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. . . . . .

TWO PROBLEMS IN KINEMATICS OF PARALLEL

MANIPULATORS

Direct Kinematics Problem: Two-part problem statement
Step 1: Given the geometry of the manipulator and the actuated joint
variables, obtain passive joint variables.
Step 2: Obtain position and orientation of a chosen output link.

Much harder than the direct kinematics problem for a serial
manipulator.
Leads to the notion of mobility and assemble-ability of a parallel
manipulator or a closed-loop mechanism.
Inverse Kinematics Problem:
Given the geometry of the manipulator and the position and
orientation of the chosen end-effector or output link, obtain the
actuated and passive joint variables.

Simpler than the direct kinematics problem.
Generally simpler than inverse kinematics of serial manipulators.
Often done in parallel – one of the origins for the term “parallel” in
parallel manipulators.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
REVIEW

The link dimensions and other geometrical parameters are known.
The values of the n actuated joints are known.
First obtain m passive joint variables.

Obtain (minimal) m loop-closure constraint equations in m passive and
n active joint variables.
Use elimination theory/Sylvester’s dialytic method/Bézout’s method
(see Module 3, Lecture 4)
Solve set of m non-linear equations, if possible, in closed-form for the
passive joint variables ϕi , i = 1, ..,m

Obtain position and orientation of chosen output link from known θ
and ϕ – Recall no natural end-effector and hence have to be chosen!
No general method as compared to the direct kinematics of serial
manipulator – approach illustrated with three examples.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM

Simplest possible
closed-loop mechanism
and studied extensively
(see, for example Uicker
et al., 2003).
A good example to
illustrate all steps in
kinematics of parallel
manipulators!!
Simple loop-closure
equations → All steps
can be done manually!

l0

{L}
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φ1

ŶL

X̂L

ŶR

X̂R

{R}

φ3

O2

O3
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OTool, OR
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l1

l3

Link 2

Link 3

l2

θ1

Figure 5: The four-bar mechanism - revisited
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

From loop-closure equations (4) (see figure 4(b)),

x − l0 = l3 cosϕ1−b cos(θ1+ϕ2), y = l3 sinϕ1−b sin(θ1+ϕ2)

Denote δ = θ1+ϕ2, squaring and adding

A1 cosδ +B1 sinδ +C1 = 0 (6)

where A1 = x − l0, B1 = y , C1 = (1/2b)[(x − l0)2+ y2+b2− l23 ]
From the first part of two equation (4)

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Squaring, adding, and after simplification gives

A2 cosδ +B2 sinδ +C2 = 0 (7)

where A2 = x , B2 = y , C2 = (1/2a)[l21 −a2− x2− y2]

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 24 / 71



. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

From loop-closure equations (4) (see figure 4(b)),

x − l0 = l3 cosϕ1−b cos(θ1+ϕ2), y = l3 sinϕ1−b sin(θ1+ϕ2)

Denote δ = θ1+ϕ2, squaring and adding

A1 cosδ +B1 sinδ +C1 = 0 (6)

where A1 = x − l0, B1 = y , C1 = (1/2b)[(x − l0)2+ y2+b2− l23 ]
From the first part of two equation (4)

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Squaring, adding, and after simplification gives

A2 cosδ +B2 sinδ +C2 = 0 (7)

where A2 = x , B2 = y , C2 = (1/2a)[l21 −a2− x2− y2]

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 24 / 71



. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – LOOP-CLOSURE EQUATIONS

From loop-closure equations (4) (see figure 4(b)),

x − l0 = l3 cosϕ1−b cos(θ1+ϕ2), y = l3 sinϕ1−b sin(θ1+ϕ2)

Denote δ = θ1+ϕ2, squaring and adding

A1 cosδ +B1 sinδ +C1 = 0 (6)

where A1 = x − l0, B1 = y , C1 = (1/2b)[(x − l0)2+ y2+b2− l23 ]
From the first part of two equation (4)

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Squaring, adding, and after simplification gives

A2 cosδ +B2 sinδ +C2 = 0 (7)

where A2 = x , B2 = y , C2 = (1/2a)[l21 −a2− x2− y2]

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 24 / 71



. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – ELIMINATION

Convert equations (6) and (7) to a pair of quadratics by using the
tangent half-angle substitutions (see Module 3, Lecture 4)
Following Sylvester’s dialytic elimination method (see Module 3,
Lecture 4), det[SM] = 0 gives

