Robotics: Advanced Concepts \& Analysis Module 8 - Modeling and Control of Flexible Robots

Ashitava Ghosal ${ }^{1}$
${ }^{1}$ Department of Mechanical Engineering
\&
Centre for Product Design and Manufacture Indian Institute of Science
Bangalore 560 012, India
Email: asitava@mecheng.iisc.ernet.in

NPTEL, 2010

(1) Contents

(2) Lecture 1

- Flexible Manipulators
(3) Lecture 2*
- Kinematic Modeling of Flexible Link Manipulators
(4) Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(5) Lecture 4
- Experiments with a Planar Two Link Flexible System
(6) Module 8 - Additional Material
- Problems, References and Suggested Reading

Outline

(1) Contents

(2) LECTURE 1

- Flexible Manipulators

3 Lecture 2*

- Kinematic Modeling of Flexible Link Manipulators
(a Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(3) Lecture 4
- Experiments with a Planar Two Link Flexible System
(6) Module 8 - Additional Material
- Problems, References and Suggested Reading

Introduction

Overview

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
- Euler-Bernoulli model of a beam.
- Modeling a rotating flexible link.
- Modeling a translating flexible link.
- Summary

Introduction

Overview

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
- Euler-Bernoulli model of a beam.
- Modeling a rotating flexible link.
- Modeling a translating flexible link.
- Summary

Introduction

Overview

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
- Euler-Bernoulli model of a beam.
- Modeling a rotating flexible link.
- Modeling a translating flexible link.
- Summary

Introduction

OVERVIEW

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
- Euler-Bernoulli model of a beam.
- Modeling a rotating flexible link.
- Modeling a translating flexible link.
- Summary

Introduction

OVERVIEW

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
- Euler-Bernoulli model of a beam.
- Modeling a rotating flexible link.
- Modeling a translating flexible link.
- Summary

Introduction

- Industrial robots: Required high accuracy and repeatability \rightarrow Heavy, high stiffness and slow.

- PUMA 700 series industrial robot (PUMA 761) - Arm weight 580 Kg , Static payload $10 \mathrm{~kg}^{\mathrm{a}}$.
- Repeatability $\pm 0.2 \mathrm{~mm}$.
- Maximum straight line speed 1.0 $\mathrm{m} / \mathrm{sec}$.
${ }^{a}$ Documentation on PUMA 700 series robots available here

Figure 1: PUMA 700 Series Industrial Robot

Introduction (CONTD.)

- Robots in aero-space applications \rightarrow Light-weight and flexible.

Figure 2: Space Shuttle manipulator system

Figure 3: Solar panels being deployed

- Extreme flexibility in space-shuttle manipulator system \rightarrow Can be operated safely only in a gravity free environment!!
- Solar panels - light weight and very large!!

INTRODUCTION (CONTD.)

Initial folded configuration

Deployment under progress

- Two flexible Aluminum beams, initially folded, and floating on air bearings.
- Actuated by two springs at the joints and locking mechanism at joints.
- Final configuration - single cantilever beam.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Figure 4: Experimental set-up for solar panel deployment studies

Introduction (CONTD.)

SOLAR PANEL DEPLOYMENT STUDIES

Figure 5: Rotation at joint 1

Figure 6: Rotation at joint 2

- Joint 2 lock a little after 3 seconds.
- After joint 2 locks, motion of joint 1 is vibratory \rightarrow Tip motion is also vibratory!

Introduction (CONTD.)

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following \& vibrations must also be suppressed in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
- Design 'model based' control schemes to damp out vibrations.
- Reduce expensive experimentations.
- For trimmer designs!

Introduction (CONTD.)

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set
- Control: trajectory following \& vibrations must also be suppressed in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
- Design 'model based' control schemes to damp out vibrations.
- Reduce expensive experimentations.
- For trimmer designs!

Introduction (CONTD.)

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following \& vibrations must also be suppressed in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
- Design 'model based' control schemes to damp out vibrations.
- Reduce expensive experimentations.
- For trimmer designs!

Introduction (CONTD.)

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following \& vibrations must also be suppressed in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
- Design 'model based' control schemes to damp out vibrations.
- Reduce expensive experimentations.
- For trimmer designs!

Introduction (CONTD.)

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following \& vibrations must also be suppressed in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
- Design 'model based' control schemes to damp out vibrations.
- Reduce expensive experimentations.
- For trimmer designs!

Characteristic of a Rigid Link

Figure 7: A rigid link with its block diagram representation

- Simple dynamics \rightarrow equation of motion, without friction, is

$$
J \ddot{\theta}_{l}=\tau
$$

- One-to-one relationship between τ and θ_{I}

Figure 8: A link of a robot with a flexible joint

Characteristic of a Flexible Joint (Contd.)

- Equation of motion - Two linear coupled ODE's

$$
J_{m} \ddot{\theta_{m}}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)=0
$$

$J_{I}=I_{1}+m_{1} r_{1}^{2}$ is the load inertia.

- τ controls two outputs $-\theta_{m}$ and θ_{l}.
- More complicated than rigid-link case.

Figure 9: A block diagram of the flexible-joint link

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{l} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \theta_{l}, \theta_{m}, \theta_{l}\right)^{T},[F]$ and $[G]$ matrices in $\dot{X}=[F] \mathbf{X}+[G] u$ are

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{l}^{2}\right) \neq 0 \rightarrow$ Controllable with τ.
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta}_{m}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$

- Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{l} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \theta_{l}, \dot{\theta_{m}}, \dot{\theta_{l}}\right)^{T},[F]$ and $[G]$ matrices in $\dot{\mathbf{X}}=[F] \mathbf{X}+[G] u$ are

$$
[F]=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K_{s} / J_{m} & K_{s} / J_{m} & 0 & 0 \\
K_{s} / J_{l} & -K_{s} / J_{l} & 0 & 0
\end{array}\right), \quad[G]=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{J_{m}} \\
0
\end{array}\right)
$$

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{l}^{2}\right) \neq 0 \rightarrow$ Controllable with τ
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta}_{m}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$

- Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{l} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \theta_{l}, \dot{\theta_{m}}, \dot{\theta}_{l}\right)^{T},[F]$ and $[G]$ matrices in $\dot{\mathbf{X}}=[F] \mathbf{X}+[G] u$ are

$$
[F]=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K_{s} / J_{m} & K_{s} / J_{m} & 0 & 0 \\
K_{s} / J_{l} & -K_{s} / J_{l} & 0 & 0
\end{array}\right), \quad[G]=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{J_{m}} \\
0
\end{array}\right)
$$

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{1}^{2}\right) \neq 0 \rightarrow$ Controllable with τ
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta}_{m}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{l} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \theta_{l}, \dot{\theta_{m}}, \dot{\theta_{l}}\right)^{T},[F]$ and $[G]$ matrices in $\dot{\mathbf{X}}=[F] \mathbf{X}+[G] u$ are

$$
[F]=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K_{s} / J_{m} & K_{s} / J_{m} & 0 & 0 \\
K_{s} / J_{l} & -K_{s} / J_{l} & 0 & 0
\end{array}\right), \quad[G]=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{J_{m}} \\
0
\end{array}\right)
$$

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{l}^{2}\right) \neq 0 \rightarrow$ Controllable with τ.
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta}_{m}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$

\square Spong(1986)) for this non-linear system.

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{1} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \boldsymbol{\theta}_{l}, \dot{\theta_{m}}, \dot{\boldsymbol{\theta}_{l}}\right)^{T}$, [F] and [G] matrices in $\mathbf{X}=[F] \mathbf{X}+[G] u$ are

$$
[F]=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K_{s} / J_{m} & K_{s} / J_{m} & 0 & 0 \\
K_{s} / J_{l} & -K_{s} / J_{l} & 0 & 0
\end{array}\right), \quad[G]=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{J_{m}} \\
0
\end{array}\right)
$$

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{l}^{2}\right) \neq 0 \rightarrow$ Controllable with τ.
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta_{m}}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$

- Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system

Characteristic of a Flexible Joint (Contd.)

- Test for controllability of θ_{m} and θ_{l} by τ
- For state variables $\mathbf{X}=\left(\theta_{m}, \theta_{l}, \dot{\theta_{m}}, \dot{\theta_{l}}\right)^{T},[F]$ and $[G]$ matrices in $\dot{\mathbf{X}}=[F] \mathbf{X}+[G] u$ are

$$
[F]=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K_{s} / J_{m} & K_{s} / J_{m} & 0 & 0 \\
K_{s} / J_{l} & -K_{s} / J_{l} & 0 & 0
\end{array}\right), \quad[G]=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{J_{m}} \\
0
\end{array}\right)
$$

- Obtain controllability matrix $\left[Q_{c}\right]=\left[[G]|[F][G]|[F]^{2}[G] \mid[F]^{3}[G]\right]$
- $\operatorname{det}\left[Q_{c}\right]=-K_{s}^{2} /\left(J_{m}^{4} J_{l}^{2}\right) \neq 0 \rightarrow$ Controllable with τ.
- In presence of gravity, equations of motion are nonlinear!

$$
J_{m} \ddot{\theta_{m}}+K_{s}\left(\theta_{m}-\theta_{l}\right)=\tau, \quad J_{l} \ddot{\theta}_{l}+K_{s}\left(\theta_{l}-\theta_{m}\right)+m_{1} g r_{1} \sin \theta_{l}=0
$$

- Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

Characteristic of a Flexible Link

- To start with - flexible links undergoing only bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
- Small deformations \rightarrow Linear elasticity theory is applicable.
- Each flexible link is a homogeneous, isotropic and elastic material.
- Linear stress-strain relationship.
- Euler-Bernoulli hypothesis for slender beams - Plain sections remain plane etc.
- Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom - contrast with rigid or flexible joint!!

