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INTRODUCTION
REVIEW

Position kinematics → position & orientation of links, workspace,
mobility etc.
Change of position and orientation with respect to time → velocity
kinematics
Linear velocity as derivative of position vector.
Angular velocity in terms of derivative of rotation matrix.
Topics in velocity kinematics include

Linear and angular velocities of links
Manipulator Jacobian(s)
Singularities in velocity domain

Static equilibrium
Relation between external forces & moments and joint torques & forces.
Singularities in force domain
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
LINEAR VELOCITY OF RIGID BODY

The linear velocity of Oi with respect to {0} is defined as

0VOi
∆
=

d
dt

0Oi (t) = lim
∆t→0

0Oi (t +∆t)−0 Oi (t)
∆t

(1)

X̂

Ŷ

Ẑ

Oi

Oi

{i}(t)
{i}(t + ∆t)

0
Oi(t + ∆t)

0
Oi(t)

Rigid body at t

Rigid body at
t + ∆t

{0}

Figure 1: Linear velocity of a rigid body

‘0’ denote the coordinate system
{0} where the limit is taken.
The linear velocity vector can be
described in {j} as

j (0VOi

)
= j

0[R]0VOi (2)

Two different coordinate system
involved: where differentiation
done, and where described!
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF A RIGID BODY

Angular velocity cannot be obtained as a time derivative of 3
quantities representing orientation.
Angular velocity can be derived from time derivative of rotation
matrix.

Recall
0
i [R] 0

i [R]
T
= [U], [U] is a 3×3 identity matrix

Differentiate with respect to time t

˙0
i [R] 0

i [R]
T
+ 0

i [R] ˙0
i [R]

T
= [0]

where derivative of a matrix implies derivative of all components of the
matrix.
Above equation can be written as

˙0
i [R] 0

i [R]
T
+( ˙0

i [R] 0
i [R]T )T = [0]

Define a 3×3 skew symmetric matrix
0
i [Ω]R

∆
= ˙0

i [R] 0
i [R]

T

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 7 / 98



. . . . . .

LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF A RIGID BODY

Angular velocity cannot be obtained as a time derivative of 3
quantities representing orientation.
Angular velocity can be derived from time derivative of rotation
matrix.

Recall
0
i [R] 0

i [R]
T
= [U], [U] is a 3×3 identity matrix

Differentiate with respect to time t

˙0
i [R] 0

i [R]
T
+ 0

i [R] ˙0
i [R]

T
= [0]

where derivative of a matrix implies derivative of all components of the
matrix.
Above equation can be written as

˙0
i [R] 0

i [R]
T
+( ˙0

i [R] 0
i [R]T )T = [0]

Define a 3×3 skew symmetric matrix
0
i [Ω]R

∆
= ˙0

i [R] 0
i [R]

T

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 7 / 98



. . . . . .

LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF A RIGID BODY

Angular velocity cannot be obtained as a time derivative of 3
quantities representing orientation.
Angular velocity can be derived from time derivative of rotation
matrix.

Recall
0
i [R] 0

i [R]
T
= [U], [U] is a 3×3 identity matrix

Differentiate with respect to time t

˙0
i [R] 0

i [R]
T
+ 0

i [R] ˙0
i [R]

T
= [0]

where derivative of a matrix implies derivative of all components of the
matrix.
Above equation can be written as

˙0
i [R] 0

i [R]
T
+( ˙0

i [R] 0
i [R]T )T = [0]

Define a 3×3 skew symmetric matrix
0
i [Ω]R

∆
= ˙0

i [R] 0
i [R]

T

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 7 / 98



. . . . . .

LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY – SKEW SYMMETRIC MATRIX

Skew-symmetric matrix in detail

0
i [Ω]R =

 0 −ωs
z ωs

y
ωs

z 0 −ωs
x

−ωs
y ωs

x 0

 (3)

The product of O
i [Ω]R and a vector (px ,py ,pz)

T ∈ ℜ3 is a
cross-product

0
i [Ω]R(px ,py ,pz)

T =

 ωs
ypz − ωs

zpy
ωs

zpx − ωs
xpz

ωs
xpy − ωs

ypx

= 0ω i
s ×0 p (4)

0
i [Ω]R called angular velocity matrix
0ω i

s called angular velocity vector of {i} with respect to {0}.
In contrast to linear velocity, angular velocity vector is not a
straightforward differentiation!
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY – IN TERMS OF EULER ANGLES

Angular velocity in terms of Z-Y-Z Euler angles.
Recall for α , β and γ as the Z-Y-Z Euler angles

A
B [R] =

 cαcβ cγ − sαsγ −cαcβ sγ − sαcγ cαsβ
sαcβ cγ + cαsγ −sαcβ sγ + cαcγ sαsβ

−sβ cγ sβ sγ cβ

 (5)

Obtain ˙A
B [R] A

B [R]
T

The X, Y and Z components of the angular velocity vector

ωx
s = γ̇ cosα sinβ − β̇ sinα

ωy
s = γ̇ sinα sinβ + β̇ cosα (6)

ωz
s = γ̇ cosβ + α̇
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY - LEFT AND RIGHT INVARIANT

0
i [Ω]R called right-invariant – derived from right multiplication
0
i [R] 0

i [R]
T
= [U].

0ω i
s called the space-fixed angular velocity – superscript s.

0
i [R]

T 0
i [R] = [U] → another skew-symmetric matrix

0
i [Ω]L

∆
= 0

i [R]
T ˙0

i [R] =

 0 −ωb
z ωb

y
ωb

z 0 −ωb
x

−ωb
y ωb

x 0

 (7)

Define an angular velocity vector 0ω i
b from the three components

(ωb
x ,ωb

y ,ωb
z ).
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY – LEFT INVARIANT

For the Z-Y-Z rotation the three components are

ωx
b = −α̇ cosγ sinβ + β̇ sinγ

ωy
b = α̇ sinβ sinγ + β̇ cosγ (8)

ωz
b = α̇ cosβ + γ̇

0
i [Ω]L called left-invariant angular velocity matrix.
0ω i

b called body-fixed angular velocity vector of {i} with respect to
{0} – superscript b.
The two skew-symmetric matrices are related like two tensors

0
i [Ω]R = 0

i [R] 0
i [Ω]L

0
i [R]

T (9)

The two angular velocities are related as

0ω i
s
= 0

i [R]0ω i
b (10)
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i [R] 0
i [Ω]L

0
i [R]

T (9)

The two angular velocities are related as

0ω i
s
= 0

i [R]0ω i
b (10)
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LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY (CONTD.)

Ẑ Rigid Body

at t

Rigid Body at

t + ∆t

Oi

{0}

X̂

Ŷ

ip

{i}t+∆t

{i}t

Figure 2: Angular velocity of a rigid body

More on two forms of angular
velocity matrix and vectors.
Pure rotation – 0Oi (t) and
0Oi (t +∆t) are coincident and
only the elements of the rotation
matrix i

0[R] change with time.
Point P located by ip, and fixed
in {i}

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 12 / 98



. . . . . .

LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY (CONTD.)

Location of P in {0}
0p = 0

i [R]ip

and since P is fixed in {i}

˙0p ∆
=

0
Vp = ˙0

i [R] ip

and since 0
i [R]

−1
= 0

i [R]
T ,

0Vp = ˙0
i [R] 0

i [R]
T 0p

= 0
i [Ω]R

0p
= 0ω i

s ×0 p (11)

The coordinate system {i} does not appear except in denoting that
rigid body {i} is being considered.
Space-fixed angular velocity vector is said to be independent of the
choice of the body coordinate system.
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF RIGID BODY
ANGULAR VELOCITY OF RIGID BODY (CONTD.)

