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. . . . . .

INTRODUCTION
OVERVIEW

Position and velocity kinematics → cause of motion not considered.
Dynamics → motion of links of a robot due to external forces and/or
moments.
Main assumption: All links are rigid – no deformation.
Motion of links described by ordinary differential equations (ODE’s) –
also called equations of motion.
Several methods to derive the equations of motion – Newton-Euler,
Lagrangian and Kane’s methods most well known.

Newton-Euler – obtain linear and angular velocities and accelerations of
each link, free-body diagrams, and Newton’s law and Euler equations.
Lagrangian formulation – obtain kinetic and potential energy of each
link, obtain the scalar Lagrangian, and take partial and ordinary
derivatives.
Kane’s formulation – choose generalised coordinates and speeds, obtain
generalised active and inertia forces, and equate the active and inertia
forces.

Each formulation has its advantages and disadvantages.
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INTRODUCTION
OVERVIEW

Two main problems in robot dynamics:
Direct problem – obtain motion of links given the applied external
forces/moments.
Inverse problem – obtain joint torques/forces required for a desired
motion of links.

Direct problem involves solution of ODE’s → Simulation.
Inverse dynamics → for sizing of actuators and other components, and
for advanced model based control schemes (see Module 7, Lecture 3).
Computational efficiency of inverse and direct problem is of interest.
Aim is to develop efficient O(N) or O(logN) – N is the number of
links (for parallel computing) algorithms for use in protein folding and
in computational biology (see Klepeis et al. 2002).
Dynamics of parallel manipulators complicated by presence of
closed-loops → typically give rise to differential-algebraic equations
(DAE’s) → more difficult to solve.
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INTRODUCTION
MASS AND INERTIA OF A LINK

{0}

X̂0

Ŷ0

Ẑ0

d V

0p

Rigid Body

Figure 1: Mass and inertia of a rigid body

Mass m of the rigid body is
given by

∫
V ρ dV , ρ is density.

Inertia of a rigid body →
distribution of mass.
Inertia tensor 0[I ] in {0}

0[I ] =

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


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INTRODUCTION
MASS AND INERTIA OF A LINK

Elements of the inertia tensor
Ixx =

∫
V (y2+ z2) ρdV , Ixy =−

∫
V xy ρdV , Ixz =−

∫
V xz ρdV

Iyy =
∫
V (x2+ z2) ρdV , Iyz =−

∫
V yz ρdV , Izz =

∫
V (x2+ y2) ρdV

The inertia tensor is positive definite and symmetric → Eigenvalues of
0[I ] are real and positive.
Three eigenvalues are the principal moments of inertias and the
associated eigenvectors are the principal axes.
The inertia tensor in {A}, with OA coincident O0, is given by
A[I ] = A

0 [R]0[I ]A0 [R]
T .

To obtain inertia tensor for a link i ,
Coordinate system, {Ci}, is chosen at the centre of mass of the link.
{Ci} is parallel {i} (see Module 2, Lecture 2).
Sub-divide complex link into simple shapes and use parallel axis
theorem.
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LAGRANGIAN FORMULATION
KINETIC ENERGY

Energy base formulation involving kinetic and potential energy
The kinetic energy of link i with mass mi and inertia 0[I ]i

KEi =
1
2

mi
0VCi ·

0 VCi +
1
2

0ω i ·0 [I ]i 0ω i

First and second term from linear velocity of the link’s centre of mass
and angular velocity of link.
0VCi and 0ω i are the linear and angular velocities of the centre of mass
and link {i}, respectively.

0VCi =
0
i [R]iVCi ,

0ω i =
0
i [R]iω i

Using above equations

K .Ei =
1
2

mi
iVCi ·

i VCi +
1
2

iω i ·Ci [I ]i iω i (1)
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LAGRANGIAN FORMULATION
KINETIC ENERGY (CONTD.)

Velocity propagation formulas for serial manipulators (see Module 5,
Lecture 1)

iω i = i
i−1[R]i−1ω i−1+ θ̇i (0 0 1)T joint i is rotary

iω i = i
i−1[R]i−1ω i−1 joint i is prismatic

iVCi = iVi +
i ω i ×i pCi

ipCi locates the centre of mass of link {i} with respect to Oi .
i : 0 → n to obtain kinetic energy of all links in a serial manipulator.
In parallel manipulators, several loops → no propagation formulas.
Easier to compute angular and linear velocities using derivatives1

0ω i =
˙0

i [R]0i [R]
T
, 0VCi =

d
dt

(0pCi ) (2)

0pCi is the position vector of the centre of mass of link i .
1In closed-loop mechanisms or parallel manipulators, one can judiciously use the

propagation formulas for the serial portions.
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LAGRANGIAN FORMULATION
POTENTIAL ENERGY

Assumption: Potential energy due to gravity alone2.
General expression for potential energy due to gravity

PEi =−mi
0g ·0 pCi (3)

0g – gravity vector of magnitude 9.81m/sec2

0g along vertical direction denoted by 0Ẑ axis.
0pCi – location of the centre of mass of link i from the zero or
reference potential energy surface.
Constant value of the reference potential energy does not matter as
derivatives are taken.

2If springs or other energy storage devices are present, appropriate modification to
the expression of the potential energy of the link can be done. For example, if torsional
springs are present at joint i , add a term of the form 1

2kiθi
2 to the expression for the

potential energy.
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. . . . . .

LAGRANGIAN FORMULATION
EQUATIONS OF MOTION

From the kinetic and potential energy, define the scalar Lagrangian

L (q, q̇) =
N

∑
i
(KEi −PEi ) (4)

N is the number of links excluding the fixed link.
In serial manipulators, with R or P joints dim(q) = n = N
The equations of motion3, are

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= Qi i = 1,2, ...,n (5)

Qi ’s are the externally applied generalised forces → when only joint
torques or forces are present

Qi = τi , i = 1, ...,n (6)

3The Lagrangian formulation is equivalent to Newton’s laws and Euler’s equations
from calculus of variation(see Goldstein 1980).
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. . . . . .

LAGRANGIAN FORMULATION
EQUATIONS OF MOTION

After performing the derivatives, equation of motion of a serial
manipulator takes the form

[M(q)]q̈+[C(q, q̇)]q̇+G(q) = τ (7)

[M(q)] – n×n mass matrix4,
[C(q, q̇)] – n×n matrix and [C(q, q̇)]q̇ is an n×1 vector of centripetal
and Coriolis terms – contains only quadratic q̇i q̇j terms,
G(q) – n×1 vector of gravity terms, and
τ – n×1 vector of joint torques or forces.