(A1B2−A2B1)
2 = (A1C2−A2C1)

2+(B1C2−B2C1)
2

and δ =−2tan−1( A1C2−A2C1
(B1C2−B2C1)+(A1B2−A2B1)

).
det[SM] = 0, after some simplification, gives

4a2b2l02y2 = [b(x − l0)(l21 −a2− x2− y2)−
ax{(x − l0)2+ y2+b2− l23 }]2+

y2[b(l21 −a2− x2− y2)−a{(x − l0)2+ y2+b2− l23 }]2 (8)

Equation (8) is known as the coupler curve2– a sixth-degree curve.
2The coupler curve is extensively studied in kinematics of mechanisms. For a more

general form of the coupler curve and its interesting properties, see Chapter 6 of
Hartenberg and Denavit (1964).
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – SOLUTION FOR PASSIVE JOINT VARIABLES

The elimination procedure gives δ as a function of (x ,y) and the link
lengths.
Since θ1 is given,

ϕ2 = δ −θ1 =−2tan−1(
A1C2−A2C1

(B1C2−B2C1)+(A1B2−A2B1)
)−θ1 (9)

The angle ϕ1 can be obtained from equation (5).

l20 + l21 + l23 − l22 = cosϕ1(2l1l3 cosθ1−2l0l3)+ sinϕ1(2l1l3) (10)

Finally, ϕ3 can be solved from the third equation in equation (4)

ϕ3 = θ1+ϕ2−ϕ1−π (11)
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM – NUMERICAL EXAMPLE

l0 = 5.0, l1 = 1.0, l2 = 3.0, and l3 = 4.0 – the input link rotates fully
(Grashof’s criteria)
Figure 6(a) shows plot of ϕ1 vs θ1 – both values are plotted.
From ϕ1 obtain ϕ2 and ϕ3 → Two coupler curves shown in figure 6(b)
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Figure 6: Numerical example for a 4-bar
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

X̂

Ŷ

Ẑ
Moving Platform

l3

l2

θ1

l1

θ2

θ3

p(x, y, z)

S1

S2S3

Axis of R1

Base Platform

Axis of R3

O

{Base}

Axis of R2

Figure 7: The 3-RPS parallel manipulator –
revisited

D-H Table for a R-P-S leg (see
Module 2, Lecture 2)

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −π/2 0 l1 0

All legs are same.
θ1, i = 1,2,3 are passive variables.
li , i = 1,2,3 are actuated variables.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

Position vectors of three S joints (see Module 2, Lecture 2)
BaseS1 = (b− l1 cosθ1,0, l1 sinθ1)

T

BaseS2 = (−b
2
+

1
2
l2 cosθ2,

√
3

2
b−

√
3

2
l2 cosθ2, l2 sinθ2)

T

BaseS3 = (−b
2
+

1
2
l3 cosθ3,−

√
3

2
b+

√
3

2
l3 cosθ3, l3 sinθ3)

T (12)

Base an equilateral triangle circumscribed by circle of radius b.
Impose S −S pair constraint (see Module 2, Lecture 2)

η1(l1,θ1, l2,θ2) = (BaseS1−Base S2) · (BaseS1−Base S2) = k2
12

η2(l2,θ2, l3,θ3) = (BaseS2−Base S3) · (BaseS2−Base S3) = k2
23

η3(l3,θ3, l1,θ1) = (BaseS3−Base S1) · (BaseS3−Base S1) = k2
31(13)

Spherical joint variables do not appear – due to S −S pair equations!
Three loop-closure equations in three passive variables – simplest!
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION

Assume b = 1 and k12 = k23 = k31 =
√

3a.
Eliminate using Sylvester’s dialytic method (see Module 3, Lecture 4),
θ1 from η1(·) = 0 and η3(·) = 0

η4(l1, l2, l3,θ2,θ3) =

(A1C2−A2C1)
2+(B1C2−B2C1)

2− (A1B2−A2B1)
2 = 0

where

C1 = 3−3a2+ l21 + l22 −3l2c2, A1 = l1l2c2−3l1, B1 =−2l1l2s2
C2 = 3−3a2+ l21 + l23 −3l3c3, A2 = l1l3c3−3l1, B2 =−2l1l3s3

Eliminate θ2 from η4(·) = 0 and η2(·) = 0, with x3 = tan(θ3/2).

q8(x2
3 )

8+q7(x2
3 )

7+ ....+q1(x2
3 )+q0 = 0 (14)

An eight degree polynomial in x2
3 .
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – ELIMINATION (CONTD.)