Using relation between 0
i [Ω]R and 0

i [Ω]L

0Vp = 0
i [R] 0

i [Ω]L
0
i [R]

T 0p
= 0

i [R]0i [Ω]L
ip

and get
0
i [R]

−1 0Vp = 0
i [Ω]L

ip

which yields
iVp = 0

i [Ω]L
ip = 0ω i

b ×i p (12)

Again except for denoting the reference coordinate system, the
coordinate system {0} does not appear!
Body-fixed angular velocity vector is said to be independent of the
choice of the fixed coordinate system.
Unless explicitly stated, space-fixed angular velocity vector derived
from ˙0

i [R] 0
i [R]

T is normally used.
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
ANGULAR VELOCITY IN SERIAL MANIPULATOR – ROTARY (R) JOINT

For two links connected by a rotary (R) joint (see Module 2, Lecture 2)

0
i [R] = 0

i−1[R] i−1
i [R(k̂,θi )]

The time derivative operation

˙0
i [R] 0

i [R]
T
=

d
dt

(0i−1[R] i−1
i [R(k̂,θi )]) (i−1

i [R(k̂,θi )]
T 0

i−1[R]T )

Rewrite above equation as

0
i [Ω]R = 0

i−1[Ω]R + 0
i−1[R] (i−1

i [Ṙ(k̂,θi )]
i−1
i [R(k̂,θi )]

T ) 0
i−1[R]T

To simplify, use the result

i−1
i [R(k̂,θi )] = e(

i−1
i [K ]θi )

i−1
i [K ] is the skew-symmetric form of the rotation axis vector k̂ and
θi is the rotation at the rotary joint (see Module 2, Lecture 2).
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
ANGULAR VELOCITY PROPAGATION IN SERIAL MANIPULATORS – R JOINT

k̂ is fixed in {i −1} and {i} → d
dt e

(i−1
i [K ]θi ) = i−1

i [K ]θ̇i e(
i−1
i [K ]θi )

From above and properties of a rotation matrix,
0
i [Ω]R = 0

i−1[Ω]R + 0
i−1[R] i−1

i [K ] 0
i−1[R]T θ̇i

= 0
i−1[Ω]R + 0

i [K ]θ̇i

and in terms of the space-fixed angular velocity 0ω(·)

0ω i =
0ω i−1+

0 k̂i θ̇i

Serial manipulators → R joint axis is chosen along the Z− axis.
Pre-multiply both sides by i

0[R] and simplify to get
iω i =

i
i−1[R]i−1ω i−1+ θ̇i (0 0 1)T (13)

iω i denotes i
0[R]0ω i – iω i not necessarily 0.

Angular velocity propagation in serial manipulators – links connected
by R joints
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
LINEAR VELOCITY PROPAGATION IN SERIAL MANIPULATOR – R JOINT

For two consecutive links in a serial manipulator (see Module 2,
Lecture 2)

0Oi =
0 Oi−1+

0
i−1[R]i−1Oi

Taking derivatives on both sides

0VOi =
0 VOi−1 +

0 ω i−1× 0
i−1[R]i−1Oi

Simplify and rewrite above as

iVi =
i
i−1[R](i−1Vi−1+

i−1 ω i−1×i−1 Oi ) (14)

Note: iVi and i−1Vi−1 denote i
0[R]0Vi and i−1

0 [R]0Vi−1, respectively.
They are not necessarily 0!
Linear velocity vector propagation in links of a serial manipulator –
Rotary joint.
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
VELOCITY PROPAGATION – PRISMATIC JOINTS

Two links connected by a prismatic (P) joint (see Module 2, Lecture 2)
Prismatic joint allows relative translation between {1− i} and {i} →
angular velocity is same
Relative translation is along Z− axis → ḋi (0 0 1)T

Velocity propagation for P joint

Angular velocity
iω i =

i
i−1[R]i−1ω i−1 (15)

Linear velocity
iVi =

i
i−1[R](i−1Vi−1+

i−1 ω i−1×i−1 Oi )+ ḋi (0 0 1)T (16)

where i
i−1[R]i−1ω i

∆
= iω i and i

i−1[R]i−1Vi
∆
= iVi .
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where i
i−1[R]i−1ω i

∆
= iω i and i

i−1[R]i−1Vi
∆
= iVi .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 18 / 98



. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
VELOCITY PROPAGATION – PRISMATIC JOINTS

Two links connected by a prismatic (P) joint (see Module 2, Lecture 2)
Prismatic joint allows relative translation between {1− i} and {i} →
angular velocity is same
Relative translation is along Z− axis → ḋi (0 0 1)T
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
VELOCITY PROPAGATION – PLANAR 3R MANIPULATOR

{2}

{3}

ŶTool

X̂0

Ŷ0

Link 1

{0}

{1}

Ŷ1

O2

l1

O1

θ2

l2

l3

Link 3

O3

X̂2

Link 2

X̂3, X̂Tool

{Tool}
θ3

Ŷ3

Ŷ2 X̂1

θ1

Figure 3: The planar 3R manipulator – revisited

All joint axis are parallel and
coming out of page.
{0} is fixed →

0ω0 = 0
0V0 = 0

Links connected by rotary (R)
joint → Equations (13) and (14)
give velocities of all links.
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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
VELOCITY PROPAGATION – PLANAR 3R MANIPULATOR (CONTD.)

For i=1
1ω1 = (0 0 θ̇1)

T

1V1 = 0

For i=2
2ω2 = (0 0 θ̇1+ θ̇2)

T

2V2 =

 c2 s2 0
−s2 c2 0
0 0 1

 0
l1θ̇1
0

=

 l1s2θ̇1

l1c2θ̇1
0


For i=3

3ω3 = (0 0 θ̇1+ θ̇2+ θ̇3)
T

3V3 =

 (l1s23+ l2s3)θ̇1+ l2s3θ̇2

(l1c23+ l2c3)θ̇1+ l2c3θ̇2
0


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. . . . . .

LINEAR AND ANGULAR VELOCITY OF LINKS
VELOCITY PROPAGATION – PLANAR 3R MANIPULATOR (CONTD.)

For i = Tool

ToolωTool = (0 0 θ̇1+ θ̇2+ θ̇3)
T

ToolVTool =

 (l1s23+ l2s3)θ̇1+ l2s3θ̇2

(l1c23+ l2c3+ l3)θ̇1+(l2c3+ l3)θ̇2+ l3θ̇3
0


Linear and angular velocity in {0}

0ωTool = (0 0 θ̇1+ θ̇2+ θ̇3)
T (17)

and

0VTool =

 −l1s1θ̇1− l2s12(θ̇1+ θ̇2)− l3s123(θ̇1+ θ̇2+ θ̇3)

l1c1θ̇1+ l2c12(θ̇1+ θ̇2)+ l3c123(θ̇1+ θ̇2+ θ̇3)
0

 (18)
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
INTRODUCTION

Linear and angular velocity of {Tool} (Equations (17) and (18)) can
be written in a compact form as

0VTool =



−l1s1− l2s12− l3s123 −l2s12− l3s123 −l3s123
l1c1+ l2c12+ l3c123 l2c12+ l3c123 l3c123

0 0 0
−− −− −−
0 0 0
0 0 0
1 1 1


 θ̇1

θ̇2

θ̇3



(19)

0VTool is a 6×1 entity – 0VTool
∆
=

 0VTool
−−

0ωTool


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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
INTRODUCTION

0VTool is not a 6×1 vector1 – contains linear velocity and the angular
velocity which have different units!
Use ‘–’ or ‘;’ to separate the linear and angular velocities & to remind
that 0VTool or (0VTool ;

0 ωTool )
T is not a vector.

Matrix in square brackets, 0
Tool [J(Θ)], is called the Jacobian matrix for

the planar 3R manipulator.
0
Tool [J(Θ)] relate the linear and angular velocities of the tool with the
joint velocities.
Jacobian matrix is for the end-effector or the {Tool} – see subscript
Tool .
Linear and angular velocities are in {0}, – leading superscript 0.