All serial manipulator equations of motion can be written in the above
form!!

4For R joints, elements of [M(q)] have units of inertia kg−m2. For P joint, elements
of [M(q)] have units of mass Kg.
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. . . . . .

LAGRANGIAN FORMULATION
PROPERTIES OF TERMS IN EQUATIONS OF MOTION

Mass matrix, [M(q)], – always positive definite and symmetric.
Total kinetic energy of a serial manipulator is

KE =
1
2
q̇T [M(q)]q̇ (8)

KE ≥ 0 for |q̇| ̸= 0 and zero only when |q̇|= 0 → [M(q)] is positive
definite.
Inertia cannot be imaginary along any component of q̈ → Eigenvalues
of [M(q)] must be real → [M(q)] must be symmetric.

The centripetal and Coriolis terms can be obtained from the mass
matrix as

Cij =
1
2

n

∑
k=1

(
∂Mij

∂qk
+

∂Mik

∂qj
−

∂Mkj

∂qi

)
q̇k (9)

The gravity terms can be obtained from the potential energy as

Gi =
∂ (PE )

∂qi
(10)
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. . . . . .

LAGRANGIAN FORMULATION
PARALLEL MANIPULATORS

Presence of m loop-closure constraint equations (see Module 4,
Lecture 1)

ηi (q) = 0, i = 1,2, ...,m (11)

q ∈ ℜn+m – n actuated joint variables, θ , and m passive joint
variables ϕ .
To obtain equations of motion for a system with constraints →
Lagrange multipliers (Goldstein 1980, Haug 1989).
Lagrangian written as

L̄ (q, q̇) = L (q, q̇)−
m

∑
j=1

λjηj(q) (12)

m λj ’s – introduced (unknown) Lagrange multipliers.
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. . . . . .

LAGRANGIAN FORMULATION
PARALLEL MANIPULATORS (CONTD.)

m constraints, ηj(q) = 0, are holonomic – only functions of q.
For holonomic constraints, equations of motion are

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= τi +

m

∑
j=1

λj
∂ηj(q)

∂qi
i = 1,2, ...,n+m (13)

In matrix form,

[M(q)]q̈+[C(q, q̇)]q̇+G(q) = τ +[Ψ(q)]T λ (14)

λ is the m×1 vector of unknown Lagrange multipliers
Constraint matrix [Ψ(q)] is obtained from the partial derivatives of m
constraint equations with respect to qi
Concatenation – [Ψ] = [ [K ] | [K ∗] ] (see Module 5, Lecture 3 )
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. . . . . .

LAGRANGIAN FORMULATION
PARALLEL MANIPULATORS (CONTD.)

To determine λ
Twice differentiate m constraint equations with respect to t

[Ψ(q)]q̈+[Ψ̇(q)]q̇ = 0 (15)

˙[Ψ] is a m× (n+m) matrix containing the time derivatives of each of
the elements of [Ψ].
Since the mass matrix [M(q)] is always invertible

q̈ = [M]−1(τ − [C]q̇−G)+ [M]−1[Ψ]Tλ

Substituting q̈ in equation (15)

λ =−([Ψ][M]−1[Ψ]T )−1{ ˙[Ψ]q̇+[Ψ][M]−1(τ − [C]q̇−G)} (16)

Substitute λ back into equation (14) → equations of motion

[M]q̈ = f− [Ψ]T ([Ψ][M]−1[Ψ]T )−1{[Ψ][M]−1f+ ˙[Ψ]q̇} (17)

f denotes (τ − [C]q̇−G).
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. . . . . .

LAGRANGIAN FORMULATION
PARALLEL MANIPULATORS (CONTD.)

Mass matrix [M] is (n+m)× (n+m), positive definite and symmetric
matrix
Centripetal/Coriolis terms and the gravity terms are (n+m)×1
vectors.
[Ψ(q)]T λ has units of torque/force – constraint forces/torques.

Work done by constraint forces [ [Ψ(q)]T λ ]T q̇ → λT [Ψ(q)]q̇
[Ψ(q)]q̇ = 0 from definition of constraint matrix

Useful to obtain constraint forces/torques for mechanical design of the
joints and links
Most multi-body dynamics software packages (see, for example,
ADAMS 2002) compute and provide the constraint forces and torques.
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. . . . . .

LAGRANGIAN FORMULATION
NON-HOLONOMIC CONSTRAINTS

In mobile robots and few other mechanical systems, constraints are
non-holonomic, non-integrable constraints
Constraints can also contain explicit functions of time.
Lagrangian formulation for such systems –

General constraints in the so-called Pfaffian form

Φ(t)+ [Ψ(q)]q̇ = 0 (18)

Differentiate to get
[Ψ]q̈+ ˙[Ψ]q̇+Φ̇(t) = 0

Equations of motion

[M]q̈ = f− [Ψ]T ([Ψ][M]−1[Ψ]T )−1{[Ψ][M]−1f+Φ̇(t)+ ˙[Ψ]q̇} (19)

λ given by

λ =−([Ψ][M]−1[Ψ]T )−1{Φ̇(t)+ ˙[Ψ]q̇+[Ψ][M]−1(τ − [C]q̇−G)}
(20)
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. . . . . .

LAGRANGIAN FORMULATION
SUMMARY

Equations of motion for serial, parallel manipulators and multi-body
system (even with non-holonomic constraints) can be obtained using
Lagrangian formulation.
Equations of motion obtained using Lagrangian formulation does not
contain friction or any other dissipative term.
Friction accommodated in ad-hoc manner in the right-hand side at
appropriate place.

τ = [M(q)]q̈+C(q, q̇)+G(q)+F(q, q̇) (21)

Friction term, F(q, q̇), looks similar to centripetal/Coriolis term but
actually very different!!
Typical friction = sum of a constant (Coulomb friction) + term
proportional to q̇ (viscous damping).
Equations of motion does not contain effects of flexibility, backlash,
and other unmodeled dynamics.
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Friction accommodated in ad-hoc manner in the right-hand side at
appropriate place.

τ = [M(q)]q̈+C(q, q̇)+G(q)+F(q, q̇) (21)

Friction term, F(q, q̇), looks similar to centripetal/Coriolis term but
actually very different!!
Typical friction = sum of a constant (Coulomb friction) + term
proportional to q̇ (viscous damping).
Equations of motion does not contain effects of flexibility, backlash,
and other unmodeled dynamics.
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. . . . . .