Expressions for qi obtained using symbolic algebra software,
MAPLE R⃝, are very large. Two smaller ones are given

q8 = (p0a4+p1a3+p2a2+p3a+p4)
2(p0a4−p1a3+p2a2−p3a+p4)

2

q0 = (r0a4+ r1a3+ r2a2+ r3a+ r4)2(r0a4− r1a3+ r2a2− r3a+ r4)2

where r0 = p0 =−9, r1 = 12(l3−3), p1 = 12(l3+3),
r2 = 3(l21 + l22 − l3(l3−10)−15), p2 = 3(l21 + l22 − l3(l3+10)−15),
r3 =−2(l3−3)(l21 + l22 + l23 −3), p3 =−2(l3+3)(l21 + l22 + l23 −3),
r4 = l43 −8l33 +3l22 +18l23 −2l3(l22 +6)− l21 (l

2
2 +2l3−3), and

p4 = l43 +8l33 +3l22 +18l23 +2l3(l22 +6)+ l21 (l
2
2 +2l3−3).

8 possible values of θ3 for given a and actuated variables (l1, l2, l3)T .
Once θ3 is obtained, θ2 obtained from η2(·) = 0 and θ1 from
η3(·) = 0.
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r3 =−2(l3−3)(l21 + l22 + l23 −3), p3 =−2(l3+3)(l21 + l22 + l23 −3),
r4 = l43 −8l33 +3l22 +18l23 −2l3(l22 +6)− l21 (l

2
2 +2l3−3), and

p4 = l43 +8l33 +3l22 +18l23 +2l3(l22 +6)+ l21 (l
2
2 +2l3−3).

8 possible values of θ3 for given a and actuated variables (l1, l2, l3)T .
Once θ3 is obtained, θ2 obtained from η2(·) = 0 and θ1 from
η3(·) = 0.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

A natural output link is the moving platform.
Position and orientation of the moving platform:

Centroid of moving platform,

Basep =
1
3
(BaseS1+

Base S2+
Base S3) (15)

Orientation of moving platform or Base
Top [R] is

Base
Top [R] =

[
BaseS1−BaseS2
|BaseS1−BaseS2|

Ŷ (BaseS1−BaseS2)×(BaseS1−BaseS3)
|(BaseS1−BaseS2)×(BaseS1−BaseS3)|

]
(16)

where Ŷ is obtained from the cross-product of the third and first
columns.

Once li ,θi i = 1,2,3 are known Basep and Base
Top [R] can be found.

Key step was the elimination of passive variables and obtaining a
single equation in one passive variable!
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL EXAMPLE

Polynomial in equation (14) is eight degree in (tanθ3/2)2

Not possible to obtain closed-form expressions for θ1, θ2, and θ3.
Numerical solution using Matlab R⃝

For a = 1/2, and for l1 = 2/3, l2 = 3/5 and l3 = 3/4
Two sets values θ3 =±0.8111, ±0.8028 radians.
For the positive values of θ3, θ2 = 0.4809, 0.2851 radians and
θ1 = 0.7471, 0.7593 radians respectively.
For the set (0.7471,0.4809,0.8111),
Basep = (0.0117,−0.0044,0.4248)T , and
The rotation matrix Base

Top [R] is given by

Base
Top [R] =

 0.8602 0.5069 −0.0564
−0.4681 0.8285 0.3074
0.2026 −0.2380 0.9499


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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – D-H PARAMETERS
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Figure 8: The 3-RRRS parallel manipulator –
revisited

D-H parameters for R-R-R-S
chain (see Module 2, Lecture
2)

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 l11 0 ψ1
3 0 l12 0 ϕ1

D-H parameters for three
fingers with respect to
{Fi}, i = 1,2,3 identical.
6DOF parallel manipulator
→ Only 6 out of 12 θi , ψi ,
ϕi are actuated.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

Position vector of spherical joint i

Fi pi =

 cosθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))
sinθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))

li2 sinψi + li3 sin(ψi +ϕi )