Characteristic of a Flexible Link

- To start with - flexible links undergoing only bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
- Small deformations \rightarrow Linear elasticity theory is applicable.
- Each flexible link is a homogeneous, isotropic and elastic material
- Linear stress-strain relationship
- Euler-Bernoulli hypothesis for slender beams - Plain sections remain plane etc.
- Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation
- Infinite degrees of freedom - contrast with rigid or flexible joint!!

Characteristic of a Flexible Link

- To start with - flexible links undergoing only bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
- Small deformations \rightarrow Linear elasticity theory is applicable.
- Each flexible link is a homogeneous, isotropic and elastic material.
- Linear stress-strain relationship.
- Euler-Bernoulli hypothesis for slender beams - Plain sections remain plane etc.
- Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom - contrast with rigid or flexible joint!!

Characteristic of a Flexible Link

- To start with - flexible links undergoing only bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
- Small deformations \rightarrow Linear elasticity theory is applicable.
- Each flexible link is a homogeneous, isotropic and elastic material.
- Linear stress-strain relationship.
- Euler-Bernoulli hypothesis for slender beams - Plain sections remain plane etc.
- Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom - contrast with rigid or flexible joint!!

Characteristic of a Flexible Link

- To start with - flexible links undergoing only bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
- Small deformations \rightarrow Linear elasticity theory is applicable.
- Each flexible link is a homogeneous, isotropic and elastic material.
- Linear stress-strain relationship.
- Euler-Bernoulli hypothesis for slender beams - Plain sections remain plane etc.
- Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom - contrast with rigid or flexible joint!!

Characteristic of a Flexible Link (Contd.)

EULER-BERNOULLI BEAM MODEL

Figure 10: A beam in flexure

- PDE describing the transverse free bending vibration of a beam

$$
\frac{\partial^{2}}{\partial s^{2}}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)+\rho A(s) \frac{\partial^{2} u(s, t)}{\partial t^{2}}=0
$$

- $E I(s)$: flexural rigidity \& $\rho A(s)$: mass per unit length.

Characteristic of a Flexible Link (Contd.)

Euler-Bernoulli beam model

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.
- Two common types of joints - Rotary (R) and Prismatic (P) joint.

Characteristic of a Flexible Link (Contd.)

Euler-Bernoulli beam model

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E /(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.
- Two common types of joints - Rotary (R) and Prismatic (P) joint.

Characteristic of a Flexible Link (Contd.)

Euler-BERNOULLI BEAM MODEL

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.
- Two common types of joints - Rotary (R) and Prismatic (P) joint.

Characteristic of a Flexible Link (Contd.)

Euler-Bernoulli beam model

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.
- Two common types of joints - Rotary (R) and Prismatic (P) joint.

Characteristic of a Flexible Link (Contd.)

Euler-Bernoulli beam model

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.

Characteristic of a Flexible Link (Contd.)

EULER-BERNOULLI BEAM MODEL

- PDE second order in $t \rightarrow$ Need two initial conditions, $\left.u(s, t)\right|_{t=0}$ and $\left.\frac{\partial u(s, t)}{\partial t}\right|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions - deflection $u(s, t)$ or slope $\frac{\partial u(s, t)}{\partial s}$ at the boundaries.
- Natural boundary conditions - moment $\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ or shear force $\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)$ at the boundaries.
- Boundary conditions at $s=0$ depends on type of joint.
- Two common types of joints - Rotary (R) and Prismatic (P) joint.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Rotation of joint $\theta(t)$.

$\hat{x}_{0} u(s, t)$ deflection at s and time t in addition to rotation $\theta(t)$.
- Motor torque $\tau(t)$.
- Payload of mass M_{p} and inertia J_{p}.
- Two possible boundary conditions at $s=0$ - clamped or pinned.

Figure 11: A flexible link with a rotary joint

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Clamped boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at $s=0$ is zero

$$
[u(s, t)]_{s=0}=0, \quad\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0
$$

- Pinned boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$ is chosen such that it passes through the centre of mass
of the flexible link at all times \rightarrow Slope at $s=0$ need not be zero.

J_{a} is the total inertia as seen by joint actuator.
- Neither clamped nor pinned exactly - not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_{a} \gg$ flexible beam inertia (greater than 10) \rightarrow Clamped boundary conditions more reasonable (Cetinkunt and Yu, 1991).

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Clamped boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at $s=0$ is zero

$$
[u(s, t)]_{s=0}=0, \quad\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0
$$

- Pinned boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$ is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at $s=0$ need not be zero.

$$
[u(s, t)]_{s=0}=0, \quad\left[E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=0}=J_{a}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=0}
$$

J_{a} is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly - not a built in cantilever and motor control torque provide non-zero stiffness!
If $J_{a} \gg$ flexible beam inertia (greater than 10) \rightarrow Clamped boundary

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Clamped boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at $s=0$ is zero

$$
[u(s, t)]_{s=0}=0, \quad\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0
$$

- Pinned boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$ is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at $s=0$ need not be zero.

$$
[u(s, t)]_{s=0}=0, \quad\left[E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=0}=J_{a}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=0}
$$

J_{a} is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly - not a built in cantilever and motor control torque provide non-zero stiffness!

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Clamped boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at $s=0$ is zero

$$
[u(s, t)]_{s=0}=0, \quad\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0
$$

- Pinned boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$ is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at $s=0$ need not be zero.

$$
[u(s, t)]_{s=0}=0, \quad\left[E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=0}=J_{a}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=0}
$$

J_{a} is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly - not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_{a} \gg$ flexible beam inertia (greater than 10) \rightarrow Clamped boundary conditions more reasonable (Cetinkunt and Yu, 1991).

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Clamped boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at $s=0$ is zero

$$
[u(s, t)]_{s=0}=0, \quad\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0
$$

- Pinned boundary conditions
- $\hat{\mathbf{X}}_{1}$ axis of $\{1\}$ is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at $s=0$ need not be zero.

$$
[u(s, t)]_{s=0}=0, \quad\left[E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=0}=J_{a}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=0}
$$

J_{a} is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly - not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_{a} \gg$ flexible beam inertia (greater than 10) \rightarrow Clamped boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Boundary conditions at $s=/$ - free or mass.
- Free boundary conditions at $s=1$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use mass boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$
\begin{aligned}
{\left[E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=1} } & =-J_{p}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=1} \\
{\left[\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)\right]_{s=1} } & =M_{p}\left[\frac{\partial^{2} u(s, t)}{\partial t^{2}}\right]_{s=1}
\end{aligned}
$$

where M_{p} and J_{p} are the mass and rotary inertia of the payload located at $s=1$.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Boundary conditions at $s=/$ - free or mass.
- Free boundary conditions at $s=I$

$$
\left[E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=1}=0, \quad\left[\frac{\partial}{\partial s}\left(E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)\right]_{s=1}=0
$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use mass boundary conditions.
- Mass boundary conditions require moment and shear force balance.

where M_{p} and J_{p} are the mass and rotary inertia of the payload located at $s=1$.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Boundary conditions at $s=/$ - free or mass.
- Free boundary conditions at $s=I$

$$
\left[E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=1}=0, \quad\left[\frac{\partial}{\partial s}\left(E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)\right]_{s=1}=0
$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use mass boundary conditions.
- Mass boundary conditions require moment and shear force balance.

where M_{p} and J_{p} are the mass and rotary inertia of the payload located at $s=1$.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link

- Boundary conditions at $s=I$ - free or mass.
- Free boundary conditions at $s=1$

$$
\left[E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=1}=0, \quad\left[\frac{\partial}{\partial s}\left(E I(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)\right]_{s=1}=0
$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use mass boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$
\begin{aligned}
{\left[E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=1} } & =-J_{p}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=1} \\
{\left[\frac{\partial}{\partial s}\left(E l(s) \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)\right]_{s=1} } & =M_{p}\left[\frac{\partial^{2} u(s, t)}{\partial t^{2}}\right]_{s=1}
\end{aligned}
$$

where M_{p} and J_{p} are the mass and rotary inertia of the payload located at $s=l$.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- Non-dimensional variables: $\widetilde{u}(s, t)=u(s, t) / I, \eta=s / I, \tau=t /\left(I / U_{g}\right)$, with $U_{g} \triangleq \frac{1}{T} \sqrt{\frac{E I}{\rho A}}$
- U_{g} has units of speed \& $/ / U_{g}$ has units of time.
- EI $\rightarrow \infty$ (rigid) $-I / U_{g} \rightarrow 0$ \& $E I$ is small (flexible) $-I / U_{g}$ is large!
- PDE and boundary conditions in terms of non-dimensional variables

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- Non-dimensional variables: $\widetilde{u}(s, t)=u(s, t) / I, \eta=s / I, \tau=t /\left(I / U_{g}\right)$, with $U_{g} \triangleq \frac{1}{T} \sqrt{\frac{E I}{\rho A}}$
- U_{g} has units of speed $\& I / U_{g}$ has units of time.
- El

- PDE and boundary conditions in terms of non-dimensional variables

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- Non-dimensional variables: $\widetilde{u}(s, t)=u(s, t) / I, \eta=s / I, \tau=t /\left(I / U_{g}\right)$, with $U_{g} \triangleq \frac{1}{T} \sqrt{\frac{E I}{\rho A}}$
- U_{g} has units of speed $\& I / U_{g}$ has units of time.
- EI $\rightarrow \infty$ (rigid) $-I / U_{g} \rightarrow 0 \& E I$ is small (flexible) $-I / U_{g}$ is large!
- PDE and boundary conditions in terms of non-dimensional variables