EQUATIONS OF MOTION IN CARTESIAN SPACE

Equations of motion in joint space – function of q and q̇
Equations of motion in terms of position and orientation of
end-effector (Khatib 1987).
Useful for Cartesian space motion and force control.
Equations of motion given as

F = [MX (q)]Ẍ +CX (q, q̇)+GX (q) (22)

F is a 6×1 entity of forces and moments acting on the end-effector,
X is 6×1 entity representing the position and orientation of the
end-effector.
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. . . . . .

EQUATIONS OF MOTION IN CARTESIAN SPACE (CONTD.)
[MX (q)], CX (q, q̇), and GX (q) – analogous to mass matrix,
Coriolis/centripetal and gravity term, respectively.
Relationships between Cartesian and joint space terms

τ = [J(q)]TF

[MX (q)] = [J(q)]−T [M(q)][J(q)]−1

CX (q, q̇) = [J(q)]−T (C(q, q̇)− [M(q)][J(q)]−1 ˙[J(q)]q̇)
GX (q) = [J(q)]−TG(q) (23)

[J(q)]−T denotes the inverse of [J(q)]T ,
[J(q)], F and X are in the same coordinate system.

q, q̇ can be (at least conceptually) replaced with the Cartesian
variables – inverse kinematics and inverse Jacobian.
Difficult (if not impossible) for practical manipulators!
Fortunately replacement not required for Cartesian space motion and
force control!!
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EXAMPLES
PLANAR 2R MANIPULATOR

Simplest possible serial manipulator
Two moving links, 2 joint variables θ1 and θ2
Joint torques – τ1 and τ2.

Link 2

O2

X̂ 0

Ŷ 0

{ 0}

Location of cg of Link 1

Location of cg of Link 2

(m2, l 2, , I 2)

(m1, l 1, r 1, I 1)

O1

θ1

θ2

τ1
τ2

g

Link 1

r
2

Figure 2: A 2R manipulator

Gravity along (− 0Ŷ0)
axis.
(mi , li , ri , Ii ), i = 1,2
denote mass, length, CG
location and Izz
component of inertia
matrix, respectively.
Planar case → only Izz
relevant.
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EXAMPLES
PLANAR 2R MANIPULATOR (CONTD.)

Velocity propagation to find linear and angular velocities
{0} fixed → 0ω0 =

0 V0 = 0.
i=1

1ω1 = (0 0 θ̇1)
T

1V1 = 0
1VC1 = 0+(0 0 θ̇1)

T × (r1 0 0)T = (0 r1θ̇1 0)T

i=2
2ω2 = (0 0 θ̇1+ θ̇2)

T

2V2 =

 c2 s2 0
−s2 c2 0
0 0 1

 0
l1θ̇1
0

=

 l1s2θ̇1

l1c2θ̇1
0


2VC2 = 2V2+

2 ω2× (r2 0 0)T
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EXAMPLES
PLANAR 2R MANIPULATOR (CONTD.)

Total kinetic energy

KE =
1
2
m1(r1θ̇1)

2+
1
2
I1θ̇2

1 +
1
2
I2(θ̇1+ θ̇2)

2+

1
2
m2(l21 θ̇2

1 + r2
2 (θ̇1+ θ̇2)

2+2l1r2c2θ̇1(θ̇1+ θ̇2)) (24)

Link 1 – first two terms; Link 2 – second two terms.
Total potential energy

PE = m1gr1s1+m2g(l1s1+ r2s12) (25)

Lagrangian for planar 2R manipulator

L (Θ,Θ̇) = KE −PE , Θ= (θ1,θ2)
T (26)
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EXAMPLES
PLANAR 2R MANIPULATOR (CONTD.)

Partial derivatives of L with respect to θi , i = 1,2

∂L

∂θ1
= −m1gr1c1−m2g(l1c1+ r2c12)

∂L

∂θ2
= −m2l1r2s2θ̇1(θ̇1+ θ̇2)−m2gr2c12

Partial derivatives of L with respect to θ̇i , i = 1,2

∂L

∂ θ̇1
= (I1+ I2+m1r2

1 +m2l21 +m2r2
2 +2m2l1r2c2)θ̇1

+(I2+m2r2
2 +m2l1r2c2)θ̇2

∂L

∂ θ̇2
= (I2+m2r2

2 +m2l1r2c2)θ̇1+(I2+m2r2
2 )θ̇2
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. . . . . .

EXAMPLES
PLANAR 2R MANIPULATOR (CONTD.)

Derivatives of ∂L
∂ θ̇i

with respect to t

d
dt

(
∂L

∂ θ̇1
) = θ̈1(I1+ I2+m1r2

1 +m2r2
2 +m2l21 +2m2l1r2c2)

+θ̈2(I2+m2r2
2 +m2l1r2c2)−m2l1r2s2θ̇2(2θ̇1+ θ̇2)

d
dt

(
∂L

∂ θ̇2
) = θ̈1(I2+m2r2

2 +m2l1r2c2)

+θ̈2(I2+m2r2
2 )−m2l1r2s2θ̇1θ̇2

Assemble terms, collect and simplify

τ1 = θ̈1(I1+ I2+m2l21 +m1r2
1 +m2r2

2 +2m2l1r2c2)

+θ̈2(I2+m2r2
2 +m2l1r2c2)

−m2l1r2s2(2θ̇1+ θ̇2)θ̇2+m2g(l1c1+ r2c12)+m1gr1c1

τ2 = θ̈1(I2+m2r2
2 +m2l1r2c2)+ θ̈2(I2+m2r2

2 )+m2l1r2s2θ̇2
1 +m2r2gc12
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. . . . . .

EXAMPLES
PLANAR 2R MANIPULATOR – EQUATIONS OF MOTION

Equations of motion – two nonlinear ODE’s – in standard form(
τ1
τ2

)
=[

I1+ I2+m2l21 +m1r2
1 +m2r2

2 +2m2l1r2c2 I2+m2r2
2 +m2l1r2c2

I2+m2r2
2 +m2l1r2c2 I2+m2r2

2

](
θ̈1

θ̈2

)
+

(
−m2l1r2s2(2θ̇1+ θ̇2)θ̇2

m2l1r2s2θ̇2
1

)
+

(
m2g(l1c1+ r2c12)+m1gr1c1

m2r2gc12

)
(27)

In the above matrix equation

2×2 matrix is the mass matrix,
2×1 vector with θ̇1θ̇2 is the centripetal/Coriolis term, and
2×1 vector with g is the gravity term.