With respect to {Base}, the locations of {Fi}, i = 1,2,3, are known
and constant
Baseb1 = (0,−d ,h)T Baseb2 = (0,d ,h)T Baseb3 = (0,0,0)T

Orientation of {Fi}, i = 1,2,3, with respect to {Base} are also known
- {F1} and {F2} are parallel to {Base} and {F3} is rotated by γ about
the Ŷ.
The transformation matrices Base

pi
[T ] is Base

F1
[T ]01[T ]12[T ]23[T ]3p1

[T ] –
last transformation includes l13.
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The transformation matrices Base

pi
[T ] is Base

F1
[T ]01[T ]12[T ]23[T ]3p1

[T ] –
last transformation includes l13.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 35 / 71



. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

Position vector of spherical joint i

Fi pi =

 cosθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))
sinθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))

li2 sinψi + li3 sin(ψi +ϕi )


With respect to {Base}, the locations of {Fi}, i = 1,2,3, are known
and constant
Baseb1 = (0,−d ,h)T Baseb2 = (0,d ,h)T Baseb3 = (0,0,0)T

Orientation of {Fi}, i = 1,2,3, with respect to {Base} are also known
- {F1} and {F2} are parallel to {Base} and {F3} is rotated by γ about
the Ŷ.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

Extract the position vector Basep1 from the last column of Base
F1

[T ]
Basep1 =

Base b1+
F1 p1 = cosθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))

−d + sinθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))
h+ l12 sinψ1+ l13 sin(ψ1+ϕ1)


Similarly for second leg

Basep2 =

 cosθ2(l21+ l22 cosψ2+ l23 cos(ψ2+ϕ2))
d + sinθ2(l21+ l22 cosψ2+ l23 cos(ψ2+ϕ2))

h+ l22 sinψ2+ l23 sin(ψ2+ϕ2)


For third leg

Basep3 = [R(Ŷ,γ)]

 cosθ3(l31+ l32 cosψ3+ l33 cos(ψ3+ϕ3))
sinθ3(l31+ l32 cosψ3+ l33 cos(ψ3+ϕ3))

l32 sinψ3+ l33 sin(ψ3+ϕ3)


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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – LOOP-CLOSURE EQUATIONS

Use S −S pair constraint to get 3 loop-closure equations.

η1(θ1,ψ1,ϕ1,θ2,ψ2,ϕ2) = |Basep1−Base p2|2 = k2
12

η2(θ2,ψ2,ϕ2,θ3,ψ3,ϕ3) = |Basep2−Base p3|2 = k2
23 (17)

η3(θ3,ψ3,ϕ3,θ1,ψ1,ϕ1) = |Basep3−Base p1|2 = k2
31

where k12, k23 and k31 are constants.
Actuated: θ1,ψ1, θ2,ψ2, θ3, and ψ3 & Passive: ϕ1, ϕ2, and ϕ3.
Obtain explicit expressions for the passive variables using elimination.
Eliminate ϕ1 from first and third equation (17)→ η4(ϕ2,ϕ3, ·, ·) = 0
Eliminate ϕ2 from η4(ϕ2,ϕ3, ·, ·) = 0 and second equation (17) →
Single equation in ϕ3.
Final equation is 16th degree polynomial in tan(ϕ3/2) – Obtained using
symbolic algebra software MAPLE R⃝.
Expressions for the coefficients of the polynomial very long! –
Numerical example shown next.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL RESULTS

Assume d = 1/2, h =
√

3/2, li1 = 1, li2 = 1/2, li3 = 1/4 (i = 1,2,3),
γ = π/4 and k12 = k23 = k13 =

√
3/2.

For the actuated joint variables, choose θ1 = 0.1, ψ1 =−1.0, θ2 = 0.1,
ψ2 =−1.2, θ3 = 0.3, and ψ3 = 1.0 in radians.
The sixteenth degree polynomial is obtained as

0.00012t16
3 − 0.00182t15

3 +0.01376t14
3 −0.05230t13

3 +0.13148t12
3

− 0.24391t11
3 +0.35247t10

3 −0.40965t9
3 +0.38696t8

3

− 0.29811t7
3 +0.18502t6

3 −0.09104t5
3 +0.03433t4

3

− 0.00968t3
3 +0.00201t2

3 −0.00037t3+0.00006 = 0

where t3 = tan(ϕ3/2).
Numerical solution gives two real values of ϕ3 as (0.8831,1.8239)
radians.
Corresponding values of ϕ1 and ϕ2 are (0.3679,0.1146) radians and
(1.4548,1.0448) radians, respectively.
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. . . . . .