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- Non-dimensional variables: $\widetilde{u}(s, t)=u(s, t) / I, \eta=s / I, \tau=t /\left(I / U_{g}\right)$, with $U_{g} \triangleq \frac{1}{T} \sqrt{\frac{E I}{\rho A}}$
- U_{g} has units of speed $\& I / U_{g}$ has units of time.
- EI $\rightarrow \infty$ (rigid) $-I / U_{g} \rightarrow 0 \& E I$ is small (flexible) $-I / U_{g}$ is large!
- PDE and boundary conditions in terms of non-dimensional variables

$$
\begin{gathered}
\frac{\partial^{4} \widetilde{u}(\eta, \tau)}{\partial \eta^{4}}+\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \tau^{2}}=0, \quad 0<\eta<1 \\
{[\widetilde{u}(\eta, \tau)]_{\eta=0}=0, \quad\left[\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta^{2}}\right]_{\eta=1}=-\frac{J_{p}}{\rho A I^{3}}\left[\frac{\partial^{2}}{\partial \tau^{2}}\left(\frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}\right)\right]_{\eta=1}} \\
{\left[\frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}\right]_{\eta=0}=0, \quad\left[\frac{\partial^{3} \widetilde{u}(\eta, \tau)}{\partial \eta^{3}}\right]_{\eta=1}=\frac{M_{p}}{\rho A l}\left[\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \tau^{2}}\right]_{\eta=1}}
\end{gathered}
$$

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- In non-dimensional form easier to decide on boundary conditions at $s=1$.
- Use free end-conditions if J_{p} and $M_{p} \ll$ rotary inertia $\left(\rho A /^{3}\right)$ and mass ($\rho A /$) of the flexible link.
- If J_{p} and M_{p} comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links after the flexible link j can be modeled as an effective $M_{p_{j}}$ and $J_{p_{j}}$ acting at $s=I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of separation of variables.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

$$
\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)
$$

$\psi(\eta)$ are called mode shape functions and $\mathbf{q}_{f}(t)$ are the flexible generalised coordinates.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- In non-dimensional form easier to decide on boundary conditions at $s=l$.
- Use free end-conditions if J_{p} and $M_{p} \ll$ rotary inertia $\left(\rho A /^{3}\right)$ and mass ($\rho A /$) of the flexible link.
- If J_{p} and M_{p} comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links after the flexible link j can be modeled as an effective $M_{p_{j}}$ and $J_{p_{j}}$ acting at $s=I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of separation of variables.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

$$
\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)
$$

$\psi(\eta)$ are called mode shape functions and $\mathbf{q}_{f}(t)$ are the flexible generalised coordinates.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Non-dimensional form

- In non-dimensional form easier to decide on boundary conditions at $s=l$.
- Use free end-conditions if J_{p} and $M_{p} \ll$ rotary inertia $\left(\rho A /^{3}\right)$ and mass ($\rho A /$) of the flexible link.
- If J_{p} and M_{p} comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links after the flexible link j can be modeled as an effective $M_{p_{j}}$ and $J_{p_{j}}$ acting at $s=I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of separation of variables.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

$$
\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)
$$

$\psi(\eta)$ are called mode shape functions and $\mathbf{q}_{f}(t)$ are the flexible generalised coordinates.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - NON-Dimensional form

- In non-dimensional form easier to decide on boundary conditions at $s=l$.
- Use free end-conditions if J_{p} and $M_{p} \ll$ rotary inertia $\left(\rho A /^{3}\right)$ and mass ($\rho A /$) of the flexible link.
- If J_{p} and M_{p} comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links after the flexible link j can be modeled as an effective $M_{p_{j}}$ and $J_{p_{j}}$ acting at $s=I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of separation of variables.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

$$
\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)
$$

$\psi(\eta)$ are called mode shape functions and $\mathbf{q}_{f}(t)$ are the flexible generalised coordinates.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Solution of PDE

- Substitute $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$ in PDE and rearrange

$$
\frac{1}{\mathbf{q}_{f}(\tau)} \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}=-\frac{1}{\psi(\eta)} \frac{d^{4} \psi(\eta)}{d \eta^{4}}
$$

- Both terms are equal to a real constant, $-\omega^{2}$, and

Boundary conditions

- Infinite number of eigenvalues $\omega^{2}-\omega_{i}$ are system natural frequencies.
- For each ω_{i}, an eigenfunction or natural mode $\psi_{i}(\eta)$

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Solution of PDE

- Substitute $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$ in PDE and rearrange

$$
\frac{1}{\mathbf{q}_{f}(\tau)} \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}=-\frac{1}{\psi(\eta)} \frac{d^{4} \psi(\eta)}{d \eta^{4}}
$$

- Both terms are equal to a real constant, $-\omega^{2}$, and

$$
\frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+\omega^{2} \mathbf{q}_{f}(\tau)=0, \quad \frac{d^{4} \psi(\eta)}{d \eta^{4}}-\omega^{2} \psi(\eta)=0, \quad 0<\eta<1
$$

Boundary conditions

$$
\begin{gathered}
{[\psi(\eta)]_{\eta=0}=0,\left[\frac{d^{2} \psi(\eta)}{d \eta^{2}}\right]_{\eta=1}=\frac{J_{p} \omega^{2}}{\rho A I^{3}}\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=1}} \\
{\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=0}=0,\left[\frac{d^{3} \psi(\eta)}{d \eta^{3}}\right]_{\eta=1}=-\frac{M_{p} \omega^{2}}{\rho A I}[\psi(\eta)]_{\eta=1}}
\end{gathered}
$$

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Solution of PDE

- Substitute $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$ in PDE and rearrange

$$
\frac{1}{\mathbf{q}_{f}(\tau)} \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}=-\frac{1}{\psi(\eta)} \frac{d^{4} \psi(\eta)}{d \eta^{4}}
$$

- Both terms are equal to a real constant, $-\omega^{2}$, and

$$
\frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+\omega^{2} \mathbf{q}_{f}(\tau)=0, \quad \frac{d^{4} \psi(\eta)}{d \eta^{4}}-\omega^{2} \psi(\eta)=0, \quad 0<\eta<1
$$

Boundary conditions

$$
\begin{gathered}
{[\psi(\eta)]_{\eta=0}=0,\left[\frac{d^{2} \psi(\eta)}{d \eta^{2}}\right]_{\eta=1}=\frac{J_{p} \omega^{2}}{\rho A I^{3}}\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=1}} \\
{\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=0}=0,\left[\frac{d^{3} \psi(\eta)}{d \eta^{3}}\right]_{\eta=1}=-\frac{M_{p} \omega^{2}}{\rho A l}[\psi(\eta)]_{\eta=1}}
\end{gathered}
$$

- Infinite number of eigenvalues $\omega^{2}-\omega_{i}$ are system natural frequencies.

Characteristic of a Flexible Link (Contd.)

Rotating Flexible Link - Solution of PDE

- Substitute $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$ in PDE and rearrange

$$
\frac{1}{\mathbf{q}_{f}(\tau)} \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}=-\frac{1}{\psi(\eta)} \frac{d^{4} \psi(\eta)}{d \eta^{4}}
$$

- Both terms are equal to a real constant, $-\omega^{2}$, and

$$
\frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+\omega^{2} \mathbf{q}_{f}(\tau)=0, \quad \frac{d^{4} \psi(\eta)}{d \eta^{4}}-\omega^{2} \psi(\eta)=0, \quad 0<\eta<1
$$

Boundary conditions

$$
\begin{gathered}
{[\psi(\eta)]_{\eta=0}=0,\left[\frac{d^{2} \psi(\eta)}{d \eta^{2}}\right]_{\eta=1}=\frac{J_{p} \omega^{2}}{\rho A I^{3}}\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=1}} \\
{\left[\frac{d \psi(\eta)}{d \eta}\right]_{\eta=0}=0,\left[\frac{d^{3} \psi(\eta)}{d \eta^{3}}\right]_{\eta=1}=-\frac{M_{p} \omega^{2}}{\rho A l}[\psi(\eta)]_{\eta=1}}
\end{gathered}
$$

- Infinite number of eigenvalues $\omega^{2}-\omega_{i}$ are system natural frequencies.
- For each ω_{i}, an eigenfunction or natural mode $\psi_{i}(\eta)$.

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link

Figure 12: A flexible link with a prismatic joint

- Vibration in the horizontal plane spanned by $\hat{\mathbf{X}}_{0}$ and $\hat{\mathbf{Z}}_{0}$.
- Prismatic joint axis along $\hat{\mathbf{Z}}_{0}$, Total length of link I_{0}.
- $I(t)$ vibrating length outside the rigid joint hub at time t.
- The beam inside the hub, $\left(I_{0}-I(t)\right)$, is assumed not to be vibrating.
- The axial velocity $U(t)$ is assumed to be independent of s.

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link

- Free bending vibration of a translating beam with Euler-Bernoulli assumptions

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial s^{2}}\left(E I \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)+ \\
& \quad \rho A\left(\frac{\partial^{2} u(s, t)}{\partial t^{2}}+2 U \frac{\partial^{2} u(s, t)}{\partial s \partial t}+U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}+\frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}\right)=0
\end{aligned}
$$

where $0<s<l(t)$.