As mentioned no friction or dissipative terms in equations of motion.
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. . . . . .

EXAMPLES
PLANAR 2R MANIPULATOR – EQUATIONS OF MOTION

Equations of motion – two nonlinear ODE’s – in standard form(
τ1
τ2

)
=[

I1+ I2+m2l21 +m1r2
1 +m2r2

2 +2m2l1r2c2 I2+m2r2
2 +m2l1r2c2

I2+m2r2
2 +m2l1r2c2 I2+m2r2

2

](
θ̈1

θ̈2

)
+
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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM

Simplest possible – one degree-of-freedom closed-loop mechanism!
Three moving links → θ1 actuated, ϕi , i = 1,2,3 passive, τ1 actuating
torque.

l0

{L}

φ2

φ1

ŶL

X̂L

ŶR

X̂R

{R}

φ3

O2

O3

OL, O1

(m1, l1, r1, I1)

OR

(m2, l2, r2, I2)

(m3, l3, r3, I3)

Location of cg of links
τ1 θ1

g

Link 1

Link 2

Link 3

Figure 3: A planar four-bar mechanism

Geometry and inertial
parameters of links –
(mi , li , ri , Ii ) for i = 1,2,3.
Only Izz component of the
inertia matrix of each link is
relevant.
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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM – EQUATIONS OF MOTION

Break four-bar mechanism at O3 → planar 2R + planar 1R
KE of planar 2R similar – θ2 replaced by ϕ2

KE of 1R – 1
2m3r2

3 ϕ̇2
1 +

1
2 I3ϕ̇2

1

Total kinetic energy

KE =
1
2
m1(r1θ̇1)

2+
1
2
I1θ̇2

1 +
1
2
I2(θ̇1+ ϕ̇2)

2+

1
2
m2(l21 θ̇2

1 + r2
2 (θ̇1+ ϕ̇2)

2+2l1r2 cos(ϕ2)θ̇1(θ̇1+ ϕ̇2))+

1
2
m3r2

3 ϕ̇2
1 +

1
2
I3ϕ̇2

1 (28)

Total potential energy – planar 2R + planar 1R

PE = m1gr1 sin(θ1)+m2g(l1 sin(θ1)+ r2 sin(θ1+ϕ2))+m3gr3 sin(ϕ1)
(29)
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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM – EQUATIONS OF MOTION (CONTD.)

Lagrangian for the planar 2R + planar 1R mechanisms

L (q, q̇) =
1
2
I1θ̇2

1 +
1
2
I2(θ̇1+ ϕ̇2)

2+
1
2
I3ϕ̇2

1 +
1
2
m1r2

1 θ̇2
1 +

1
2
m3r2

3 ϕ̇2
1

1
2
m2(l21 θ̇2

1 + r2
2 (θ̇1+ ϕ̇2)

2+2l1r2 cos(ϕ2)θ̇1(θ̇1+ ϕ̇2))

−m1gr1 sin(θ1)−m2g(l1 sin(θ1+ r2 sin(θ1+ϕ2))

−m3gr3 sin(ϕ1) (30)

Constraint equations of the planar four-bar (see Module 4, Lecture 1)

l1 cos(θ1)+ l2 cos(θ1+ϕ2) = l0+ l3 cos(ϕ1)

l1 sin(θ1)+ l2 sin(θ1+ϕ2) = l3 sin(ϕ1) (31)

Perform partial derivatives with respect to q and q̇ and time
derivatives (see Lagrangian formulation)
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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM – EQUATIONS OF MOTION (CONTD.)

3×3 mass matrix [M(q)] I2+m2r22+ I1+m2l12+2m2l1 r2cos(ϕ2)+m1 r12 , I2+m2r22+m2l1 r2cos(ϕ2) ,0
I2+m2 r22+m2l1r2cos(ϕ2) , I2+m2r22 ,0

0 , 0 ,m3r32+ I3


3×3 Coriolis/Centripetal terms [C(q, q̇)] −m2 l1 r2 sin(ϕ2) ϕ̇2 −m2 l1 r2 sin(ϕ2) θ̇1−m2 l1 r2 sin(ϕ2) ϕ̇2 0

m2 l1 r2 sin(ϕ2) θ̇1 0 0
0 0 0


3×1 vector of gravity terms G(q) m1 g r1 cos(θ1)+m2 g (l1 cos(θ1)+ r2 cos(θ1+ϕ2))

m2 g r2 cos(θ1+ϕ2)
m3 g r3 cos(ϕ1)


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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM – EQUATIONS OF MOTION (CONTD.)

Equations of motion of the planar 2R + 1R mechanisms

τ1 = (m2 r2 cos(θ1+ϕ2)+m1 r1 cos(θ1)+m2l1 cos(θ1))g
+(I2+m2 r22+ I1+m2 l12+2m2 l1 r2 cos(ϕ2)+m1 r12) θ̈1

+(I2+m2 r22+m2 l1 r2 cos(ϕ2)) ϕ̈2−m2 l1 r2 sin(ϕ2)(ϕ̇2)
2

−2m2 l1 r2 sin(ϕ2) θ̇1 ϕ̇2

τ2 = m2 g r2 cos(θ1+ϕ2)+(I2+m2 r22+m2 l1 r2 cos(ϕ2)) θ̈1

+(I2+m2 r22) ϕ̈2+m2 l1 r2 sin(ϕ2) θ̇2
1

τ3 = m3 g r3 cos(ϕ1)+(m3 r32+ I3) ϕ̈1 (32)

Three non-linear ordinary differential equations.
Constraint equations not yet taken in to account → Third equation
not related to the other two!
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. . . . . .

EXAMPLES
PLANAR FOUR-BAR MECHANISM – EQUATIONS OF MOTION (CONTD.)

2×3 constraint matrix [Ψ(q)][
−l1 sin(θ1)− l2 sin(θ1+ϕ2) −l2 sin(θ1+ϕ2) l3 sin(ϕ1)
l1 cos(θ1)+ l2 cos(θ1+ϕ2) l2 cos(θ1+ϕ2) −l3 cos(ϕ1)

]
Obtain derivative of constraint equations

[Ψ(q)]q̈+[Ψ̇(q)]q̇ = 0

Obtain q̈ from equation of motion

q̈ = [M]−1(τ − [C]q̇−G)+ [M]−1[Ψ]T λ

Substitute q̈ in derivative of constraint equation and solve for λ
Substitute λ to obtain equations of motion of planar four-bar
mechanism

[M]q̈ = f− [Ψ]T ([Ψ][M]−1[Ψ]T )−1{[Ψ][M]−1f+ ˙[Ψ]q̇} (33)

where f = (τ − [C]q̇−G) and q = (θ1,ϕ2,ϕ1)
T .
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. . . . . .