DIRECT KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR – NUMERICAL RESULTS

The position vector of centroid, computed as in the 3-RPS example,
using the first set of θi , ψi , ϕi is

Basep =
1
3
(Basep1+

Base p2+
Base p3) = (1.3768,0.2624,0.1401)T

The rotation matrix Base
Object [R], computed similar to the 3-RPS

example, is

Base
Object [R] =

 0.0306 0.2099 −0.9773
−0.9811 0.1806 0.0695
0.1910 −0.9609 0.2004


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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
REVIEW

Concept of workspace in serial manipulators → All (x ,y ,z ; [R]) such
that real solutions for the inverse kinematics exists.
In parallel manipulators two concepts: mobility and workspace.

Workspace dependent on the choice of output link.
Mobility: range of possible motion of the actuated joints in a parallel
manipulator.
Mobility is more important in parallel manipulators!

Mobility is determined by geometry/linkage dimensions →
Loop-closure constraint equations.
Mobility is related to the ability to assemble a parallel manipulator at
a configuration.
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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
REVIEW (CONTD.)

Mobility: All values of actuated variables such that real value(s) of
passive variables exists → determined by direct kinematics.
No real value of passive variable ⇒ Cannot be assembled.
Mobility → Obtain conditions for existence of real solutions for the
polynomial in one passive variable obtained after elimination.
Very few parallel manipulators where the polynomial degree is 4 or less.
In most cases mobility determined numerically using search.
In 4-bar mechanism, mobility can be obtained in closed-form.
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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
MOBILITY OF 4-BAR MECHANISM

Loop-closure constraint equation of a 4-bar

η1(θ1,ϕ1) = (l1 cosθ1− l0− l3 cosϕ1)
2+(l1 sinθ1− l3 sinϕ1)

2− l22 = 0

On simplification η1 becomes

P cosϕ1+Q sinϕ1+R = 0 (18)

where P , Q, and R are given by

P = 2l0l3−2l1l3c1

Q = −2l1l3s1
R = l20 + l21 + l23 − l22 −2l0l1c1

l0, l1, l2, and l3 are the link lengths (see figure 2), and c1, s1 are the
sine and cosine of the actuated joint angle θ1, respectively.
Using tangent half-angle substitutions (see Module 3, Lecture 3)

ϕ1 = 2tan−1(
−Q ±

√
P2+Q2−R2

R −P
) (19)
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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
MOBILITY OF 4-BAR MECHANISM - CONTD.

For real ϕ1, P2+Q2−R2 ≥ 0
Limiting case: P2+Q2−R2 = 0 → two ϕ1’s coinciding.
In the limiting case, the bounds on θ1 are

c1 =
l20 + l21 − l23 − l22 ±2l3l2

2l0l1
(20)

For full rotatability of θ1(0 ≤ θ1 ≤ 2π), θ1 cannot have any bounds.
For θ1 to have full rotatability there cannot be a solution to
equation (20)!!
For full rotatability of θ1, c1 > 1 or c1 <−1 in equation (20)
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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
MOBILITY OF 4-BAR MECHANISM - CONTD.

For full rotatability/mobility of θ1, first ϕ1 be real and then θ1 be
imaginary. –> Note the order of ϕ1 and θ1.
The condition c1 > 1 and c1 <−1 leads to

(l0− l1)2 > (l3− l2)2 (21)

and
(l0+ l1)< (l3+ l2) (22)

Two additional conditions from c1 > 1, c1 <−1 lead to l3+ l2+ l1 < l0
and l0+ l1+ l2 < l3 → violates triangle inequality.
Equation (21) gives rise to four inequalities

l0− l1 > l3− l2
l0− l1 > l2− l3
l1− l0 > l3− l2 (23)
l1− l0 > l2− l3
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. . . . . .

MOBILITY OF PARALLEL MANIPULATORS
MOBILITY OF 4-BAR MECHANISM - CONTD.