- Clamped-mass boundary conditions are

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link

- Free bending vibration of a translating beam with Euler-Bernoulli assumptions

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial s^{2}}\left(E I \frac{\partial^{2} u(s, t)}{\partial s^{2}}\right)+ \\
& \quad \rho A\left(\frac{\partial^{2} u(s, t)}{\partial t^{2}}+2 U \frac{\partial^{2} u(s, t)}{\partial s \partial t}+U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}+\frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}\right)=0
\end{aligned}
$$

where $0<s<l(t)$.

- Clamped-mass boundary conditions are

$$
\begin{gathered}
{[u(s, t)]_{s=0}=0, E l\left[\frac{\partial^{2} u(s, t)}{\partial s^{2}}\right]_{s=I(t)}=-J_{p}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u(s, t)}{\partial s}\right)\right]_{s=I(t)}} \\
{\left[\frac{\partial u(s, t)}{\partial s}\right]_{s=0}=0, E l\left[\frac{\partial^{3} u(s, t)}{\partial s^{3}}\right]_{s=l(t)}=M_{p}\left[\frac{\partial^{2} u(s, t)}{\partial t^{2}}\right]_{s=I(t)}}
\end{gathered}
$$

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Length of beam, $I(t)$, is a function of time - moving boundary value problem.
- Presence of convective terms $2 \rho A U \frac{\partial^{2} u(s, t)}{\partial s \partial t}, \rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$, and $\rho A \frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994)
- Much more complicated that rotating link \rightarrow General analytical solution not known!

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Length of beam, $I(t)$, is a function of time - moving boundary value problem.
- Presence of convective terms $2 \rho A U \frac{\partial^{2} u(s, t)}{\partial s \partial t}, \rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$, and $\rho A \frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994)
- Much more complicated that rotating link \rightarrow General analytical solution not known!

Characteristic of a Flexible Link (Contd.)

 Translating Flexible Link (Contd.)- Length of beam, $I(t)$, is a function of time - moving boundary value problem.
- Presence of convective terms $2 \rho A U \frac{\partial^{2} u(s, t)}{\partial s \partial t}, \rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$, and $\rho A \frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994)
- Much more complicated that rotating link \rightarrow General analytical solution not known!

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Length of beam, $I(t)$, is a function of time - moving boundary value problem.
- Presence of convective terms $2 \rho A U \frac{\partial^{2} u(s, t)}{\partial s \partial t}, \rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$, and $\rho A \frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994).

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Length of beam, $I(t)$, is a function of time - moving boundary value problem.
- Presence of convective terms $2 \rho A U \frac{\partial^{2} u(s, t)}{\partial s \partial t}, \rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$, and $\rho A \frac{d U}{d t} \frac{\partial u(s, t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^{2} \frac{\partial^{2} u(s, t)}{\partial s^{2}}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994).
- Much more complicated that rotating link \rightarrow General analytical solution not known!

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Using $\widetilde{u}(s, t)=u(s, t) / I_{0}, \eta=s / I_{0}, \tau=t /\left(l_{0} / U_{g}\right)$, and $U_{g} \triangleq \frac{1}{I_{0}} \sqrt{\frac{E l}{\rho A}}$ PDE is ${ }^{1}$,

$$
\begin{aligned}
& \frac{\partial^{4} \widetilde{u}(\eta, \tau)}{\partial \eta^{4}}+\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \tau^{2}}+2\left(\frac{U}{U_{g}}\right) \frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta \partial \tau} \\
& +\left(\frac{U}{U_{g}}\right)^{2} \frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta^{2}}+\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)\right) \frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}=0
\end{aligned}
$$

- Boundary conditions
$[\widetilde{u}(\eta, \tau)]_{\eta=0}=0,\left[\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta^{2}}\right]$

${ }^{1} U_{g}$ is based on I_{0} or the smallest U_{g} value is used.

Characteristic of a Flexible Link (Contd.)

 Translating Flexible Link (Contd.)- Using $\widetilde{u}(s, t)=u(s, t) / I_{0}, \eta=s / I_{0}, \tau=t /\left(I_{0} / U_{g}\right)$, and $U_{g} \triangleq \frac{1}{I_{0}} \sqrt{\frac{E l}{\rho A}}$ PDE is ${ }^{1}$,

$$
\begin{aligned}
& \frac{\partial^{4} \widetilde{u}(\eta, \tau)}{\partial \eta^{4}}+\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \tau^{2}}+2\left(\frac{U}{U_{g}}\right) \frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta \partial \tau} \\
& +\left(\frac{U}{U_{g}}\right)^{2} \frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta^{2}}+\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)\right) \frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}=0
\end{aligned}
$$

- Boundary conditions

$$
\begin{aligned}
& {[\widetilde{u}(\eta, \tau)]_{\eta=0}=0,\left[\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \eta^{2}}\right]_{\eta=\frac{\eta^{(t)}}{1_{0}}}=-\frac{J_{\rho}}{\rho A \beta^{3}}\left[\frac{\partial^{2}}{\partial \tau^{2}}\left(\frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}\right)\right]_{\eta=\frac{(t)}{t_{0}}}} \\
& {\left[\frac{\partial \widetilde{u}(\eta, \tau)}{\partial \eta}\right]_{\eta=0}=0,\left[\frac{\partial^{3} \widetilde{u}(\eta, \tau)}{\partial \eta^{3}}\right]_{\eta=\frac{V^{(t)}}{10}}=\frac{M_{p}}{\rho A^{\prime}}\left[\frac{\partial^{2} \widetilde{u}(\eta, \tau)}{\partial \tau^{2}}\right]_{\eta=\frac{((t)}{10}}}
\end{aligned}
$$

${ }^{1} U_{g}$ is based on I_{0} or the smallest U_{g} value is used.

Characteristic of a Flexible Link (Contd.)

 Translating Flexible Link (Contd.)- Using $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$, PDE can be written as

$$
\begin{aligned}
& \psi(\eta) \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+2 \frac{U}{U_{g}} \frac{d \psi(\eta)}{d \eta} \frac{d \mathbf{q}_{f}(\tau)}{d \tau} \\
& =-\left(\frac{d^{4} \psi(\eta)}{d \eta^{4}}+\left(\frac{U}{U_{g}}\right)^{2} \frac{d^{2} \psi(\eta)}{d \eta^{2}}+\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right) \frac{d \psi(\eta)}{d \eta}\right) \mathbf{q}_{f}(\tau)
\end{aligned}
$$

- Above equation not separable in η and τ !!
- If $U \ll U_{g}$ and constant $\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)=0\right)$, the convective terms can be dropped and one can approximately use separation of variables.
- Mode shape functions $\psi_{i}(\eta)$ and the natural frequencies ω_{i} time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 - See Lecture 2).

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Using $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$, PDE can be written as

$$
\begin{aligned}
& \psi(\eta) \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+2 \frac{U}{U_{g}} \frac{d \psi(\eta)}{d \eta} \frac{d \mathbf{q}_{f}(\tau)}{d \tau} \\
& =-\left(\frac{d^{4} \psi(\eta)}{d \eta^{4}}+\left(\frac{U}{U_{g}}\right)^{2} \frac{d^{2} \psi(\eta)}{d \eta^{2}}+\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right) \frac{d \psi(\eta)}{d \eta}\right) \mathbf{q}_{f}(\tau)
\end{aligned}
$$

- Above equation not separable in η and $\tau!$!
- If $U \ll U_{g}$ and constant $\left(\frac{d}{d \tau}\left(\overline{U_{g}}\right)=0\right)$, the convective terms can be dropped and one can approximately use separation of variables.
- Mode shape functions $\psi_{i}(\eta)$ and the natural frequencies ω_{i} time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 - See Lecture 2).

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Using $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$, PDE can be written as

$$
\begin{aligned}
& \psi(\eta) \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+2 \frac{U}{U_{g}} \frac{d \psi(\eta)}{d \eta} \frac{d \mathbf{q}_{f}(\tau)}{d \tau} \\
& =-\left(\frac{d^{4} \psi(\eta)}{d \eta^{4}}+\left(\frac{U}{U_{g}}\right)^{2} \frac{d^{2} \psi(\eta)}{d \eta^{2}}+\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right) \frac{d \psi(\eta)}{d \eta}\right) \mathbf{q}_{f}(\tau)
\end{aligned}
$$

- Above equation not separable in η and $\tau!$!
- If $U \ll U_{g}$ and constant $\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)=0\right)$, the convective terms can be dropped and one can approximately use separation of variables.

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Using $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$, PDE can be written as

$$
\begin{aligned}
& \psi(\eta) \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+2 \frac{U}{U_{g}} \frac{d \psi(\eta)}{d \eta} \frac{d \mathbf{q}_{f}(\tau)}{d \tau} \\
& =-\left(\frac{d^{4} \psi(\eta)}{d \eta^{4}}+\left(\frac{U}{U_{g}}\right)^{2} \frac{d^{2} \psi(\eta)}{d \eta^{2}}+\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right) \frac{d \psi(\eta)}{d \eta}\right) \mathbf{q}_{f}(\tau)
\end{aligned}
$$

- Above equation not separable in η and $\tau!$!
- If $U \ll U_{g}$ and constant $\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)=0\right)$, the convective terms can be dropped and one can approximately use separation of variables.
- Mode shape functions $\psi_{i}(\eta)$ and the natural frequencies ω_{i} time dependent.

Characteristic of a Flexible Link (Contd.)

Translating Flexible Link (Contd.)