INTRODUCTION

Two problems in dynamics of robots
Inverse dynamics – given D-H and inertial parameters and a trajectory
as a function of time, find joint torques → Obtain τ(t) from known
q(t), q̇(t) and q̈(t).
Direct problem – given the kinematic and inertial parameters and the
joint torques as functions of time, find the trajectory of the
manipulator → Obtain q(t) from known τ(t).

Inverse dynamics is required for sizing of actuators and model based
control.
Direct problem solution is required for simulation.
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. . . . . .

INVERSE DYNAMICS OF ROBOTS

Inverse dynamics problem is very simple!
Substitute qt, q̇(t) and q̈(t) in the right-hand side of equations of
motion

τ = [M(q)]q̈+C(q, q̇)+G(q)+F(q, q̇)

Obtain the left-hand side τ(t).
Can be done for any robot once the equations of motion are known.
Can be efficiently done in O(N) steps using recursive algorithms.
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. . . . . .

INVERSE DYNAMICS OF ROBOTS
PLANAR 2R EXAMPLE

Link 2

O2

X̂ 0

Ŷ 0

{ 0}

Location of cg of Link 1

Location of cg of Link 2

(m2, l 2, , I 2)

(m1, l 1, r 1, I 1)

O1

θ1

θ2

τ1
τ2

g

Link 1

r
2

Figure 4: A 2R manipulator

Link Length Mass C.G. Inertia
(m) (kg) (m) (kg m2)

1 1.0 12.456 0.773 1.042
2 1.0 12.456 0.583 1.042
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INVERSE DYNAMICS OF ROBOTS
PLANAR 2R EXAMPLE (CONTD.)
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Figure 5: A 2R manipulator executing circular trajectory

Mass, inertia and
geometry as in Table
Chosen circular trajectory

x = a+ r cos(ϕ)
y = b+ r sin(ϕ)

r = 0.2, a = 1.2, b = 1.2
0 ≤ ϕ ≤ 2π in 10 seconds

Planar 2R inverse dynamics trajectory movie
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INVERSE DYNAMICS OF ROBOTS
PLANAR 2R EXAMPLE(CONTD.)
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Figure 6: Computed θ1 and θ2 using inverse kinematics
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Figure 7: Computed θ̇1 and θ̇2 using inverse Jacobian
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INVERSE DYNAMICS OF ROBOTS
PLANAR 2R EXAMPLE (CONTD.)
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Plot of Joint Angular Accelerations for a 2R Manipulator
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Figure 8: Computed θ̈1 and θ̈2
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Figure 9: Computed τ1(t) and τ2(t)
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. . . . . .

SIMULATION OF EQUATIONS OF MOTION

Simulation → given external torque/forces obtain motion of robot.
General form of equations of motion of a n degree-of-freedom robot

τ = [M(q)]q̈+C(q, q̇)+G(q)+F(q, q̇)

Simulation → given τ(t) find q(t) by solving equations of motion.
n coupled, non-linear, second-order, ordinary differential equations
(ODE’s).
Cannot be solved analytically except for simplest cases.
Numerical solution of the ODE’s – Use of software such as Matlab R⃝
and in-built integration routine such as ODE45.
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. . . . . .

SIMULATION OF EQUATIONS OF MOTION

Input to ODE45 (or other routines) required to be in state-space form.
Conversion to state-space form
(1) Mass matrix [M(q)] is invertible,

q̈ = [M(q)]−1 [τ −C(q, q̇)−G(q)−F(q, q̇)]

(2) Define X ∈ ℜ2n – (X1, ...,Xn)
T = (q1, ...,qn)

T and
(Xn+1, ....,X2n)

T = (q̇1, ...., q̇n)
T .

(3) Rewrite n second-order ODE’s as 2n first-order ODE’s

Ẋ1 = Xn+1, Ẋ2 = Xn+2, ..., Ẋn = X2n
Ẋn+1
.
.

Ẋ2n

 = [M(X)]−1 [τ −C(X)−G(X)−F(X)] (34)

State-space form of equations of motion

Ẋ = g(X,τ) (35)

with initial conditions X(0).
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Ẋn+1
.
.
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. . . . . .

SIMULATION OF EQUATIONS OF MOTION

For parallel manipulator and closed-loop mechanisms, equations of
motion

[M]q̈ = f− [Ψ]T ([Ψ][M]−1[Ψ]T )−1{[Ψ][M]−1f+ ˙[Ψ]q̇}

f denotes (τ −C−G−F).
Obtain the 2(n+m) first-order state equations as

Ẋ1 = Xn+m+1, Ẋ2 = Xn+m+2, ..., Ẋn+m = X2(n+m)
Ẋn+m+1

.

.

Ẋ2(n+m)

 = [M]−1(f− [Ψ]T ([Ψ][M]−1[Ψ]T )−1{[Ψ][M]−1f

+ ˙[Ψ](Ẋ1, ..., Ẋn+m)
T}) (36)

f denotes (τ −C−G−F).
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. . . . . .

SIMULATION OF EQUATIONS OF MOTION
PARALLEL MANIPULATORS (CONTD.)

The nature of ODE’s in equations (36) are different than ODE’s
obtained for serial manipulators.
m loop-closure (holonomic) constraints must be satisfied →
differential-algebraic equations or DAE’s.
DAE’s are inherently stiff5 → use stiff-solvers such as ODE15S or
ODE23S in Matlab R⃝.
Stiff solvers use implicit schemes and are slower than non-stiff solvers.
For simple problems (such as a 4-bar mechanism), ODE45 is good
enough.

5A system of ODE’s is said to be stiff if the time constants of the individual ODE’s
are orders of magnitude different – more than 1000:1. For stiff ODE’s, the time step in
integration is determined by the smallest time constants and hence a set of stiff ODE’s
can take very long to integrate. DAE’s can be thought of as infinitely stiff since the
algebraic constraints have zero time constant.
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. . . . . .