1In theoretical kinematics, (0ωTool ;
0 VTool ) is called twist (see Additional Material in

Module 2).
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX

0
Tool [J(Θ)] is not a proper matrix.

The first and the last three rows represent linear and angular velocity,
Elements of the first three rows have units of length,
Elements of last three rows have no units.

Similar to 0VTool , top and bottom halves of a Jacobian matrix are
separated by ‘–’.
Many matrix operations makes no sense – the condition number2 of
this matrix changes with the choice of length units.
0
Tool [J(Θ)] is best thought of as a map 0

Tool [J(Θ)] : Θ̇→0 VTool

2The condition number of a matrix is the ratio of the absolute value of the largest to
the smallest eigenvalues.
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

The Jacobian matrix can be derived for any serial manipulator with
rotary and prismatic joints.

Compute the linear and angular velocities using propagation equations
Rearrange in a matrix equation as done for the planar 3R manipulator.

Jacobian can be defined for any differentiable vector function.
Direct kinematics equations – differentiable vector function
X =Ψ(Θ)

Θ= (θ1,θ2, . . . ,θn) denotes the n joint variables
Position and orientation of end-effector are denoted by X 3.

[J(Θ)] is the matrix of first partial derivatives of Ψ with respect to θi
– i th column of [J(Θ)] is the partial derivatives of Ψ with respect to θi .

[J(Θ)] =

[
∂Ψ
∂θ1

∂Ψ
∂θ2

. . .
∂Ψ
∂θn

]
3For example, X denotes the three Cartesian position variables (x , y , z) and the

three Euler angles (α, β ,γ).
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

0
Tool [J(Θ)] very important in velocity kinematics of serial manipulators.
The elements of the Jacobian matrix are non-linear functions of the
joint variables Θ.

Manipulator in motion → 0
Tool [J(Θ)] is time varying.

At instant with Θ known, 0
Tool [J(Θ)] relates linear and angular

velocities to joint rates.
The relationship is linear!

The Jacobian matrix can be obtained for any link – most often for
end-effector.
The Jacobian matrix is always with respect to a coordinate system –
where the linear and angular velocities are obtained.
Most often Jacobian matrix is with respect to fixed {0}.
Jacobian matrix can be written in any coordinate system using
rotation matrices.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 27 / 98



. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
PROPERTIES OF JACOBIAN MATRIX (CONTD.)

The Jacobian matrix is m×n – m is dimension of the motion space4

and n is the number of actuated joints.
If 0

Tool [J(Θ)] is square, i.e., m = n, and if the determinant
det(0Tool [J(Θ)]) ̸= 0, then

Θ̇ = 0
Tool [J(Θ)]

−1 0VTool (20)

Above relationship gives joint velocities required for a desired linear
and angular velocities of {Tool}.
Direct velocity kinematics – 0VTool =

0
Tool [J(Θ)]Θ̇

Inverse velocity kinematics – Θ̇ = 0
Tool [J(Θ)]

−1 0VTool

4Same as λ in the definition of DOF in Module 3, Lecture 1 – m = 6 for ℜ3 and
m = 3 for plane.
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SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX
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Figure 4: A planar 2R manipulator

Consider a planar 2R manipulator shown
in in figure 4.
The linear velocity V of the end-effector
(point (x ,y)) is

V ∆
=

(
ẋ
ẏ

)
=

[
−l1s1− l2s12 −l2s12
l1c1+ l2c12 l2c12

](
θ̇1

θ̇2

)
where θ̇1, θ̇2 are the two joint rates.
The matrix inside square brackets is the
Jacobian matrix in {0}.
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SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX

Magnitude of linear velocity vector

V2 ∆
= V ·V = g11θ̇2

1 +2g12θ̇1θ̇2+g22θ̇2
2 (21)

gij , i , j = 1,2, are the elements of a matrix [ g ] = [J(Θ)]T [J(Θ)].
For the planar 2R manipulator the gij ’s are

g11 = l21 + l22 +2l1l2c2

g12 = g21 = l22 + l1l2c2

g22 = l22 (22)

The elements gij ’s are functions of θ2 alone and g22 is a constant.
gij ’s could in general be function of all joint variables.
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX

Maximum and minimum V2 subject to constraint θ̇2
1 + θ̇2

2 = 15

Solve ∂V∗2/∂ θ̇i = 0, i = 1,2, where

V∗2 = g11θ̇2
1 +2g12θ̇1θ̇2+g22θ̇2

2 −λ (θ̇1
1 + θ̇2

2 −1)

Partial differentiation reduces to an eigenvalue problem

[ g ]Θ̇−λ Θ̇ = 0 (23)

The eigenvalues are

λ1,2 = (1/2){(g11+g22)± [(g11+g22)
2−4(g11g22−g2

12)]
1/2}

5Without any constraint V ∈ ℜ2 and fills up ℜ2. The constraint θ̇2
1 + θ̇2

2 = 1 is
similar to the unit speed constraint in differential geometry of space curves.
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

[ g ] real, symmetric and positive definite → eigenvalues are always
real and positive.
For λ1 > λ2,

|V|max =
√

λ1, |V|min =
√

λ2

For square Jacobian matrix, eigenvalues of [J(Θ)] are
√

λ1 and
√

λ2
(see Strang 1976).
Maximum and minimum |V| for 2R manipulator –

√
λ1 and

√
λ2.

If θ̇2
1 + θ̇2

2 = k2 is used → maximum and minimum |V| are scaled by k .
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

From V = [J(Θ)]Θ̇,
[J]TV = [ g ]Θ̇

and for non-singular [ g ],

VT ([J][ g ]−1)([J][ g ]−1)TV = Θ̇
T
Θ̇

For a planar 2R manipulator, ([J][ g ]−1)([J][ g ]−1)T is symmetric
and of rank 2.
Hence for Θ̇

T
Θ̇ = 1, (ẋ , ẏ)T ([J][ g ]−1)([J][ g ]−1)T (ẋ , ẏ) = 1.

xT [A]x = 1, with [A] symmetric and non-singular, describes an ellipse.
The tip of the linear velocity vector traces an ellipse and the
semi-major and semi-minor axes of the ellipse are

√
λ1 and

√
λ2,

respectively.

For Θ̇
T
Θ̇ = k2, size of ellipse is scaled by k , but shape of ellipse does

not change with k .
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SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

Eigenvalues of [ g ] are only
functions of θ2 → shape and size
of ellipse will change with θ2.
Can plot ellipses at all points in
the workspace
Recall: workspace of a planar 2R
is the area between two circles
of radii l1+ l2 and l1− l2.
Ellipse independent of θ1 → All
ellipses at a chosen radius (in
the annular region) are same!

(x, y)

X̂0

Ŷ0

Link 1

{0}

O2

l1

O1

θ2

l2

θ1

Link 2

Figure 5: Velocity ellipse for a planar 2R
manipulator
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

The shape of the velocity ellipse indicates which directions are ‘easier’
to move for given joint rates
|V| is larger along major axis → Easier to move along major axis.
Less easier to move along the minor axis.
Ellipse reduces to a circle → equally easy to move in all directions.
All points in the workspace, where the ellipse is a circle, are called
isotropic (see Salisbury 1982)
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

Isotropic configuration – eigenvalues of [J(Θ)] (or [ g ]) are equal.
For planar 2R, eigenvalues equal only if

g11 = g22 and g12 = 0

From the expressions of gij ’s above conditions imply that

l21 +2l1l2c2 = 0 and l22 + l1l2c2 = 0

and this is only possible if

l1 =
√

2l2 and c2 =− 1√
2

A planar 2R manipulator can posses isotropic configurations only if the
link lengths have a ratio of

√
2, and θ2 = 135◦.

Since θ1 ∈ [0,2π], all the isotropic configurations lie on a circle.
Degenerate form of velocity ellipse → singular configuration (see
Lecture 4).
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
GEOMETRIC INTERPRETATION OF JACOBIAN MATRIX (CONTD.)