- Using $\widetilde{u}(\eta, \tau)=\psi(\eta) \mathbf{q}_{f}(\tau)$, PDE can be written as

$$
\begin{aligned}
& \psi(\eta) \frac{d^{2} \mathbf{q}_{f}(\tau)}{d \tau^{2}}+2 \frac{U}{U_{g}} \frac{d \psi(\eta)}{d \eta} \frac{d \mathbf{q}_{f}(\tau)}{d \tau} \\
& =-\left(\frac{d^{4} \psi(\eta)}{d \eta^{4}}+\left(\frac{U}{U_{g}}\right)^{2} \frac{d^{2} \psi(\eta)}{d \eta^{2}}+\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right) \frac{d \psi(\eta)}{d \eta}\right) \mathbf{q}_{f}(\tau)
\end{aligned}
$$

- Above equation not separable in η and $\tau!$!
- If $U \ll U_{g}$ and constant $\left(\frac{d}{d \tau}\left(\frac{U}{U_{g}}\right)=0\right)$, the convective terms can be dropped and one can approximately use separation of variables.
- Mode shape functions $\psi_{i}(\eta)$ and the natural frequencies ω_{i} time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 - See Lecture 2).

SUMMARY

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model \& one-to-one relationship between joint torque and link rotation.
- Flexible joint
- Modeled as torsional spring.
- Coupled ODE model \rightarrow one input and two outputs.
- Motor torque can control both rotation of joint and link.
- Flexible link
- Partial differential equation for bending vibration \rightarrow infinite dimensional system.
- Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
- Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

SUMMARY

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model \& one-to-one relationship between joint torque and link rotation.
- Flexible joint
- Modeled as torsional spring.
- Coupled ODE model \rightarrow one in put and two outputs.
- Motor torque can control both rotation of joint and link.
- Flexible link
- Partial differential equation for bending vibration \rightarrow infinite dimensional system.
- Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
- Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

SUMMARY

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model \& one-to-one relationship between joint torque and link rotation.
- Flexible joint
- Modeled as torsional spring.
- Coupled ODE model \rightarrow one input and two outputs.
- Motor torque can control both rotation of joint and link.
- Partial differential equation for bending vibration \rightarrow infinite dimensional system.
- Boundary conditions depend on rotary (R) or prismatic ($(P$) joint \rightarrow Clamped-mass boundary conditions more reasonable.
- Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

SUMMARY

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model \& one-to-one relationship between joint torque and link rotation.
- Flexible joint
- Modeled as torsional spring.
- Coupled ODE model \rightarrow one input and two outputs.
- Motor torque can control both rotation of joint and link.
- Flexible link
- Partial differential equation for bending vibration \rightarrow infinite dimensional system.
- Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
- Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

Outline

Contents

(2) Lecture 1

- Flexible Manipulators
(3) Lecture 2*
- Kinematic Modeling of Flexible Link Manipulators
(4) Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(5) Lecture 4
- Experiments with a Planar Two Link Flexible System
(8) Module 8 - Additional Material
- Problems, References and Suggested Reading

Introduction

Overview

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
- Assumed modes method (AMM)
- Frequency equation as ODE for translating link.
- Finite element method (FEM)
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

Introduction

Overview

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
- Assumed modes method (AMM).
- Frequency equation as ODE for translating link.
- Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

Introduction

OVERVIEW

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
- Assumed modes method (AMM).
- Frequency equation as ODE for translating link.
- Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

Introduction

OvERVIEW

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
- Assumed modes method (AMM).
- Frequency equation as ODE for translating link.
- Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

Extension of D-H Convention to Flexible Linl

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing only transverse bending vibration - axial and torsional deformation not considered.
- Links satisfy Fuler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see Module 2, Lecture 2)
- Assign coordinate system $\{j\}$ to link j with $\{0\}$ as the fixed link and $\{n\}$ as the last link.
- The coordinate axes ($\left.\hat{\mathbf{X}}_{j}, \hat{\mathbf{Y}}_{j}, \hat{\mathbf{Z}}_{j}\right)$ are assigned to link j and the origin O_{j} is on the joint axis j
- Axis $\hat{\mathbf{Z}}_{j}$ is along the axis of joint j
- Define a coordinate system $\left\{j_{*}\right\}$ in such a way that when the link $j-1$ is in its undeformed configuration, the $\{j\}$ and $\left\{j_{*}\right\}$ are coincident (see figure next page)

Extension of D-H Convention to Flexible Lin 11

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing only transverse bending vibration - axial and torsional deformation not considered.

```
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see
Module 2, Lecture 2)
- Assign coordinate system {j} to link j with {0} as the fixed link and
    {n} as the last link.
- The coordinate axes (\mp@subsup{\hat{X}}{j}{},\mp@subsup{\hat{Y}}{j}{},\mp@subsup{\hat{Z}}{j}{})\mathrm{ ) are assigned to link j and the origin }\mp@subsup{O}{j}{}
    is on the joint axis j
- Axis }\mp@subsup{\hat{\mathbf{Z}}}{j}{}\mathrm{ is along the axis of joint j
```

- Define a coordinate system $\{j\}$ in such a way that when the link $j-1$
is in its undeformed configuration, the $\{j\}$ and $\left\{j_{*}\right\}$ are coincident (see
figure next page)

Extension of D-H Convention to Flexible Lin $\frac{1}{10}$

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing only transverse bending vibration - axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.

- Define a coordinate system $\left\{j_{*}\right\}$ in such a way that when the link $j-1$ is in its undeformed configuration, the $\{j\}$ and $\left\{j_{*}\right\}$ are coincident (see figure next page)

Extension of D-H Convention to Flexible Lin

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing only transverse bending vibration - axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see Module 2, Lecture 2)
- Assign coordinate system $\{j\}$ to link j with $\{0\}$ as the fixed link and $\{n\}$ as the last link.
- The coordinate axes $\left(\hat{\mathbf{X}}_{j}, \hat{\mathbf{Y}}_{j}, \hat{\mathbf{Z}}_{j}\right)$ are assigned to link j and the origin O_{j} is on the joint axis j.
- Axis $\hat{\mathbf{Z}}_{j}$ is along the axis of joint j.
 figure next page)

Extension of D-H Convention to Flexible Lin $\frac{1}{\infty 0}$

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing only transverse bending vibration - axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see Module 2, Lecture 2)
- Assign coordinate system $\{j\}$ to link j with $\{0\}$ as the fixed link and $\{n\}$ as the last link.
- The coordinate axes ($\hat{\mathbf{X}}_{j}, \hat{\mathbf{Y}}_{j}, \hat{\mathbf{Z}}_{j}$) are assigned to link j and the origin O_{j} is on the joint axis j.
- Axis $\hat{\mathbf{Z}}_{j}$ is along the axis of joint j.
- Define a coordinate system $\left\{j_{*}\right\}$ in such a way that when the link $j-1$ is in its undeformed configuration, the $\{j\}$ and $\left\{j_{*}\right\}$ are coincident (see figure next page).

D-H Convention for Flexible Links (Contd.)

Figure 13: Assignment of frames for the flexible links

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix

- The 4×4 homogeneous transformation matrix relating $\left\{j_{*}\right\}$ to $\{j-1\}$ same as for a rigid manipulator (see Module 2, Lecture 2)

$$
{ }_{j}^{j-1}\left[T_{r}\right]=\left(\begin{array}{cccc}
c_{\theta_{j}} & -s_{\theta_{j}} & 0 & a_{j-1} \\
s_{\theta_{j}} c_{\alpha_{j-1}} & c_{\theta_{j}} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_{j} \\
s_{\theta_{j}} s_{\alpha_{j-1}} & c_{\theta_{j}} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & c_{\alpha_{j-1}} d_{j} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{j-1}, a_{j-1}, d_{j}$, and θ_{j} are the D-H parameters which describe $\left\{j_{*}\right\}$ with respect to $\{j-1\}$.

- $n \times 1$ vector \mathbf{q}_{r} denote rigid joint variables and the flexibility in the link j will be denoted by $\mathbf{q}_{f_{j}}$

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix

- The 4×4 homogeneous transformation matrix relating $\left\{j_{*}\right\}$ to $\{j-1\}$ same as for a rigid manipulator (see Module 2, Lecture 2)

$$
{ }_{j *}^{j-1}\left[T_{r}\right]=\left(\begin{array}{cccc}
c_{\theta_{j}} & -s_{\theta_{j}} & 0 & a_{j-1} \\
s_{\theta_{j}} c_{\alpha_{j-1}} & c_{\theta_{j}} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_{j} \\
s_{\theta_{j}} s_{\alpha_{j-1}} & c_{\theta_{j}} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & c_{\alpha_{j-1}} d_{j} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{j-1}, a_{j-1}, d_{j}$, and θ_{j} are the D-H parameters which describe $\left\{j_{*}\right\}$ with respect to $\{j-1\}$.

- $q_{j_{r}}$ is the joint variable - either θ_{j} or d_{j}.
j will be denoted by $\mathbf{q}_{f_{j}}$

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix

- The 4×4 homogeneous transformation matrix relating $\left\{j_{*}\right\}$ to $\{j-1\}$ same as for a rigid manipulator (see Module 2, Lecture 2)

$$
{ }_{j}^{j-1}\left[T_{r}\right]=\left(\begin{array}{cccc}
c_{\theta_{j}} & -s_{\theta_{j}} & 0 & a_{j-1} \\
s_{\theta_{j}} c_{\alpha_{j-1}} & c_{\theta_{j}} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_{j} \\
s_{\theta_{j}} s_{\alpha_{j-1}} & c_{\theta_{j}} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & c_{\alpha_{j-1}} d_{j} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{j-1}, a_{j-1}, d_{j}$, and θ_{j} are the D-H parameters which describe $\left\{j_{*}\right\}$ with respect to $\{j-1\}$.