SIMULATION OF EQUATIONS OF MOTION
PARALLEL MANIPULATORS (CONTD.)

Equations of motion involve second derivative of m constraint
equations η(q, t) = 0.
Small numerical errors in acceleration (q̈) due to integration results in
increasing errors in q̇ and q.
Baumgarte stabilization (Baumgarte 1983) – Replace second
derivative constraint equation [Ψ(q)]q̈+[Ψ̇(q)]q̇+Φ̇(t) = 0 with

([Ψ]q̈+ ˙[Ψ]q̇+Φ̇(t))+2α(Φ(t)+ [Ψ(q)]q̇)+β 2η(q, t) = 0

α and β are constants.
Similar to a spring-mass-damper system6, for proper choice of α and
β , lim∆t→∞ {q(t), q̇(t)}→ 0
Not clear how to choose α and β !

6The equations of motion of an unforced mass-spring-damper system is written as
ẍ +2ξ ωnẋ +ωn

2x = 0. β is ‘similar’ to the natural frequency ωn and α is ‘similar’ to
the product of natural frequency and damping ξ ωn.
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. . . . . .

EXAMPLES
SIMULATIONS OF A PLANAR 2R ROBOT

Link 2

O2

X̂ 0

Ŷ 0

{ 0}

Location of cg of Link 1

Location of cg of Link 2

(m2, l 2, , I 2)

(m1, l 1, r 1, I 1)

O1

θ1

θ2

τ1
τ2

g

Link 1

r
2

Figure 10: A 2R manipulator

Initial conditions –
θ1 =−90◦, θ2 = 45◦

External torques –
τ1 = τ2 = 0

Link Length Mass C.G. Inertia
(m) (kg) (m) (kg m2)

1 1.0 12.456 0.773 1.042
2 1.0 12.456 0.583 1.042
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. . . . . .

EXAMPLES
SIMULATIONS OF A PLANAR 2R ROBOT (CONTD.)
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Figure 11: Plot of θ1 and θ2 Vs time
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Figure 12: Path traced by the tip

Motion of link 2 causes motion of link 1 – Coupled ODE’s.
The path traced by the tip is quite complicated.

Planar 2R forward dynamics simulation movie
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. . . . . .

EXAMPLES
SIMULATIONS OF A 4-BAR MECHANISM

Figure a

Figure b

θ1
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Ŷ0

X̂0

Ŷ0

X̂0

l0

τ

Figure 13: A four-bar mechanism in two
configurations

Almost folded configuration –
initial θ1 and ϕ1 small.
θ1 actuated by a torsional spring.
Right-hand side of equations of
motion is modified as

τ = τ0−kθ1

Initial (pre-loaded) torque
τ0 = 1.96 N-m and the spring
constant is given as
k = 0.1 N−m/rad.
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. . . . . .

EXAMPLES
SIMULATIONS OF A 4-BAR MECHANISM

The mass, length, location of centre of mass and Izz component of
inertia

Link Length Mass C.G. Inertia
(m) (kg) (m) (kgm2)

0 1.241 – – –
1 1.241 20.15 1.2 9.6
2 1.2 8.25 0.6 0.06
3 1.2 8.25 0.6 0.06

As the spring unwinds, link 1 rotates in counter-clockwise direction.
Link lengths chosen such that θ1 cannot rotate beyond a certain angle.
Links 2 and 3 lock when they align & 4-bar becomes a structure!
For θ1 = 0.01 radians, ϕ1 = 0.0102,6.2698 radians (4-bar direct
kinematics) – choose initial ϕ1 = 0.0102 radians.
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. . . . . .

EXAMPLES
SIMULATIONS OF A 4-BAR MECHANISM
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Figure 14: Plot of θ1, ϕ2 and ϕ1 Vs time
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Figure 15: Plot of λ1 and λ2 Vs time

At θ1 = 150.4◦ links 2 and 3 align → singular configuration.
At t = 12.25 seconds & θ1 = 150◦ simulation is stopped.
As t → 12.25 seconds, Lagrange multipliers λ1,λ2 → ∞
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. . . . . .

INTRODUCTION

Figure 16: Amino acid chain in a protein

Multi-body system with large
number of links – redundant
robots, proteins, automobile etc.
Classical model of protein – 20
types of amino acid residues in a
serial chain
50-500 residues – assumed to be
rigid bodies
Two DOF between two residues
(ϕ , ψ) – 100 to 1000 ‘joint’
variables!

Direct and inverse dynamics of large multi-body systems
Efficient – O(N) (or better) formulations desired
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
INTRODUCTION

Inverse dynamics → Given q(t), q̇(t) & q̈(t) find τ(t).
Newton-Euler formulation – Newton’s Law and Euler Equation for
each link {i}

F = mi
0V̇Ci

N = Ci [Ii ]0ω̇ i +
0ω i ×Ci [Ii ]0ω i (37)

mi , Ci and [Ii ] are the mass, centre of mass and inertia of link {i}.
Requires computation of position/orientation, velocity and
acceleration.
Position & orientation computed using i−1

i [T ] (see Module 2, Lecture
1)
Linear and angular velocities can be computed using propagation
formulas (see Module 5, Lecture 1)
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
VELOCITY PROPAGATION & ACCELERATION

For rotary (R) joint
iω i = i

i−1[R]i−1ω i−1+ θ̇i (0 0 1)T
iVi = i

i−1[R](i−1Vi−1+
i−1 ω i−1×i−1 Oi ) (38)

For prismatic (P) joint
iω i = i

i−1[R]i−1ω i−1
iVi = i

i−1[R](i−1Vi−1+
i−1 ω i−1×i−1 Oi )+ ḋi (0 0 1)T (39)

Acceleration of an arbitrary point p on rigid body {i}→ differentiate
velocity with time

0V̇p = 0V̇Oi +
0
i [R]i V̇p +2 0ω i × 0

i [R]iVp +
0ω̇ i × 0

i [R]ip
+0ω i × (0ω i × 0

i [R]ip)

When ip is constant, then iVp = i V̇p = 0.
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
VELOCITY PROPAGATION & ACCELERATION (CONTD.)