Spatial motion & 2 degree-of-freedom → Velocity vector on tangent
plane to a surface → Velocity ellipse.
Spatial motion & 3 degree-of-freedom → Velocity vector lies in ℜ3 →
Velocity ellipsoid.
Same ideas can be extended to angular velocity vector.
Extension to 6×6 Jacobian matrix – more complicated since not a
proper matrix (see Ghosal and Ravani (1998), Bandyopadhyay and
Ghosal (2004b) and references in them)

Need to use notions of screws and twists (see Hunt 1976).
Velocity ellipse → Cylindroid & Two screw system
Velocity ellipsoid → Hyperboloid & Three screw system.

Extension to parallel manipulators using parallel manipulator Jacobian.
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
RESOLUTION OF REDUNDANCY AT VELOCITY LEVEL

For square Jacobian → matrix can be inverted to obtain joint rates.
Redundant systems (see Module 3, Lecture 3) Jacobian matrix is not
square → number of joint variables more than 6 (for ℜ3) or more than
3 (for ℜ2).
Jacobian matrix cannot be inverted to obtain joint rates given linear
and angular velocity of end-effector.
Use of pseudo-inverse (Strang 1976) to resolve redundancy –
pseudo-inverse of m×n (n > m) matrix [J(Θ)]

[J(Θ)]# = [J(Θ)]T ([J(Θ)][J(Θ)]T )−1
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. . . . . .

SERIAL MANIPULATOR JACOBIAN MATRIX
RESOLUTION OF REDUNDANCY AT VELOCITY LEVEL

Some properties of pseudo-inverse
Dimension of [J(Θ)]# is n×m – not square!
Left inverse → [J(Θ)][J(Θ)]# = [U] – [U] is an identity matrix.
Not a right inverse [J(Θ)]#[J(Θ)] ̸= [U]
General solution to 0VTool =

0
Tool [J(Θ)]Θ̇ is

Θ̇ = [J(Θ)]#0VTool +([U]− [J(Θ)]#[J(Θ)])Ẇ

([U]− [J(Θ)]#[J(Θ)])Ẇ lies in the null-space of [J(Θ)].
The pseudo-inverse solution, without the null-space term, minimises
Θ̇

T
Θ̇.

The null-space term used to avoid obstacles, joint limits and to
maximise manipulability index det([[J(Θ)][J(Θ)]T ]1/2)(see Nakamura
1991).
Disadvantages

Local numerical scheme – cannot obtain global or analytical results.
Velocity level and not a position and orientation level scheme for
resolution of redundancy.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
INTRODUCTION

Parallel manipulator – actuated and passive joints – q = (θ ,ϕ)T

Loop-closure constraint equations do not contain all joint variables.
No natural choice of end-effector {Tool} → no velocity propagation
Platform type parallel manipulator – position of centroid & orientation
of platform {Tool} is of interest.
Linear and angular velocity of centroid and {Tool}

0ωTool =
d
dt

(0Tool [R]) 0
Tool [R]

T
=0

Tool [Jω (q)] q̇

0VTool =
1
3
( ˙0p1+ ˙0p2+ ˙0p3) =

0
Tool [JV(q)] q̇ (24)

0
Tool [Jω (q)], 0

Tool [JV(q)] – Jacobian for linear, angular velocities.
q̇ – time derivatives of configuration variables q.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
ELIMINATION OF PASSIVE JOINT RATES

Linear and angular velocity function of all q and q̇.
Only the actuated joints θi , i = 1,2, ...,n are specified.
The m passive ϕi ’s can be obtained from direct kinematics
Need expression for ϕ̇i and obtain linear and angular velocities in terms
of only θ̇i ’s.
Derived from the m loop-closure or constraint equations.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
ELIMINATION OF PASSIVE JOINT RATES

For m passive variables, m constraint equations
ηi (q1, ...,qn+m) = 0, i = 1, ...,m or in a vector form

η(q) = η(θ ,ϕ) = 0 (25)

Differentiate equation (25) with respect to t, and rearrange

[K (q)]θ̇ +[K ∗(q)]ϕ̇ = 0 (26)

Columns of the m×n matrix [K (q)] are the partial derivatives of η(q)
with respect to the actuated variables θi , i = 1, ...,n,
Columns of m×m matrix [K ∗(q)] are the partial derivatives of η(q)
with respect to the passive variables ϕi , i = 1, ...,m.

[K ∗(q)] is always an m×m square matrix.
[K (q)] and [K ∗(q)] are functions q = (θ ,ϕ) ∈ ℜn+m.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
ELIMINATION OF PASSIVE JOINT RATES (CONTD.)

If det([K ∗]) ̸= 0,
ϕ̇ =−[K ∗]−1[K ]θ̇ (27)

The angular and linear velocity can partitioned as

0ωTool = [Jω ]θ̇ +[J∗
ω ]ϕ̇ , 0VTool = [JV]θ̇ +[J∗

V]ϕ̇

Substitute ϕ̇ to get

0ωTool = ([Jω ]− [J∗ω ][K ∗]−1[K ])θ̇
0VTool = ([JV ]− [J∗

V ][K
∗]−1[K ])θ̇

Define equivalent [Jω ]eq and [JV]eq

[JV]eq
∆
= [JV]− [J∗

V][K
∗]−1[K ] (28)

[Jω ]eq
∆
= [Jω ]− [J∗

ω ][K ∗]−1[K ] (29)
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EQUIVALENT JACOBIAN MATRIX IN PARALLEL MANIPULATORS

Using [JV]eq and [Jω ]eq

0VTool
∆
=

 0VTool
−−

0ωTool

= 0
Tool [Jeq]θ̇ (30)

The 6×n matrix, 0
Tool [Jeq], consists of 3×n rows from [JV]eq and

3×n rows from [Jω ]eq.

The matrix 0
Tool [Jeq] is the Jacobian matrix for parallel manipulators.

At a known q, equation (30) relate actuated joint rates θ̇ to the linear
and angular velocity of chosen end-effector {Tool}.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EQUIVALENT JACOBIAN MATRIX IN PARALLEL MANIPULATORS

The matrix 0
Tool [JV]eq can be used define a [ gV ]eq for parallel

manipulators.

[ gV ]eq = ([JV]− [JV
∗][K ∗]−1[K ])T ([JV]− [JV

∗][K ∗]−1[K ]) (31)

[ gV ]eq is symmetric and positive definite.
Similar to a serial manipulator, the tip of the linear velocity vector lies
on an ellipse or an ellipsoid.
Much more complicated than in serial manipulators!
[ gω ]eq defined using [Jω ]eq → angular velocity ellipse or ellipsoid.
The above geometrical description is valid if det [K ∗] ̸= 0.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – PLANAR 4-BAR MECHANISM

Constraint equation of a four-bar (see Module 4, Lecture 1)

η1(q)
∆
= l1 cosθ1+ l2 cos(θ1+ϕ2)− l0− l3 cosϕ1 = 0

η2(q)
∆
= l1 sinθ1+ l2 sin(θ1+ϕ2)− l3 sinϕ1 = 0

θ1 is the actuated joint variable and (ϕ1,ϕ2) are the passive joint
variables.
Derivative of constraint equations with respect to time t gives(

−l1 sinθ1− l2 sin(θ1+ϕ2)
l1 cosθ1+ l2 cos(θ1+ϕ2)

)
θ̇1+(

l3 sinϕ1 −l2 sin(θ1+ϕ2)
−l3 cosϕ1 l2 cos(θ1+ϕ2)

)(
ϕ̇1

ϕ̇2

)
= 0
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – PLANAR 4-BAR MECHANISM

[K ] and [K ∗] matrices for the planar 4-bar are

[K ] =

(
−l1 sinθ1− l2 sin(θ1+ϕ2)
l1 cosθ1+ l2 cos(θ1+ϕ2)

)

[K ∗] =

[
l3 sinϕ1 −l2 sin(θ1+ϕ2)
−l3 cosϕ1 l2 cos(θ1+ϕ2)