- $q_{j_{r}}$ is the joint variable - either θ_{j} or d_{j}.
- $n \times 1$ vector \mathbf{q}_{r} denote rigid joint variables and the flexibility in the link j will be denoted by $\mathbf{q}_{f_{j}}$.

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix (Contd.)

- Any 3D spatial transformation \rightarrow three rotations and three translations.
- $\left\{j_{*}\right\}$ can be taken to $\{j\}$ by

- Assuming small elastic deformation, sequence becomes (Book 1984)

Note: If link $j-1$ is rigid, ${ }_{j}^{J_{*}}[T]$ is a 4×4 identity matrix.

- 4×4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is

$$
{ }_{j}^{j-1}[T]={ }_{j *}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix (Contd.)

- Any 3D spatial transformation \rightarrow three rotations and three translations.
- $\left\{j_{*}\right\}$ can be taken to $\{j\}$ by

$$
\begin{aligned}
& \operatorname{Rot}\left(\hat{Z}, \phi_{z_{j-1}}\right) \operatorname{Trans}\left(\hat{Z}, \delta_{z_{j-1}}\right) \operatorname{Rot}\left(\hat{Y}, \phi_{y_{j-1}}\right) \operatorname{Trans}\left(\hat{Y}, \delta_{y_{j-1}}\right) \\
& \quad \operatorname{Rot}\left(\hat{X}, \phi_{x_{j-1}}\right) \operatorname{Trans}\left(\hat{X}, \delta_{x_{j-1}}\right)
\end{aligned}
$$

- Assuming small elastic deformation, sequence becomes (Book 1984)

Note: If link $j-1$ is rigid, ${ }_{j}^{j_{*}}[T]$ is a 4×4 identity matrix.

- 4×4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is
\square

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix (Contd.)

- Any 3D spatial transformation \rightarrow three rotations and three translations.
- $\left\{j_{*}\right\}$ can be taken to $\{j\}$ by

$$
\begin{aligned}
& \operatorname{Rot}\left(\hat{Z}, \phi_{z_{j-1}}\right) \operatorname{Trans}\left(\hat{Z}, \delta_{z_{j-1}}\right) \operatorname{Rot}\left(\hat{Y}, \phi_{y_{j-1}}\right) \operatorname{Trans}\left(\hat{Y}, \delta_{y_{j-1}}\right) \\
& \quad \operatorname{Rot}\left(\hat{X}, \phi_{x_{j-1}}\right) \operatorname{Trans}\left(\hat{X}, \delta_{x_{j-1}}\right)
\end{aligned}
$$

- Assuming small elastic deformation, sequence becomes (Book 1984)

$$
{ }_{j}^{j_{x}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & -\phi_{z_{j-1}} & \phi_{y_{j-1}} & \delta_{x_{j-1}} \\
\phi_{z_{j-1}} & 1 & -\phi_{x_{j-1}} & \delta_{y_{j-1}} \\
-\phi_{y_{j-1}} & \phi_{x_{j-1}} & 1 & \delta_{z_{j-1}} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Note: If link $j-1$ is rigid, ${ }_{j}^{j_{k}}[T]$ is a 4×4 identity matrix.

D-H Convention for Flexible Links (Contd.)

4×4 Transformation Matrix (Contd.)

- Any 3D spatial transformation \rightarrow three rotations and three translations.
- $\left\{j_{*}\right\}$ can be taken to $\{j\}$ by

$$
\begin{aligned}
& \operatorname{Rot}\left(\hat{Z}, \phi_{z_{j-1}}\right) \operatorname{Trans}\left(\hat{Z}, \delta_{z_{j-1}}\right) \operatorname{Rot}\left(\hat{Y}, \phi_{y_{j-1}}\right) \operatorname{Trans}\left(\hat{Y}, \delta_{y_{j-1}}\right) \\
& \quad \operatorname{Rot}\left(\hat{X}, \phi_{x_{j-1}}\right) \operatorname{Trans}\left(\hat{X}, \delta_{x_{j-1}}\right)
\end{aligned}
$$

- Assuming small elastic deformation, sequence becomes (Book 1984)

$$
{ }_{j}^{j_{*}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & -\phi_{z_{j-1}} & \phi_{y_{j-1}} & \delta_{x_{j-1}} \\
\phi_{z_{j-1}} & 1 & -\phi_{x_{j-1}} & \delta_{y_{y_{j-1}}} \\
-\phi_{y_{j-1}} & \phi_{x_{j-1}} & 1 & \delta_{z_{j-1}} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Note: If link $j-1$ is rigid, ${ }_{j}^{j_{k}}[T]$ is a 4×4 identity matrix.

- 4×4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is

$$
{ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- ${ }_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$$
{ }_{j}^{0}[T]={ }_{1_{*}}^{0}\left[T_{r}\right]_{1}^{1_{*}^{*}}\left[T_{e}\right]_{2_{*}}^{1}\left[T_{r}\right]_{2}^{2_{*}}\left[T_{e}\right] \ldots{ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

- ${ }_{j}^{0}[T]$, as in the rigid case, contains position vector ${ }^{0} \mathrm{O}_{j}$ and the rotation matrix ${ }_{j}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

- Need to find vector \mathbf{r}_{j} !!

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- ${ }_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$$
{ }_{j}^{0}[T]={ }_{1_{*}}^{0}\left[T_{r}\right]_{1}^{1_{*}}\left[T_{e}\right]_{2_{*}}^{1}\left[T_{r}\right]_{2}^{2_{*}^{*}}\left[T_{e}\right] \ldots{ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

- ${ }_{j}^{0}[T]$, as in the rigid case, contains position vector ${ }^{0} \mathbf{O}_{j}$ and the rotation matrix ${ }_{j}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

- Need to find vector \mathbf{r}_{j} !!

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- ${ }_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$$
{ }_{j}^{0}[T]={ }_{1_{*}}^{0}\left[T_{r}\right]_{1}^{1_{*}^{*}}\left[T_{e}\right]_{2_{*}}^{1}\left[T_{r}\right]_{2}^{2_{*}}\left[T_{e}\right] \cdots{ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

- ${ }_{j}^{0}[T]$, as in the rigid case, contains position vector ${ }^{0} \mathbf{O}_{j}$ and the rotation matrix ${ }_{j}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

- Need to find vector \mathbf{r}_{j} !!

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- ${ }_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$$
{ }_{j}^{0}[T]={ }_{1_{*}}^{0}\left[T_{r}\right]_{1}^{1_{*}^{*}}\left[T_{e}\right]_{2_{*}}^{1}\left[T_{r}\right]_{2}^{2_{*}}\left[T_{e}\right] \cdots{ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

- ${ }_{j}^{0}[T]$, as in the rigid case, contains position vector ${ }^{0} \mathbf{O}_{j}$ and the rotation matrix ${ }_{j}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

$$
{ }^{0} \mathbf{p}_{j}={ }^{0} \mathbf{O}_{j}+{ }_{j}^{0}[R] \mathbf{r}_{j}
$$

- Need to find vector r_{j} !!

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- ${ }_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$$
{ }_{j}^{0}[T]={ }_{1_{*}}^{0}\left[T_{r}\right]_{1}^{1_{*}^{*}}\left[T_{e}\right]_{2_{*}}^{1}\left[T_{r}\right]_{2}^{2_{*}}\left[T_{e}\right] \cdots{ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]
$$

- ${ }_{j}^{0}[T]$, as in the rigid case, contains position vector ${ }^{0} \mathbf{O}_{j}$ and the rotation matrix ${ }_{j}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

$$
{ }^{0} \mathbf{p}_{j}={ }^{0} \mathbf{O}_{j}+{ }_{j}^{0}[R] \mathbf{r}_{j}
$$

- Need to find vector \mathbf{r}_{j} !!

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- Link j can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$.
- Only transverse deformations \rightarrow Only 2 out u, v and w are variable!
- For a rotary joint $u_{j}(s, t)=s$ and $v_{j}(s, t), w_{j}(s, t)$ represent the Y and Z transverse deformations.
- For a prismatic joint, $w_{j}(s, t)=s$ and $u_{j}(s, t)$ and $v_{j}(s, t)$ represent the X and Y transverse deformations.
- Local position vector \mathbf{r}_{j} is

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- Link j can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$.
- For a rotary joint $u_{j}(s, t)=s$ and $v_{j}(s, t), w_{j}(s, t)$ represent the Y and Z transverse deformations.
- For a prismatic joint, $w_{j}(s, t)=s$ and $u_{j}(s, t)$ and $v_{j}(s, t)$ represent the X and Y transverse deformations.
- Local position vector $\mathbf{r}_{\text {; }}$ is

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- Link j can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$.
- Only transverse deformations \rightarrow Only 2 out u, v and w are variable!
- For a rotary joint $u_{j}(s, t)=s$ and $v_{j}(s, t), w_{j}(s, t)$ represent the Y and Z transverse deformations.
- For a prismatic joint, $w_{j}(s, t)=s$ and $u_{j}(s, t)$ and $v_{j}(s, t)$ represent the X and Y transverse deformations.
- Local position vector r_{j} is

D-H Convention for Flexible Links (Contd.)