When joint i +1 is rotary (R)
i+1V̇i+1 = i+1

i [R][i V̇i +
i ω̇ i ×i pi+1+

iω i × (iω i ×i pi+1)] (40)
i+1ω̇ i+1 = i+1

i [R]i ω̇ i +
i+1
i [R]iω i × θ̇i+1

i+1Ẑi+1+ θ̈i+1
i+1Ẑi+1

When joint i +1 is prismatic (P)
i+1V̇i+1 = i+1

i [R][i V̇i +
i ω̇ i ×i pi+1+

iω i × (iω i ×i pi+1)]

+2i+1ω i+1× ḋi+1
i+1Ẑi+1+ d̈i+1

i+1Ẑi+1
i+1ω̇ i+1 = i+1

i [R]i ω̇ i (41)

The acceleration of the centre of mass of link i is
i V̇Ci =

i V̇i + i ω̇ i ×i pCi +
iω i × (iω i ×i pCi ) (42)

ipCi is the position vector of the centre of mass of link i with respect
to origin Oi .
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
NEWTON-EULER FORMULATION

Use propagation formulas for position/orientation of links.
Outward iterations for velocities and accelerations
i : 0 → N−1

i+1ω i+1 = i+1
i [R]iω i + θ̇i+1(0 0 1)T

i+1ω̇ i+1 = i+1
i [R]i ω̇ i +

i+1
i [R]iω i × θ̇i+1(0 0 1)T + θ̈i+1(0 0 1)T

i+1V̇i+1 = i+1
i [R](i V̇i +

i ω̇ i ×i pi+1+
iω i × (iω i ×i pi+1)) (43)

i+1V̇Ci+1 = i+1V̇i+1+
i+1ω̇ i+1×i+1 pCi+1

+i+1ω i+1× (i+1ω i+1×i+1 pCi+1)

Use of Newton’s Law and Euler equations for each link i
i+1Fi+1 = mi+1

i+1V̇Ci+1 (44)
i+1Ni+1 = Ci+1 [I ]i+1

i+1ω̇ i+1+
i+1ω i+1×Ci+1 [I ]i+1

i+1ω i+1
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
NEWTON-EULER FORMULATION (CONTD.)

iFi and iNi are known from outward iteration
Use of free-body diagram (see Module 5 Lecture 5 on Statics)
Compute joint torques from iFi and iNi by inward iteration
i : N → 1

i fi = i
i+1[R]i+1fi+1+

i Fi
ini = i

i+1[R]i+1ni+1+
i pi+1× i

i+1[R]i+1fi+1+
i pCi ×

i Fi +
i Ni

τi = ini ·i Ẑi (45)

To include gravity set 0V̇0 = g → the fixed link (or base) is
accelerating upward with 1.0g acceleration.
Algorithm given is for rotary (R) jointed serial manipulator –
Substitute equations for Prismatic (P) joint if present.
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Use of free-body diagram (see Module 5 Lecture 5 on Statics)
Compute joint torques from iFi and iNi by inward iteration
i : N → 1

i fi = i
i+1[R]i+1fi+1+

i Fi
ini = i

i+1[R]i+1ni+1+
i pi+1× i

i+1[R]i+1fi+1+
i pCi ×

i Fi +
i Ni

τi = ini ·i Ẑi (45)

To include gravity set 0V̇0 = g → the fixed link (or base) is
accelerating upward with 1.0g acceleration.
Algorithm given is for rotary (R) jointed serial manipulator –
Substitute equations for Prismatic (P) joint if present.
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To include gravity set 0V̇0 = g → the fixed link (or base) is
accelerating upward with 1.0g acceleration.
Algorithm given is for rotary (R) jointed serial manipulator –
Substitute equations for Prismatic (P) joint if present.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 59 / 74



. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
NEWTON-EULER FORMULATION (CONTD.)

iFi and iNi are known from outward iteration
Use of free-body diagram (see Module 5 Lecture 5 on Statics)
Compute joint torques from iFi and iNi by inward iteration
i : N → 1

i fi = i
i+1[R]i+1fi+1+

i Fi
ini = i

i+1[R]i+1ni+1+
i pi+1× i

i+1[R]i+1fi+1+
i pCi ×

i Fi +
i Ni

τi = ini ·i Ẑi (45)
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. . . . . .

RECURSIVE INVERSE DYNAMICS OF SERIAL

MANIPULATORS
NEWTON-EULER FORMULATION (CONTD.)

Newton-Euler algorithm has O(N) computational complexity
The computation in sets of equations (43 -45) is performed onlyonce.
There are no iteration or loops.
Number of multiplications and additions is proportional to N (number
of links).

Very easily adapted for any serial manipulators with rotary (R),
prismatic (P) or any other joint.
i fi and ini can be used to obtain all components of reactions at joints
→ Useful for design.
Can be used in symbolic computation of equations of motion.
Extensively used in robotics.
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
INTRODUCTION

Forward dynamics: Given τ(t) obtain q(t).
Involves two steps

Obtain q̈(t)
Integrate q̈(t) with initial conditions to obtain q̇(t) and q(t)

O(N) algorithms for forward dynamics give q̈(t) – does not include
integration step.
Brute force approach

Obtain equations of motion using Newton-Euler formulation – O(N)
steps

[M(q)]q̈ = τ − [C(q, q̇)]q̇−F(q, q̇)

Obtain q̈ by inverting [M(q)] – O(N3) steps using Gauss Elimination.
Although O(N3), coefficient of N3 is small (Walker and Orin, 1982)
and hence efficient for serial manipulators with N ≤ 6.

O(N3) not very useful when N is large (as in protein chains with N
between 50 and 500).
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM-KEY IDEA
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Figure 17: Planar 2P example (Featherstone, 1983)

Simplest possible
example: Body 1 slides
on horizontal rail fixed to
ground and Body 2 slides
on vertical rail fixed to
Body 1.
No rotations of bodies →
X , Y coordinates enough
to describe two bodies!
Absolute coordinates for
body 1 – x1,y1.
Absolute coordinates for
body 2 – x2,y2.
Constraints – y1 = 0 &
x2− x1 = 0
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM-KEY IDEA (CONTD.)

Two Lagrange multipliers λ1 and λ2 for two constraints
Equations of motion and algebraic constraints for body 1[

m1 0
0 m1

](
ẍ1
ÿ1

)
+

(
0
1

)
λ1 =

(
fx1

fy1

)
−
(

−1
0

)
λ2

[0 1]
[

ẍ1
ÿ1

]
= 0

Equations of motion and algebraic constraints for body 2[
m2 0
0 m2

](
ẍ2
ÿ2

)
+

(
1
0

)
λ2 =

(
fx2

fy2

)
[1 0]

[
ẍ2
ÿ2

]
= 0− [−1 0]

[
ẍ1
ÿ1

]
fxi , fyi – external forces for yi , yi .
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM-KEY IDEA (CONTD.)