]
The matrix [K ∗] is a square 2×2 matrix.
[K ] and [K ∗] matrices are functions of the actuated and passive
variables.
Fairly simple to calculate for planar 4-bar.
Multi- degree-of-freedom spatial mechanisms → use symbolic algebra
software such as MAPLE.
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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR

For the 3-RPS manipulator, loop-closure equations are

η1(q) = 3−3a2+ l21 + l22 + l1l2c1c2−2l1l2s1s2−3l1c1−3l2c2 = 0
η2(q) = 3−3a2+ l22 + l23 + l2l3c2c3−2l2l3s2s3−3l2c2−3l3c3 = 0
η3(q) = 3−3a2+ l23 + l21 + l3l1c3c1−2l3l1s3s1−3l3c3−3l1c1 = 0

Perform the derivative of ηi (q), i = 1,2,3, with respect to time and
rearrange to obtain [K ] and [K ∗]

[K ] involves derivative with respect to the actuated variables l

 2l1 −3c1 + l2c1c2 −2l2s1s2 2l2 −3c2 + l1c1c2 −2l1s1s2 0
0 2l2 −3c2 + l3c2c3 −2l3s2s3 2l3 −3c3 + l2c2c3 −2l2s2s3

2l1 −3c1 + l3c1c3 −2l3s1s3 0 2l3 −3c3 + l1c1c3 −2l1s1s3


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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

[K ∗] involves derivative with respect to passive joint variables, θ

 3l1s1 − l1l2s1c2 −2l1l2c1s2 3l2s2 − l1l2c1s2 −2l1l2s1c2 0
0 3l2s2 − l2l3s2c3 −2l2l3c2s3 3l3s3 − l2l3c2s3 −2l2l3s2c3

3l1s1 − l1l3s1c3 −2l1l3c1s3 0 3l3s3 − l1l3c1s3 −2l1l3s1c3



For the centroid, [JV] and [JV
∗], are

[JV] = (1/3)

 −c1 (1/2)c2 (1/2)c3

0 (−
√

3/2)c2 (
√

3/2)c3
s1 s2 s3


and

[JV
∗] = (1/3)

 l1s1 −(1/2)l2s2 (−1/2)l3s3
0 (

√
3/2)l2s2 (−

√
3/2)l3s3

l1c1 l2c2 l3c3


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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

To obtain [Jω ] and [Jω ∗], compute d
dt (

Base
Top [R]) Base

Top [R]
T and then

rearrange.
Expressions are too large – for l1 = 2/3, l2 = 3/5, l3 = 3/4 and
corresponding θ1 = 0.7593, θ2 = 0.2851, θ3 = 0.8028 radians,

[Jω ] =

 −1.4147 1.3103 1.6929
0.2092 0.7130 0.8537
−1.3628 −0.1286 0.6743

 , [Jω ∗] =

 0.6682 0.8774 −0.3316
−1.6372 0.4175 0.1672
1.4206 0.0226 0.1321



Expressions for [JV]eq and [Jω ]eq are more harder to obtain – [K ∗]−1

is needed. For above numerical values

[JV]eq =

 −0.2313 0.5372 0.0114
0.0722 −0.6758 0.1951
1.1765 −1.6830 0.9223

 , [Jω ]eq =

 2.1409 −6.4331 0.4665
0.0072 −4.1216 1.6048
0.1565 0.4570 −0.3285


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. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

For a = 1/2, and (l1, l2, l3) = (0.5,1.0,2.0) meters →
(θ1,θ2,θ3) = (0.4,0.7535,0.2402) radians by direct kinematics (see
Module 4, Lecture 2).
Tip of linear velocity vector of centroid lies on an ellipsoid – shown in
figure 6 as three sectional views and a 3D plot.
Maximum, intermediate, and minimum velocities along the principal
axes of the ellipsoid are 0.3724,0.3162,0.2031 m/sec, respectively.
The directions of principal axes are (0.9921,−0.0394,0.1187)T ,
(0.1166,0.6338,−0.7646)T and (−0.0452,0.7724,0.6335)T ,
respectively.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 52 / 98



. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

For a = 1/2, and (l1, l2, l3) = (0.5,1.0,2.0) meters →
(θ1,θ2,θ3) = (0.4,0.7535,0.2402) radians by direct kinematics (see
Module 4, Lecture 2).
Tip of linear velocity vector of centroid lies on an ellipsoid – shown in
figure 6 as three sectional views and a 3D plot.
Maximum, intermediate, and minimum velocities along the principal
axes of the ellipsoid are 0.3724,0.3162,0.2031 m/sec, respectively.
The directions of principal axes are (0.9921,−0.0394,0.1187)T ,
(0.1166,0.6338,−0.7646)T and (−0.0452,0.7724,0.6335)T ,
respectively.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 52 / 98



. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

For a = 1/2, and (l1, l2, l3) = (0.5,1.0,2.0) meters →
(θ1,θ2,θ3) = (0.4,0.7535,0.2402) radians by direct kinematics (see
Module 4, Lecture 2).
Tip of linear velocity vector of centroid lies on an ellipsoid – shown in
figure 6 as three sectional views and a 3D plot.
Maximum, intermediate, and minimum velocities along the principal
axes of the ellipsoid are 0.3724,0.3162,0.2031 m/sec, respectively.
The directions of principal axes are (0.9921,−0.0394,0.1187)T ,
(0.1166,0.6338,−0.7646)T and (−0.0452,0.7724,0.6335)T ,
respectively.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 52 / 98



. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)

For a = 1/2, and (l1, l2, l3) = (0.5,1.0,2.0) meters →
(θ1,θ2,θ3) = (0.4,0.7535,0.2402) radians by direct kinematics (see
Module 4, Lecture 2).
Tip of linear velocity vector of centroid lies on an ellipsoid – shown in
figure 6 as three sectional views and a 3D plot.
Maximum, intermediate, and minimum velocities along the principal
axes of the ellipsoid are 0.3724,0.3162,0.2031 m/sec, respectively.
The directions of principal axes are (0.9921,−0.0394,0.1187)T ,
(0.1166,0.6338,−0.7646)T and (−0.0452,0.7724,0.6335)T ,
respectively.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 52 / 98



. . . . . .

PARALLEL MANIPULATOR JACOBIAN MATRIX
EXAMPLE – 3-RPS PARALLEL MANIPULATOR (CONTD.)
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Figure 6: Velocity ellipsoid at a non-singular point
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. . . . . .

SINGULARITIES IN SERIAL AND PARALLEL

MANIPULATORS
SERIAL MANIPULATORS – REVIEW

Direct velocity kinematics
0VTool =

0
Tool [J(Θ)]Θ̇

For known Θ and Θ̇, linear and angular velocity of end-effector
obtained from above equation.
0VTool always exists

Inverse velocity kinematics

Θ̇ = 0
Tool [J(Θ)]

−1 0VTool

Joint rates can be obtained when Jacobian matrix is square, and
det(0Tool [J(Θ)]) = 0

det(0Tool [J(Θ)]) = 0 → Loss of rank of 0
Tool [J(Θ)] → Singular

configuration.
At singular configuration, Θ̇ cannot be obtained for given linear and
angular velocity.
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. . . . . .