For the case of l1 < l0

l0+ l2 > l1+ l3
l0+ l3 > l1+ l2 (24)

Equations (22) and (24) imply that l0, l2 and l3 are all larger than l1.
Equations (22) and (24)→ l + s < p+q, s, l are the shortest and
largest links, and p, p are intermediate links.
Likewise, for l1 > l0

l1+ l2 > l0+ l3
l1+ l3 > l0+ l2 (25)

and again l0 is the shortest link.
Concisely represent equations (22) and (25) as l + s < p+q –
Grashof’s Criterion for 4-bar linkage.
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MOBILITY OF PARALLEL MANIPULATORS
MOBILITY OF THREE- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

Three- degree-of-freedom
parallel manipulator –
polynomial is eight
degree in x2

3 .
a = 0.5 and
(l1, l2, l3) ∈ [0.5, 1.5].
Points marked as ‘∗’ –
no real and positive
values of x2

3 .
Finer search → More
accurate the mobility
region.

0.5

1

1.5

0.5

1

1.5
0.5

1

1.5

l
1

l
2

l 3

Figure 9: Values of (l1, l2, l3) for imaginary θ3 (marked
by ∗)
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
REVIEW

Problem statement: given
geometry and link parameters,
position and orientation of a chosen output link with respect to a fixed
frame,

Find the joint (actuated and passive) joint variables.
Simpler than the direct kinematics problem since no need to worry
about the multiple loops or the loop-closure constraint equations.
Key idea is to ‘break’ the mechanism into serial chains and obtain the
joint angles of each chain in ‘parallel’.
Break parallel manipulators into chains such that no chain is
redundant.
Worst case: Solution of inverse kinematics of a general 6R serial
manipulator (See Module 3, Lecture 4).
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about the multiple loops or the loop-closure constraint equations.
Key idea is to ‘break’ the mechanism into serial chains and obtain the
joint angles of each chain in ‘parallel’.
Break parallel manipulators into chains such that no chain is
redundant.
Worst case: Solution of inverse kinematics of a general 6R serial
manipulator (See Module 3, Lecture 4).
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM
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φ3
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Figure 10: Inverse kinematics of a four-bar mechanism

Coupler is the chosen
output link.
Given the position of a
point Lp and the rotation
matrix L

2[R] of the
coupler link.
Planar case → x ,y
coordinates and the
orientation angle ϕ
given.
Lengths l0, l1, l2 = a+b,
a, b and l3 are known.
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM

We have

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

where x and y are known.
The angle ϕ denoting the orientation of link 2 is given by

ϕ = θ1+ϕ2−2π

Solve for θ1 and ϕ2 as

θ1 = Atan2(y −a sinϕ , x −acosϕ), ϕ2 = ϕ −θ1

In a similar manner, considering the equations

x = l0+ l3 cosϕ1+b cos(ϕ1+ϕ3), y = l3 sinϕ1+b sin(ϕ1+ϕ3)

ϕ = ϕ1+ϕ3−π

solve for ϕ1 and ϕ3.
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
PLANAR 4-BAR MECHANISM (CONTD.)

ϕ obtained as θ1+ϕ2−2π and as ϕ1+ϕ3−π must be same.
The four-bar mechanism is a one- degree-of-freedom mechanism and
only one of (x ,y ,ϕ) can be independent.

x and y are related through the sixth-degree coupler curve (see
equation (8))
ϕ must satisfy

x cosϕ + y sinϕ = (1/2a)(x2+ y2−a2− l21 )

The constraints on the given position and orientation of the chosen
output link, x ,y ,ϕ , are analogous to the case of the inverse kinematics
of serial manipulators when n < 6 (see Module 3, Lecture 3).
The inverse kinematics of a four-bar mechanism can be solved when
the given position and orientation is consistent.
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

d

d

h

X̂

Ẑ

l11 l12

Ŷ

{Base}

θ1

S1

S2

S3

l13

{Object}

ψ1

φ1

Basep

{F3}

X̂

γ

Ẑ

Figure 11: Inverse kinematics of six-
degree-of-freedom parallel manipulator

Figure shows one ‘finger’
RRRS chain.
Given the position and
orientation of the ‘gripped’
object with respect to
{Base}.
Obtain the rotations at the
nine joints in the three
‘fingers’.
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
A SIX- DEGREE-OF-FREEDOM PARALLEL MANIPULATOR

Vector Basep locates the centroid of the gripped object.
Base
Object [R]is also available.