Effect of Body 2 seen in equations of motion on Body 1
Equations of motion for Bodies 1 and 2 are coupled – both Lagrange
multipliers λ1and λ2 appear in equation of motion for body 1
Not possible to get O(N) algorithm to obtain accelerations ẍi , ÿi – λ1
and λ2 at best can be solved by a O(N3) algorithm.
For O(N) recursive forward dynamics algorithm – obtain equation of
motion for all connected bodies similar to Body 2 (terminal body)!!
Achieved by Featherstone (1983)(see Additional Material) – For the
2P example, equations of motion for Body 1 are[

m1+m2 0
0 m1

](
ẍ1
ÿ1

)
+

(
0
1

)
λ1 =

(
fx1 + fx2

fy1

)
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM – GENERAL APPROACH

Equations of motion of a single rigid-body under the action of force F
and moment NC acting at the centre of mass

F = mV̇C

NC = C [I ]ω̇

where m, C [I ] are the mass and inertia, respectively.
No ω ×C [I ]ω term since all quantities are with respect to coordinate
frame {C} at centre of mass.
Rewrite above equations as

FC
∆
=

 F
−−
NC

=

[
m [U] [0]
[0] C [I ]

]
AC

[U]: 3×3 identity matrix,
FC : 6×1 entity of external force and moment (see Module 5, Lecture
5).
AC : 6×1 entity of linear and angular acceleration.
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM (CONTD.)

Newton-Euler equations for an arbitrary point O

F = m[U](V̇O − rC × ω̇)

NO = C [I ]ω̇ + rC ×F

where the centre of mass is located by rC from O.
In a compact form FO = [I ]AO where

[I ] is a 6×6 equivalent ‘inertia’ matrix
[I ] consists of C [I ], m, [U], and
3×3 skew-symmetric matrix [rC ]

[rC ] = m

 0 −rCz rCy
rCz 0 −rCx
−rCy rCx 0

 [U]

Above equations must be modified for rigid bodies connected by joints
– Need to account for the

effects of link i +1 through N on link i .
effects of generalized forces Qi+1 through QN .
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM (CONTD.)

For an arbitrary link i , seek an equation of the form

Fi = [I ]Ai Ai +PA
i (46)

6×6 matrix [I ]i
A: articulated-body inertia (ABI)

6×1 PA
i : ‘bias’ term containing effects of links after {i}.

Also seek to obtain [I ]i
A and Pi

A in O(N) steps!
Following formulas (Featherstone 1983, 1987) achieve the
requirements:

[I ]Ai = [I ]i +[I ]Ai+1−
[I ]Ai+1 Si+1 S T

i+1 [I ]Ai+1

S T
i+1[I ]Ai+1Si+1

, [I ]AN = [I ]N

PA
i = PA

i+1+
[I ]Ai+1 Si+1(Qi+1−S T

i+1 PA
i+1)

S T
i+1 [I ]Ai+1 Si+1

, PA
N = 0 (47)

Si+1 is a 6×1 entity representing the i +1th joint axis7
7Joint axis can be represented by a pair of 3×1 vectors (Q ; Q0) with Q ·Q0 = 0

(see Module 2, Additional Material).
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM (CONTD.)

Articulated-body inertia and the bias term for the end-effector (link
N) is known (see the planar 2P example).

[I ]AN = [I ]N , and
PA

N = 0.
Start with i = N −1 and compute [I ]Ai and PA

i for each i – O(N)
algorithm.
From [I ]Ai and PA

i , obtain q̈i for each i as
The acceleration Ai is related to Ai−1 by

Ai = Ai−1+Si q̈i , A0 = 0 (48)

The generalised force Qi is the component of Fi along Si

S T
i Fi = Qi (49)

Finally after simplification,

q̈i =
Qi −S T

i [I ]Ai Ai−1−S T
i PA

i

S T
i [I ]Ai Si

(50)
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. . . . . .

FORWARD DYNAMICS OF SERIAL MANIPULATORS
ARTICULATED-BODY ALGORITHM (CONTD.)

Fixed base A0 = 0, compute q̈1 from [I ]A1 , PA
1 and for a given Q1.

Iterate for i = 1 to N to obtain all q̈i ’s.
Overall algorithm is O(N) since all sub-parts are O(N) (Featherstone
1983, 1987).

1
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3

6

8 9

4

5

7

11 10

12

Root Node (Fixed)

Leaves (End-e�ector)

Figure 18: A typical tree structure

Can be used for multi-body
system in a tree structure.
0 is the root node (fixed base).
10, 11 etc. are leaf nodes
(end-effectors)
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. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS

Recursive inverse and forward dynamics algorithms cannot be directly
applied to parallel manipulators and closed-loop mechanisms.
Presence of passive joints and loop-closure constraints relating passive
and active joints – impractical to eliminate passive joints.
Equations of motion with m loop-closure constraints and m Lagrange
multipliers[

[M] [Ψ]T

[Ψ] [0]

](
q̈
−λ

)
=

(
τ − [C]q̇−G−F

− ˙[Ψ]q̇

)
n+m equations in n q̈i ’s and m λi ’s.
Solve for λ and q̈ using Gaussian elimination – O((n+m)3)
complexity.
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. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS
IMPROVED ALGORITHM

Form [M] etc. terms using an O(n) inverse dynamics algorithm.
Form [Ψ] can be formed using a O(m2) algorithm.
Using O(m3) Gaussian elimination algorithm, solve λ from

([Ψ][M]−1[Ψ]T )λ =− ˙[Ψ]q̇− [Ψ][M]−1(τ − [C]q̇−G−F)

Complexity of obtaining λ – O(nm2+m3)

For known λ , parallel manipulator is ‘equivalent’ to a serial
manipulator with extra right-hand side ‘forcing’ terms.
Solve for q̈ using an O(n) algorithm.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 71 / 74



. . . . . .

FORWARD DYNAMICS OF PARALLEL MANIPULATORS

Efficient forward dynamics algorithm for large multi-body systems
(such as proteins) with closed-loops still a subject of research!
O(n+m3) algorithm called MEXX (Lubich, et al., 1992).
Sequential regularisation method – iterative O(n) (Ascher & Lin 1999)

Requires k iterations for numerical convergence.
k claimed to be independent of the number of loops m!
k is small!

Parallel O(logn) algorithms are useful for very large multi-body
systems.
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