SINGULARITIES IN SERIAL AND PARALLEL

MANIPULATORS
SERIAL MANIPULATORS – SINGULARITY IN PLANAR 2R MANIPULATOR

For a planar 2R manipulator(
ẋ
ẏ

)
=

[
−l1s1− l2s12 −l2s12
l1c1+ l2c12 l2c12

](
θ̇1

θ̇2

)
The Jacobian matrix is

0
Tool [J(Θ)] =

[
−l1s1− l2s12 −l2s12
l1c1+ l2c12 l2c12

]
det(0Tool [J(Θ)]) = 0 → sinθ2 = 0.
This implies θ2 = 0,π → the second link is stretched completely or
folded on top of first link.
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Figure 7: Singular configurations for a planar
2R manipulator

Planar 2R manipulator for
θ2 = 0,π.
End-effector can only move
perpendicular to the line O1−O2
connecting the two rotary joints.
The end-effector cannot have a
velocity component along the
second link.
Instantaneous loss (only at this
configuration) of one degree of
freedom.
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At θ2 = 0,π, the velocity ellipse degenerates to a line – along the
possible direction of motion as shown in figure 7.
For the 2R planar example, the Jacobian matrix can be inverted easily,
and (

θ̇1

θ̇2

)
=

1
l1l2s2

(
l2c12 l2s12

−l1c1− l2c12 −l1s1− l2s12

)(
ẋ
ẏ

)
sinθ2 is in the denominator and as θ2 → 0 or π, (θ̇1, θ̇2)

T → ∞.
Knowledge of singularity is important – when det(0Tool [J(Θ)]) is close
to zero, joint velocities tend to become large and cause problems for
the servo controller of the robot.
Singularities occurs in all serial manipulator and not only in planar 2R
Planar 2R singularity only at workspace boundaries – in other
manipulators can happen elsewhere also!
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PARALLEL MANIPULATORS – REVIEW

In parallel manipulators, equivalent Jacobian need to be used.
For parallel manipulators, the linear and angular velocity Jacobians are

[JV]eq
∆
= [JV]− [J∗

V][K
∗]−1[K ]

[Jω ]eq
∆
= [Jω ]− [J∗

ω ][K ∗]−1[K ]

Equivalent Jacobian

0
Tool [J]eq =

 [JV]eq
−−

[Jω ]eq


det(0Tool [Jeq]) = 0 → End-effector looses one or more degrees of
freedom → actuated joint rates Θ̇→ ∞.
Similar to serial manipulators – at singularity velocity ellipse or
ellipsoid degenerates.
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. . . . . .

SINGULARITIES IN SERIAL AND PARALLEL

MANIPULATORS
PARALLEL MANIPULATORS – GAIN SINGULARITY

In addition to loss singularity, second kind of singularity in parallel
manipulators.
θ̇ = 0 → Actuated joints locked → mechanism becomes a structure.
Equation [K (q)]θ̇ +[K ∗(q)]ϕ̇ = 0 becomes

[K ∗(q)]ϕ̇ = 0

From linear algebra, above equation can have a non-zero solution ϕ̇ ∗

when det([K ∗]) = 0.
ϕ̇ ∗

is the eigenvector corresponding to the zero eigenvalue of [K ∗].
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PARALLEL MANIPULATORS – GAIN SINGULARITY

For a non-zero ϕ̇ ∗
, and θ̇ = 0,

0ωTool = [Jω ∗]ϕ̇ ∗

0VTool = [JV
∗]ϕ̇ ∗

Even with actuators locked the linear and angular velocity are
non-zero.
The end-effector of the parallel manipulator can instantaneously gain
one or more degrees of freedom.
Termed as gain singularity.
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SINGULARITIES IN SERIAL AND PARALLEL

MANIPULATORS
PARALLEL MANIPULATORS – GAIN SINGULARITY (CONTD.)

Geometric picture: Non-singular configuration.
At non-singular configurations, θ̇ = 0 → ϕ̇ = 0 → 0VTool = 0.
At a non-singular position velocity ellipsoid is of zero size.

Geometric picture: Gain singularity configuration.
Loss of rank of [K ∗].
If rank is (m−1) → there exists non zero eigenvector ϕ̇1 for the zero
eigenvalue of [K ∗]
C1ϕ̇ also an eigenvector with C1 a scaling constant.
For θ̇ = 0

0VTool = C1[JV
∗]ϕ̇1

There can be motion along [JV
∗]ϕ̇1 !

The zero velocity ellipsoid ‘grows’ into a line.
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PARALLEL MANIPULATORS – GAIN SINGULARITY (CONTD.)

If rank of matrix [K ∗] is (m−2), then

0VTool = C1[JV
∗]ϕ̇1+C2[JV

∗]ϕ̇2

ϕ̇1, ϕ̇2 are eigenvectors from the two zero eigenvalues of [K ∗].
C1, C2 are the two scaling constants.

For C 2
1 +C 2

2 = 1, tip of velocity vector traces an ellipse6.
If rank of [K ∗] is (m−3), then tip of velocity vector will lie on an
ellipsoid.
If rank is less than (m−3) and only 0VTool is of interest → similar to
a redundant serial manipulator.

6C1 and C2 are similar to θ̇1 and θ̇2 and C2
1 +C2

2 = 1 is similar to the constraint
θ̇2
1 + θ̇2

2 = 1 used in the planar 2R example. Using same reasoning as in 2R case, the tip
of 0VTool for a parallel manipulator lies on an ellipse.
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MANIPULATORS
PARALLEL MANIPULATORS – GAIN SINGULARITY

Gain singularity occurs in all parallel and hybrid manipulators.
In fully-parallel six- degree-of-freedom manipulator (end-effector
directly connected to base by one actuated joint – Stewart-Gough
platform) only gain singularity possible (Hunt, 1991).
In six- degree-of-freedom hybrid parallel manipulator (example six-
degree-of-freedom three-fingered hand, see Module 2, Lecture 3 and
Module 4, Lecture 2) both loss and gain singularity possible.
Gain singularity is related to capability of resisting external force or
moments (see Lecture 5).
Large amount of literature on singularity analysis of parallel
manipulators (see, for example, Hunt 1986, Litvin et. al 1990, Merlet
1991, Gosselin and Angeles 1990, Zlatanov 1995, Park and Kim 1999).
Singularity analysis & uses of singularity analysis is an active topic of
research (see Bandyopadhyay and Ghosal 2009, Ranganath et al.
2004)
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SINGULARITIES IN SERIAL AND PARALLEL

MANIPULATORS

Special link lengths and geometry → gain over finite range of motion.
Passive link can show instantaneous and finite dwell.

l0

{L}

ŶL

X̂L

ŶR

X̂R

{R}

OL

OR

θ2

l4

Link 4

l3

Link 3

θ1

l2

Link 2

O2

O3

Link 1

l1

Figure 8: Finite motion at gain singularity

Link 2 and Link 3 can rotate
from 0 to 2π with θ1 and θ2
locked (see Bandyopadhyay
and Ghosal (2004a) for
details).
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SINGULARITIES IN PARALLEL MANIPULATORS – EXAMPLES
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OR
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Figure 9: Singular configuration for a planar four-bar
mechanism

det([K ∗]) = 0 gives
l2l3 sin(θ1+ϕ2−ϕ1) = 0
⇒ θ1+ϕ2−ϕ1 = nπ →
ϕ3 = 2π
Link 2 and 3 are parallel.
Instantaneous gain: θ1
locked, point O2 is fixed
→ Link 2 and Link 3
along a straight line →
O3 can have
instantaneous velocity
along the common
tangent.
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MANIPULATORS
SINGULARITIES IN PARALLEL MANIPULATORS – EXAMPLES

Example – The 3-RPS parallel manipulator (see Basu and Ghosal, 1997
For the 3-RPS parallel manipulator,

det([JV]eq) = 0 → linear velocity ellipsoid described by the centroid of
the top platform degenerates to an ellipse7

For (l1, l2, l3) = (0.5,1.0,1.9710) meters and
(θ1,θ2,θ3) = (1.1691,0.4781,0.2355) radians → det([JV]eq) = 0.

The linear velocity ellipse at this configuration is shown in sectional
and a 3D view in figure 10.
Not a contradiction to result by Hunt (1991)

The 3-RPS parallel manipulator is not six- degree-of-freedom
manipulator,
Only the linear velocity vector of the centroid is considered.