In {Object}, the location of S1, ObjectS1, is known. Hence,
(x ,y ,z)T =Base S1 =

Base
Object [R]ObjectS1+

Base pObject is known.
From above

(x ,y ,z)T =

 cosθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))
−d + sinθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))

h+ l12 sinψ1+ l13 sin(ψ1+ϕ1)

 (26)

Equation (26) can be solved for θ1, ψ1 and ϕ1 using elimination (see
Module 3, Lecture 4) from known (x ,y ,z)T .
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elimination (see Module 3, Lecture 4). the eliminant is
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
INVERSE KINEMATICS OF STEWART PLATFORM

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 12: A leg of a Stewart platform

From figure 12, an arbitrary
platform point Pi can be written
in {B0} as

B0pi =
B0
P0
[R]P0pi +

B0 t (27)

The P0pi is a known constant
vector in {P0}.
The location of the base
connection points B0bi are
known.
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INVERSE KINEMATICS OF PARALLEL MANIPULATORS
INVERSE KINEMATICS OF STEWART PLATFORM (CONTD.)

From known B0
P0
[R] and translation vector B0t, obtain B0p1

[R(Ẑ,γi )]
T ((x ,y ,z)T −B0 b1) = [R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= l1

 sinϕ1 cosψ1
−sinψ1

cosϕ1 cosψ1

 (28)

where B0p1 is denoted by (x ,y ,z)T .
Three non-linear equations in l1, ψ1, ϕ1 → solution

l1 = ±
√

[(x ,y ,z)T −B0 b1]2

ψ1 = Atan2(−Y ,±
√

X 2+Z 2) (29)
ϕ1 = Atan2(X/cosψ1,Z/cosψ1)

where X ,Y ,Z are the components of [R(Ẑ,γi )]
T ((x ,y ,z)T −B0 b1).

Perform for each leg to obtain li , ψi and ϕi for i = 1, ...,6.
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. . . . . .

STEWART PLATFORM MANIPULATORS
REVIEW

Gough-Stewart platform – six- degree-of-freedom parallel manipulator.
Extensively used in flight simulators, machine tools, force-torque
sensors, orienting device etc. (see Merlet, 2001).
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Figure 13: Three configurations of Stewart platform manipulator
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STEWART PLATFORM MANIPULATORS
GEOMETRY OF A LEG

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 14: A leg of a Stewart platform
-revisited

Hooke (‘U’) joint modeled as 2
intersecting R joint → Each leg
R-R-P-S chain.
Hooke joint equivalent to
successive Euler rotations (see
Module 2, Lecture 2) ϕi about
Ŷi and ψi about X̂i .
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STEWART PLATFORM MANIPULATORS
GEOMETRY OF A LEG (CONTD.)

The vector B0pi locating the spherical joint can be written as

B0pi = B0bi +[R(Ẑ,γi )][R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= B0bi + li

 cosγi sinϕi cosψi + sinγi sinψi
sinγi sinϕi cosψi − cosγi sinψi

cosϕi cosψi

 (30)

Constant vector B0bi locates the origin Oi {i} at the Hooke joint i ,
Constant angle γi determines the orientation of {i} with respect to
{B0}, and
li is the translation of the prismatic (P) joint in leg i .

B0pi is a function of two passive joint variables, ϕi and ψi , and the
actuated joint variable li .
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STEWART PLATFORM MANIPULATORS
DIRECT KINEMATICS OF 3–3 CONFIGURATION

6 legs are B1−P1, B1−P3, B2−P1, B2−P2, B3−P2 and B3−P3
(see figure 13(a)).
6 actuated and 12 passive variables → 12 constraint equations needed.
Three constraints: Distances between P1, P2 and P3 are constant
(similar to 3-RPS).
Point P1 reached in two ways: 3 vector equations or 9 scalar equations.

B0b1+
−−−→
B1P1 = B0b2+

−−−→
B2P1

B0b2+
−−−→
B2P2 = B0b3+

−−−→
B3P2

B0b3+
−−−→
B3P3 = B0b1+

−−−→
B1P3

16th degree polynomial in tangent half-angle obtained after elimination
(Nanua, Waldron, Murthy, 1990).
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STEWART PLATFORM MANIPULATORS
DIRECT KINEMATICS OF 6–3 CONFIGURATION

Direct kinematics similar to 3–3 configurations (see figure 13(b))
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. . . . . .

GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN JOINT SPACE

6 distinct points in the fixed base and moving platform (see
figure 13(c))
Hooke joint modeled as 2 intersecting rotary (R) joint → 6 actuated
and 12 passive variables → Need 12 constraint equations!.
B0pi revisited

B0pi = B0bi +[R(Ẑ,γi )][R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= B0bi + li

 cosγi sinϕi cosψi + sinγi sinψi
sinγi sinϕi cosψi − cosγi sinψi

cosϕi cosψi

 (31)

6 constraint equations from S −S pair constraints (see Module 2,
Lecture 2)
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. . . . . .

GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN JOINT SPACE

6 S −S pair constraints

η1(q) = |B0p1−B0 p2|2−d2
12 = 0

η2(q) = |B0p2−B0 p3|2−d2
23 = 0

η3(q) = |B0p3−B0 p4|2−d2
34 = 0

η4(q) = |B0p4−B0 p5|2−d2
45 = 0 (32)

η5(q) = |B0p5−B0 p6|2−d2
56 = 0

η6(q) = |B0p6−B0 p1|2−d2
61 = 0

Need another 6 constraint equations.
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. . . . . .

GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN JOINT SPACE

All six points Pi , i = 1, ...,6 must lie on a plane

η7(q) = |B0p1−B0 p3|2−d2
13 = 0

η8(q) = |B0p1−B0 p4|2−d2
14 = 0

η9(q) = |B0p1−B0 p5|2−d2
15 = 0 (33)

η10(q) = (B0p1−B0 p3)× (B0p1−B0 p4) · (B0p1−B0 p2) = 0
η11(q) = (B0p1−B0 p4)× (B0p1−B0 p5) · (B0p1−B0 p3) = 0
η12(q) = (B0p1−B0 p5)× (B0p1−B0 p6) · (B0p1−B0 p4) = 0

dij is the known distance between the spherical joints Si and Sj on the
top platform.
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. . . . . .

GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN JOINT SPACE

12 non-linear equations in twelve passive variables ϕi ,ψi , i = 1, ...,6,
and six actuated joint variables li , i = 1, ...,6.
All equations do not contain all passive variables → first equation in
(32) is a function of only ϕ1, ψ1, l1, ϕ2, ψ2, and l2.
12 equations are not unique and one can have other combinations.
For direct kinematics, eliminate 11 passive variables from these 12
equations.
Very hard and not yet done!!
Direct kinematics of Gough-Stewart platform easier with task space
variables.
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GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 15: A leg of a Stewart platform
-revisited

The point Pi in {B0}

B0pi =
B0
P0
[R]P0pi +

B0 t (34)

where P0pi = (pix ,piy ,0)
T .

Denoting point Bi by B0Bi , the
leg vector B0Si is

B0Si =
B0
P0
[R]P0pi +

B0 t−B0 bi
(35)

where B0bi = (bix ,biy ,0)
T .
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GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

The magnitude of the leg vector is

l2i = (r11pix + r12piy + tx −bix )
2+(r21pix + r22piy + ty −biy )

2

+(r31pix + r32piy + tz −biz )
2 (36)

Using properties of the elements rij , get

(t2
x + t2

y + t2
z )+2pix (r11tx + r21ty + r31tz)+2piy (r12tx + r22ty + r32tz)

−2bix (tx +pix r11+piy r12)−2biy (ty +pix r21+piy r22)

+b2
ix +b2

iy +p2
ix +p2

iy − l2i = 0 (37)

For the six legs, i = 1, ...,6, six equations of the type shown above.
Additional 3 constraints

r2
11+ r2

21+ r2
31 = 1

r2
12+ r2

22+ r2
32 = 1 (38)

r11r12+ r21r22+ r31r32 = 0
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GOUGH-STEWART PLATFORM MANIPULATOR
DIRECT KINEMATICS OF 6–6 CONFIGURATION IN TASK SPACE

Equations (37) and (38) are nine quadratic equations in nine
unknowns, tx , ty , tz , r11, r12, r21, r22, r31, and r32 (see Dasgupta and
Mruthyunjaya, 1994)
All quadratic terms in equation (37) are square of the magnitude of
the translation vector (t2

x + t2
y + t2

z ), and as X and Y component of
the vector B0t, (r11tx + r21ty + r31tz) and (r12tx + r22ty + r32tz),
respectively.
Reduce the set of nine quadratics to six quadratic and three linear
equations in nine unknowns → Starting point of elimination.
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