Link Transformation Matrix

- Link j can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$.
- Only transverse deformations \rightarrow Only 2 out u, v and w are variable!
- For a rotary joint $u_{j}(s, t)=s$ and $v_{j}(s, t), w_{j}(s, t)$ represent the Y and Z transverse deformations.
- For a prismatic joint, $w_{j}(s, t)=s$ and $u_{j}(s, t)$ and $v_{j}(s, t)$ represent the X and Y transverse deformations.
- Local position vector \mathbf{r}_{j} is

Velocity of a Point on a Flexible Link

- The velocity of the material point ${ }^{0} \mathbf{p}_{j}$ on link j in $\{0\}$

$$
{ }^{0} \mathbf{V}_{p} \triangleq \frac{d}{d t}\left({ }^{0} \mathbf{p}_{j}\right)=\frac{d}{d t}\left({ }^{0} \mathbf{O}_{j}\right)+\frac{d}{d t}\left({ }_{j}^{0}[R]\right) \mathbf{r}_{j}+{ }_{j}^{0}[R] \frac{d}{d t}\left(\mathbf{r}_{j}\right)
$$

- $\frac{d}{d t}\left(r_{j}\right)$ is given by

$U_{j}(t) \triangleq \dot{s}$ is the translational velocity of the prismatic jointed link j

Velocity of a Point on a Flexible Link

- The velocity of the material point ${ }^{0} \mathbf{p}_{j}$ on link j in $\{0\}$

$$
{ }^{0} \mathbf{V}_{p} \triangleq \frac{d}{d t}\left({ }^{0} \mathbf{p}_{j}\right)=\frac{d}{d t}\left({ }^{0} \mathbf{O}_{j}\right)+\frac{d}{d t}\left({ }_{j}^{0}[R]\right) \mathbf{r}_{j}+{ }_{j}^{0}[R] \frac{d}{d t}\left(\mathbf{r}_{j}\right)
$$

- $\frac{d}{d t}\left(r_{j}\right)$ is given by

$$
\dot{\mathbf{r}}_{j}=\left\{\begin{array}{cc}
\left(\begin{array}{c}
0 \\
\dot{v}_{j}(s, t) \\
\dot{w}_{j}(s, t)
\end{array}\right) & \mathrm{R} \text { joint } \\
\left(\begin{array}{c}
0 \\
0 \\
U_{j}(t)
\end{array}\right)+\left(\begin{array}{c}
\dot{u}_{j}(s, t)+\frac{\partial u_{j}(s, t)}{\partial s} U_{j}(t) \\
\dot{v}_{j}(s, t)+\frac{\partial v_{j}(s, t)}{\partial s} U_{j}(t) \\
0
\end{array}\right) & \text { P joint }
\end{array}\right.
$$

$U_{j}(t) \triangleq \dot{s}$ is the translational velocity of the prismatic jointed link j.

Discretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $j_{j}^{j}\left[T_{e}\right]$ can be obtained.

Discretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $j_{j}^{j_{*}}\left[T_{e}\right]$ can be obtained.

Discretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method
- After discretisation, expression for ${ }_{j}^{j_{*}}\left[T_{e}\right]$ can be obtained.

Discretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method.
- After discretisation, expression for ${ }_{j}^{j}\left[T_{e}\right]$ can be obtained.

Discretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method.
- After discretisation, expression for ${ }_{j}^{j_{k}}\left[T_{e}\right]$ can be obtained.

DIScretisation of PDE

- Elastic displacements $u_{j}(s, t), v_{j}(s, t)$ and $w_{j}(s, t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system - infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches - Assumed Modes Method and Finite Element Method.
- After discretisation, expression for ${ }_{j}^{j_{*}}\left[T_{e}\right]$ can be obtained.

DIscretisation of PDE

Assumed Modes Method

- Elastic displacements, (u_{j}, v_{j}, and w_{j}) are written in terms of modal shape functions and time-dependent mode amplitudes.

$$
X_{j}(\eta, t)=\sum_{i=1}^{N_{j}} \psi_{i}^{X_{j}}(\eta) \xi_{i}^{X_{j}}(t), \quad X \text { is } u, v, \text { or } w
$$

$\eta=s / l_{j}$ and N_{j} is the number of modes chosen.

DIscretisation of PDE

Assumed Modes Method

- Elastic displacements, $\left(u_{j}, v_{j}\right.$, and $\left.w_{j}\right)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$
X_{j}(\eta, t)=\sum_{i=1}^{N_{j}} \psi_{i}^{X_{j}}(\eta) \xi_{i}^{X_{j}}(t), \quad X \text { is } u, v, \text { or } w
$$

$\eta=s / l_{j}$ and N_{j} is the number of modes chosen.

- For a revolute joint, link length l_{j} is constant and for a prismatic joint, l_{j} and the mode shape functions are time dependent.

Discretisation of PDE

Assumed Modes Method

- Elastic displacements, $\left(u_{j}, v_{j}\right.$, and $\left.w_{j}\right)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$
X_{j}(\eta, t)=\sum_{i=1}^{N_{j}} \psi_{i}^{X_{j}}(\eta) \xi_{i}^{X_{j}}(t), \quad X \text { is } u, v, \text { or } w
$$

$\eta=s / l_{j}$ and N_{j} is the number of modes chosen.

- For a revolute joint, link length l_{j} is constant and for a prismatic joint, l_{j} and the mode shape functions are time dependent.
- The mode shape functions $\psi_{i}(\eta)$ are typically chosen as

$$
\psi_{i}(\eta)=C_{1_{i}} \cos \left(\beta_{i} \eta\right)+C_{2_{i}} \sin \left(\beta_{i} \eta\right)+C_{3_{i}} \cosh \left(\beta_{i} \eta\right)+C_{4_{i}} \sinh \left(\beta_{i} \eta\right)
$$

$\beta_{i}{ }^{4} \triangleq \frac{\rho_{j} A_{j} l_{j}^{4}}{E_{j} l_{j}} \omega_{i}^{2}$ and ω_{i} is the i th natural angular frequency of the eigenvalue problem for link j.

Discretisation of PDE

Assumed Modes Method

- Elastic displacements, $\left(u_{j}, v_{j}\right.$, and $\left.w_{j}\right)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$
X_{j}(\eta, t)=\sum_{i=1}^{N_{j}} \psi_{i}^{X_{j}}(\eta) \xi_{i}^{X_{j}}(t), \quad X \text { is } u, v, \text { or } w
$$

$\eta=s / l_{j}$ and N_{j} is the number of modes chosen.

- For a revolute joint, link length l_{j} is constant and for a prismatic joint, l_{j} and the mode shape functions are time dependent.
- The mode shape functions $\psi_{i}(\eta)$ are typically chosen as

$$
\psi_{i}(\eta)=C_{1_{i}} \cos \left(\beta_{i} \eta\right)+C_{2_{i}} \sin \left(\beta_{i} \eta\right)+C_{3_{i}} \cosh \left(\beta_{i} \eta\right)+C_{4_{i}} \sinh \left(\beta_{i} \eta\right)
$$

$\beta_{i}{ }^{4} \triangleq \frac{\rho_{j} A_{j} l_{j}^{4}}{E_{j} l_{j}} \omega_{i}{ }^{2}$ and ω_{i} is the i th natural angular frequency of the eigenvalue problem for link j.

- Constants $C_{i}, i=1,2,3,4$ are determined using boundary conditions.

Discretisation of PDE

Assumed Modes Method (Contd.)

- For clamped conditions at $\eta=0$ end:

$$
\left[\psi_{i}(\eta)\right]_{\eta=0}=0, \quad\left[\frac{d \psi_{i}(\eta)}{d \eta}\right]_{\eta=0}=0
$$

- For mass conditions at $\eta=1$ end:

- ρ_{j}, A_{j} are density and cross-section area.
- $M_{p_{j}}, J_{D_{j}}$ reflects all masses and inertia beyond link j
- M $M_{p_{j}}$ accounts for the contributions of masses non-collocated at the end of link j

DIScretisation of PDE

Assumed Modes Method (Contd.)

- For clamped conditions at $\eta=0$ end:

$$
\left[\psi_{i}(\eta)\right]_{\eta=0}=0, \quad\left[\frac{d \psi_{i}(\eta)}{d \eta}\right]_{\eta=0}=0
$$

- For mass conditions at $\eta=1$ end:

$$
\begin{aligned}
& {\left[\frac{d^{2} \psi_{i}(\eta)}{d \eta^{2}}\right]_{\eta=1}=\frac{J_{p_{j}} \beta_{i}^{4}}{\rho_{j} A_{j} l_{j}^{3}}\left[\frac{d \psi_{i}(\eta)}{d \eta}\right]_{\eta=1}+\frac{M_{D p_{j}} \beta_{i}^{4}}{\left.\rho_{j} A_{j}\right|_{j} ^{2}}\left[\psi_{i}(\eta)\right]_{\eta=1}} \\
& {\left[\frac{d^{3} \psi_{i}(\eta)}{d \eta^{3}}\right]_{\eta=1}=-\frac{M_{p_{j}} \beta_{i}^{4}}{\rho_{j} A_{j} l_{j}}\left[\psi_{i}(\eta)\right]_{\eta=1}-\frac{M_{D p_{j}} \beta_{i}^{4}}{\left.\rho_{j} A_{j}\right|_{j} ^{2}}\left[\frac{d \psi_{i}(\eta)}{d \eta}\right]_{\eta=1}}
\end{aligned}
$$

- ρ_{j}, A_{j} are density and cross-section area.
- $M_{p_{j}}, J_{p_{j}}$ reflects all masses and inertia beyond link j.
- $M_{D p_{j}}$ accounts for the contributions of masses non-collocated at the end of link j.