7See Ghosal and Ravani (2001) for more details.
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Example – The 3-RPS parallel manipulator
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Figure 10: Linear velocity ellipse at a loss singular point
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SINGULARITIES IN PARALLEL MANIPULATORS – EXAMPLES

Example – 3-RPS parallel manipulator
Gain one or more degrees-of-freedom when det([K ∗]) = 0 i.e.,

det([K ∗]) =

(3l1s1− l1l2s1c2−2l1l2c1s2)× (3l2s2− l2l3s2c3−2l2l3c2s3)×
(3l3s3− l1l3c1s3−2l1l3s1c3)

+(3l1s1− l1l3s1c3−2l1l3c1s3)× (3l2s2− l1l2c1s2−2l1l2s1c2)×
(3l3s3− l2l3c2s3−2l2l3s2c3) = 0

det([K ∗]) = 0 is a function of all (θ ,ϕ)
det([K ∗]) = 0 and three loop-closure equations → four equations in six
variables → a 2D surface.
Difficult to eliminate (see Module 3, Lecture 4) and get analytical
expression.
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Example – 3-RPS parallel manipulator
For (l1, l2, l3) = (0.575,0.483,0.544), and
(θ1,θ2,θ3) = (−0.3441,−0.0138,0.2320) radians, det[K ∗]≈ 0.
The eigenvalues of [K ∗] are approximately −0.5565, 0 and 0.4509.
The three corresponding eigenvectors are
(−0.8098,0.3571,−0.4656)T , (−0.3109,−0.8743,−0.3727)T and
(−0.0877,−0.4781,−0.8739)T .
Gained velocity of centroid is

0VTool =

 −0.0647
0
0.1804

 θ̇1+

 0.0011
−0.0019
0.1610

 θ̇2+

 −0.0208
−0.0361
0.1763

 θ̇3

where (θ̇1, θ̇2, θ̇3)
T = α × (−0.3109,−0.8743,−0.3727)T with α

arbitrary.
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Example – 3-RPS parallel manipulator
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Figure 11: Velocity at a gain singular point
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Example – 3-RPS parallel manipulator
At (l1, l2, l3) = (1.9363,2.9998,1.9363) meters
Corresponding (θ1,θ2,θ3) = (1.3096,0.9817,1.3096) radians,
det[K ∗]≈ 0 → eigenvalues are approximately 0, 0, 3.9680.
At this configuration, gain of two degrees of freedom.
The singularities corresponding to gain of two degrees of freedom lie
on a curve in ℜ3 → difficult to get analytical expression.
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Figure 12: Velocity ellipse at a gain singular point
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – REVIEW

Joints of a serial manipulator are locked → the manipulator becomes a
structure.
Forces and moments acting at joints when manipulator structure is
subjected to external forces and moments.
External forces and moments on end-effector if pushing some object or
carrying a payload.
Useful to know joint forces or torques which can maintain the static
equilibrium.
Use free-body diagram.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – STATICS

{i}

Ẑi

X̂i

Ŷi Link i

Oi

Oi+1

i
Oi+1

{i + 1} Ẑi+1

X̂i+1

Ŷi+1

fi

ni

ni+1 fi+1

Figure 13: Free-body diagram of a link

Two intermediate rotary (R)
joints and a link of a
manipulator.
fi and ni denote the forces and
moments exerted on link {i} by
link {i −1}.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – STATICS (CONTD.)

For static equilibrium of {i}, ΣF = 0

i fi −i fi+1 = 0

fi+1 is the force on link {i +1} exerted by link {i} → Force on link {i}
exerted by link {i +1} will be equal and of opposite sign.
The leading superscript i signifies that the vectors are described in {i}.

For static equilibrium of {i}, ΣM = 0

ini −i ni+1−i Oi+1×i fi+1 = 0

iOi+1 is the vector from Oi to Oi+1.
Negative sign due to same reason as for forces.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 77 / 98



. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – STATICS (CONTD.)

For static equilibrium of {i}, ΣF = 0

i fi −i fi+1 = 0

fi+1 is the force on link {i +1} exerted by link {i} → Force on link {i}
exerted by link {i +1} will be equal and of opposite sign.
The leading superscript i signifies that the vectors are described in {i}.

For static equilibrium of {i}, ΣM = 0

ini −i ni+1−i Oi+1×i fi+1 = 0

iOi+1 is the vector from Oi to Oi+1.
Negative sign due to same reason as for forces.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 77 / 98



. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – STATICS (CONTD.)

Equilibrium equations can be written as
i fi = i

i+1[R] i+1fi+1
ini = i

i+1[R] i+1ni+1+
i Oi+1×i fi (32)

Inward Recursion for forces and moments on each link.
Forces and moments at the end-effector: n+1fn+1 =

n+1 nn+1 = 0 if not
in contact with environment.
n+1fn+1, n+1nn+1 known otherwise.
Recursively compute i fi , ini for i : n → 1 using equation (32).

Joint can only apply force or moment along Ẑ− axis – all other
components resisted by structure/bearings.
Torque required at joint i to maintain equilibrium

τi = ini ·i Ẑi (joint i is rotary (R))
τi = i fi ·i Ẑi (joint i is prismatic (P)) (33)
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τi = i fi ·i Ẑi (joint i is prismatic (P)) (33)

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 78 / 98



. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – EXAMPLE 3R PLANAR MANIPULATOR

3R planar manipulator applying force

0fTool = (fx , fy , 0)T
0nTool = (0, 0, nz)

T

In {Tool} coordinate system f ′x
f ′y
0

=

 c123 s123 0
−s123 c123 0

0 0 1

 fx
fy
0


and (0, 0, n′z)T = (0, 0, nz)

T

ŶTool

f

n

τ1

τ2

τ3

X̂0

Ŷ0

Link 1

{0}

O2

O1

θ2

O3

X̂2{Tool}
θ3

X̂1

θ1

Link 3

lf3

Link 2
l2

l1

X̂3, X̂Tool

Figure 14: A 3R manipulator
applying force and moment
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STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – EXAMPLE 3R PLANAR MANIPULATOR

i=3

3f3 = (f ′x , f ′y , 0)T

3n3 = (0, 0, n′z + l3f ′y )
T

i=2

2f2 = (c3f ′x − s3f ′y , s3f ′x + c3f ′y , 0)T

2n2 = (0, 0, n′z + l2(s3f ′x + c3f ′y )+ l3f ′y )
T

i=1

1f1 = (c23f ′x − s23f ′y , s23f ′x + c23f ′y , 0)T

1n1 = (0, 0, n′z + l1(s23f ′x + c23f ′y )+ l2(s3f ′x + c3f ′y )+ l3f ′y )
T
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – EXAMPLE 3R PLANAR MANIPULATOR

Finally, the joint torques required to maintain equilibrium

τ1 =
1 n1 ·1 Ẑ1 = n′z + f ′x(l1s23+ l2s3)+ f ′y (l1c23+ l2c3+ l3)

τ2 =
2 n2 ·2 Ẑ2 = n′z + f ′x l2s3+ f ′y (l2c3+ l3)

τ3 =
3 n3 ·3 Ẑ3 = n′z + f ′y l3

Above equations can be re-arranged as

τ =

 −l1s1− l2s12− l3s123 l1c1+ l2c12+ l3c123 0 0 0 1
−l2s12− l3s123 l2c12+ l3c123 0 0 0 1

−l2s123 l3c123 0 0 0 1




fx
fy
0
0
0
nz


(34)
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – FORCE TRANSFORMATION MATRIX

Term in the square bracket is the transpose of the Jacobian matrix
(see equation (19)).
As in velocities, denote forces and moments acting on the end-effector
by

0FTool
∆
=

 0fTool
−−

0nTool

= (fx fy fz ; nx ny nz)
T (35)

Note: 0FTool is not a 6×1 vector since forces and moments have
different units.
0FTool is called a wrench in theoretical kinematics, and a wrench can
be thought of as screw with a magnitude which has units of force.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
SERIAL MANIPULATORS – FORCE TRANSFORMATION MATRIX

Consider an infinitesimal Cartesian displacement of the end effector
0δX Tool

8 and the virtual work done by 0FTool

Equating virtual work done by external force/moment and at joints

0FTool ·0 δX Tool
∆
=

0
fTool ·δx+0 nTool ·δθ = τ ·δΘ

Using the definition of Jacobian (0δX Tool =
0
Tool [J(Θ)]δΘ),

0FTool · 0Tool [J(Θ)]δΘ= τ ·δΘ

The above equations hold true for all δΘ, hence

τ = 0
Tool [J(Θ)]

T 0FTool (36)

Not surprising transpose of Jacobian appears in statics!!
8The quantity 0δX Tool is not a 6×1 vector and it is like a twist. The infinitesimal

change in position and orientation could be (δx;δθ)T .
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – STATICS

For serial manipulators τ = 0
Tool [J(Θ)]

T 0FTool

Principle of virtual work equally applicable – for parallel manipulator

τ = 0
Tool [Jeq]

T 0FTool

{Tool} is a chosen end-effector.
0
Tool [Jeq] is the equivalent Jacobian – function of q, and
τ is the vector of forces or torques applied at the actuated joints only.

Difficult to compute 0
Tool [Jeq] since computation of [K ∗]−1 (see

Lecture 3).
Inverse problem: Obtaining forces/moments applied by {Tool}

0FTool =
0
Tool [J(q)eq]

−T τ

Inverse of Jacobian even more difficult!! Simpler approach for
Gough-Stewart platform.
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STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – STATICS

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 15: A leg of a Stewart-Gough platform
– revisited

The vector along the leg, B0Si ,

B0Si =
B0
P0
[R]P0pi +

B0 t−B0 bi

Unit vector along leg B0si =
B0Si

li
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STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – STATICS

The force exerted by actuated prismatic joint is f B0
i si .

The moment of the force (about the origin B0) fi (B0bi ×B0 si ).
Denoting external force and moment by 0FTool ,

B0FTool
∆
=

 B0FTool
−−−

B0MTool

=

 ∑6
i=1

B0si fi
−−−

∑6
i=1(

B0bi ×B0 si )fi


where B0FTool , B0MTool are the 3×1 force and moment vectors acting
on {Tool}.
In matrix form B0FTool =

B0
Tool [ H ]f
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – FORCE TRANSFORMATION MATRIX

The force transformation matrix B0
Tool [ H ]

B0
Tool [ H ] =

 B0s1
B0s2 ... B0s6

−−− −−− −−− −−−
(B0b1×B0 s1) (B0b2×B0 s2) ... (B0b6×B0 s6)


(37)

f = (f1, f2, ..., f6)T is the vector of forces applied at the prismatic joints.
Like the manipulator Jacobian matrix, B0

Tool [ H ] is not a proper matrix
in the linear algebra sense.
B0
Tool [ H ] = 0

Tool [J(q)eq]
−T but 0

Tool [ H ] is much simpler to compute!
Easily extended to any fully parallel manipulator – there are n columns.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – SINGULARITY IN FORCE DOMAIN

Direct force analysis: Obtain external force/moment given leg forces

B0FTool =
B0
Tool [ H ]f

Inverse force analysis: Obtain leg forces given external force/moment

f = B0
Tool [ H ]

−1B0FTool

If det([ H ]) = 0, then inverse problem cannot be solved → Force
singularity.
As det([ H ])→ 0, f → ∞ – any external force/moment along certain
direction cannot be resisted by the parallel manipulator9.

9In velocity singularity, no joint rates can cause motion along certain (singular)
directions.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – SINGULARITY IN FORCE DOMAIN

Force singularity can be visualised using degeneracy of force ellipsoid.
In a Stewart-Gough platform, external force F is given by

F = [HF]f =
[

s1 s2 s3 s4 s5 s6
]
f

|F|2 is FTF = fT [gF]f where [gF] = [HF]
T [HF].

The maximum, intermediate and minimum values of FTF subject to a
constraint of the form fT f = 1 are the eigenvalues of [gF].
Since the rank of [gF] is 3, the tip of the force vector F lies on an
ellipsoid in ℜ3.
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STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – SINGULARITY IN FORCE DOMAIN

rank([gF]) = 2 → force ellipsoid shrinks to an ellipse and the Stewart
platform manipulator cannot apply a force normal to the plane of the
ellipse.
rank([gF]) = 1,0, the Stewart platform cannot apply any force in a
plane or cannot apply any external force, respectively.
Example:

Stewart-Gough platform with fixed base and moving platform as regular
hexagons of same size.
Consider the configuration of all legs parallel to the vertical.
[ H ] matrix is given by

[H] =


0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

b1y b2y b3y b4y b5y b6y
−b1x −b2x −b3x −b4x −b5x −b6x

0 0 0 0 0 0


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STATICS OF SERIAL AND PARALLEL MANIPULATORS
PARALLEL MANIPULATORS – SINGULARITY IN FORCE DOMAIN

Three rows of ([ H ]) are zero and the Stewart-Gough platform is in a
singular configuration → [gF] has rank 1.
Tip of the force vector F can only lie along a line and only the vertical
external force can be resisted.
The Stewart-Gough platform, in this configuration, has singularity
along Fx and Fy .
Similar analysis can be done for M → Any Mz cannot be resisted in
this configuration.
Above analysis used by Ranganath et al. 2004 to design sensitive 6
components force-torque sensors (see Module 10, Lecture 2).
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
RELATION BETWEEN GAIN SINGULARITY AND FORCE SINGULARITY

If det([ K ∗ ]) = 0 → parallel manipulator gains one (or more) degree
of freedom instantaneously.
If det([ H ]) = 0 parallel manipulator cannot resist forces/moments in
one (or more) directions at that configuration.
Relationship between two?
Illustrated using simple planar 4-bar mechanism!
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STATICS OF SERIAL AND PARALLEL MANIPULATORS
RELATION BETWEEN GAIN SINGULARITY AND FORCE SINGULARITY
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Figure 16: Static force analysis in a four-bar mechanism
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
RELATION BETWEEN GAIN SINGULARITY AND FORCE SINGULARITY

With θ1 locked → point O2 is fixed.
For a given θ1, l0 and l1, the length d opposite to θ1 is known.
Draw the planar truss structure determined by Link 2, Link 3 and the
now fixed side O2−OR . Angles α1 and α2 can be computed in terms
of θ1, ϕ1 and ϕ2.
Consider a force F = Fx ,Fy , acting at an angle β at point O3.
Denote axial forces along the links O2−O3 and O3−OR of the planar
truss by T1 and T2, respectively.
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
RELATION BETWEEN GAIN SINGULARITY AND FORCE SINGULARITY

By using a free-body diagram(
Fx
Fy

)
=

[
cosα1 −cosα2
sinα1 sinα2

](
T1
T2

)
T1 and T2 are(

T1
T2

)
=

1
sin(α1+α2)

[
sinα2 cosα2
−sinα1 cosα1

](
Fx
Fy

)
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. . . . . .

STATICS OF SERIAL AND PARALLEL MANIPULATORS
RELATION BETWEEN GAIN SINGULARITY AND FORCE SINGULARITY

From T1 obtain reactions R1 and R2 at the joint O2(
R1
R2

)
=

1
sin(α1+α2)

[
cosα1 sinα2 cosα1 cosα2
sinα1 sinα2 sinα1 cosα2

](
Fx
Fy

)
Torque required in joint 1, τ1, to keep the four-bar mechanism in
equilibrium τ1 = R1l1s1−R2l1c1

det([ H ]) = 0 if sin(α1+α2) = 0 or γ is π radians → ϕ3 2π → Link 2
and Link 3 are aligned.
Gain singularity condition same as force singularity condition!
Gain singularity → Instantaneous velocity perpendicular to line along
Link 2 and Link 3 (singular direction).
Force singularity → Any force along singular direction gives rise to
infinite R1 and R2 and infinite τ1 is required to maintain static
equilibrium.
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