DIScretisation of PDE

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_{i}}=-C_{1_{i}}$ and $C_{4 i}=-C_{2}$
- The mass conditions at the $\eta=1$ yield

- For non-trivial solution when $\operatorname{det}(F)=0 \rightarrow$ Simplify to

$$
\begin{aligned}
& \left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
& -J_{j} \beta_{i}^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
& -D_{j}^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{aligned}
$$

$$
\text { where } M_{j}=\frac{M_{p_{j}}}{\rho_{j} A_{j} l_{j}}, \quad J_{j}=\frac{J_{p_{j}}}{\rho_{j} A_{j} l_{j}^{3}}, \quad \text { and } \quad D_{j}=\frac{M_{D p_{j}}}{\rho_{j} A_{j} l_{j}^{2}}
$$

- Infinite number of solutions \rightarrow Truncated to N_{j} roots.
- Both C_{1}, and C_{2}, cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

Discretisation of PDE

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_{i}}=-C_{1_{i}}$ and $C_{4 i}=-C_{2}$
- The mass conditions at the $\eta=1$ yield

$$
[F]\left(\beta_{i}\right)\binom{C_{1_{i}}}{C_{2_{i}}}=0
$$

- For non-trivial solution when $\operatorname{det}(F)=0 \rightarrow$ Simplify to

$$
\begin{aligned}
& \left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
& -J_{j} \beta_{i}{ }^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
& -D_{j}^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{aligned}
$$

- Infinite number of solutions \rightarrow Truncated to N_{j} roots.
- Both $C_{1 i}$ and $C_{2 i}$ cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

Discretisation of PDE

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_{i}}=-C_{1_{i}}$ and $C_{4 i}=-C_{2}$
- The mass conditions at the $\eta=1$ yield

$$
[\mathbf{F}]\left(\beta_{i}\right)\binom{C_{1}}{C_{2_{i}}}=\mathbf{0}
$$

- For non-trivial solution when $\operatorname{det}(\mathbf{F})=0 \rightarrow$ Simplify to

$$
\begin{aligned}
& \left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
& -J_{j} \beta_{i}{ }^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
& \quad-D_{j}^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{aligned}
$$

where $M_{j}=\frac{M_{p_{j}}}{\rho_{j} A_{j} l_{j}}, \quad J_{j}=\frac{J_{p_{j}}}{\rho_{j} A_{j} l_{j}^{3}}$, and $\quad D_{j}=\frac{M_{D p_{j}}}{\rho_{j} A_{j} l_{j}^{2}}$.

Discretisation of PDE

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_{i}}=-C_{1_{i}}$ and $C_{4 i}=-C_{2}$
- The mass conditions at the $\eta=1$ yield

$$
[\mathrm{F}]\left(\beta_{i}\right)\binom{C_{1_{i}}}{C_{2_{i}}}=\mathbf{0}
$$

- For non-trivial solution when $\operatorname{det}(\mathbf{F})=0 \rightarrow$ Simplify to

$$
\begin{aligned}
& \left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
& -J_{j} \beta_{i}{ }^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
& \quad-D_{j}^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{aligned}
$$

where $M_{j}=\frac{M_{p_{j}}}{\rho_{j} A_{j} l_{j}}, \quad J_{j}=\frac{J_{p_{j}}}{\rho_{j} A_{j} l_{j}^{3}}$, and $\quad D_{j}=\frac{M_{D p_{j}}}{\rho_{j} A_{j} l_{j}^{2}}$.

- Infinite number of solutions \rightarrow Truncated to N_{j} roots.

Discretisation of PDE

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_{i}}=-C_{1_{i}}$ and $C_{4 i}=-C_{2}$
- The mass conditions at the $\eta=1$ yield

$$
[\mathbf{F}]\left(\beta_{i}\right)\binom{C_{1_{i}}}{C_{2_{i}}}=\mathbf{0}
$$

- For non-trivial solution when $\operatorname{det}(\mathbf{F})=0 \rightarrow$ Simplify to

$$
\begin{aligned}
& \left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
& -J_{j} \beta_{i}{ }^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
& \quad-D_{j}^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{aligned}
$$

where $M_{j}=\frac{M_{p_{j}}}{\rho_{j} A_{j} l_{j}}, J_{j}=\frac{J_{p_{j}}}{\rho_{j} A_{j} l_{j}^{3}}$, and $D_{j}=\frac{M_{D p_{j}}}{\rho_{j} A_{j} l_{j}^{2}}$.

- Infinite number of solutions \rightarrow Truncated to N_{j} roots.
- Both $C_{1_{i}}$ and $C_{2_{i}}$ cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

Discretisation of PDE

Assumed Modes Method (Contd.)

- For clamped-mass boundary condition

$$
\psi_{i}(\eta)=C_{2_{i}}\left[\cos \left(\beta_{i} \eta\right)-\cosh \left(\beta_{i} \eta\right)+v_{i}\left(\sin \left(\beta_{i} \eta\right)-\sinh \left(\beta_{i} \eta\right)\right)\right]
$$

where

$$
v_{i}=\frac{\sin \beta_{i}-\sinh \beta_{i}+M_{j} \beta_{i}\left(\cos \beta_{i}-\cosh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\sin \beta_{i}+\sinh \beta_{i}\right)}{\cos \beta_{i}+\cosh \beta_{i}-M_{j} \beta_{i}\left(\sin \beta_{i}-\sinh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\cos \beta_{i}-\cosh \beta_{i}\right)}
$$

- Above can be solved for one link with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, $M_{D p_{j}}$ and
- Modes shapes and frequency are time dependent!!

Discretisation of PDE

Assumed Modes Method (Contd.)

- For clamped-mass boundary condition

$$
\psi_{i}(\eta)=C_{2_{i}}\left[\cos \left(\beta_{i} \eta\right)-\cosh \left(\beta_{i} \eta\right)+v_{i}\left(\sin \left(\beta_{i} \eta\right)-\sinh \left(\beta_{i} \eta\right)\right)\right]
$$

where

$$
v_{i}=\frac{\sin \beta_{i}-\sinh \beta_{i}+M_{j} \beta_{i}\left(\cos \beta_{i}-\cosh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\sin \beta_{i}+\sinh \beta_{i}\right)}{\cos \beta_{i}+\cosh \beta_{i}-M_{j} \beta_{i}\left(\sin \beta_{i}-\sinh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\cos \beta_{i}-\cosh \beta_{i}\right)}
$$

- Above can be solved for one link with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, $M_{D p_{j}}$ and
- Modes shapes and frequency are time dependent!!

Discretisation of PDE

Assumed Modes Method (Contd.)

- For clamped-mass boundary condition

$$
\psi_{i}(\eta)=C_{2_{i}}\left[\cos \left(\beta_{i} \eta\right)-\cosh \left(\beta_{i} \eta\right)+v_{i}\left(\sin \left(\beta_{i} \eta\right)-\sinh \left(\beta_{i} \eta\right)\right)\right]
$$

where

$$
v_{i}=\frac{\sin \beta_{i}-\sinh \beta_{i}+M_{j} \beta_{i}\left(\cos \beta_{i}-\cosh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\sin \beta_{i}+\sinh \beta_{i}\right)}{\cos \beta_{i}+\cosh \beta_{i}-M_{j} \beta_{i}\left(\sin \beta_{i}-\sinh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\cos \beta_{i}-\cosh \beta_{i}\right)}
$$

- Above can be solved for one link with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, $M_{D p_{j}}$ and $J_{p_{j}}$ are functions of time t !

Discretisation of PDE

- For clamped-mass boundary condition

$$
\psi_{i}(\eta)=C_{2_{i}}\left[\cos \left(\beta_{i} \eta\right)-\cosh \left(\beta_{i} \eta\right)+v_{i}\left(\sin \left(\beta_{i} \eta\right)-\sinh \left(\beta_{i} \eta\right)\right)\right]
$$

where

$$
v_{i}=\frac{\sin \beta_{i}-\sinh \beta_{i}+M_{j} \beta_{i}\left(\cos \beta_{i}-\cosh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\sin \beta_{i}+\sinh \beta_{i}\right)}{\cos \beta_{i}+\cosh \beta_{i}-M_{j} \beta_{i}\left(\sin \beta_{i}-\sinh \beta_{i}\right)-D_{j} \beta_{i}^{2}\left(\cos \beta_{i}-\cosh \beta_{i}\right)}
$$

- Above can be solved for one link with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, $M_{D p_{j}}$ and $J_{p_{j}}$ are functions of time t !
- Modes shapes and frequency are time dependent!!

Discretisation of PDE

Assumed Modes Method (Contd.)

- Time dependent frequency equation

$$
\begin{array}{r}
f\left(\beta_{i}, M_{j}, J_{j}, D_{j}\right)=\left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
-J_{j} \beta_{i}^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
-D_{j}{ }^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{array}
$$

- Above can be written as a ODE

where the derivatives can be obtained from the frequency equation.
- Solve for β_{i} once at $t=0$ and numerically integrate ODE with
equations of motion \rightarrow No need to update β_{i} with configuration.

Discretisation of PDE

Assumed Modes Method (Contd.)

- Time dependent frequency equation

$$
\begin{array}{r}
f\left(\beta_{i}, M_{j}, J_{j}, D_{j}\right)=\left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
-J_{j} \beta_{i}^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}{ }^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
-D_{j}{ }^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{array}
$$

- Above can be written as a ODE

$$
\frac{d \beta_{i}}{d t}=\frac{-\left(\frac{\partial f}{\partial M_{j}} \frac{d M_{j}}{d t}+\frac{\partial f}{\partial J_{j}} \frac{d J_{j}}{d t}+\frac{\partial f}{\partial D_{j}} \frac{d D_{j}}{d t}\right)}{\left(\frac{\partial f}{\partial \beta_{i}}\right)}
$$

where the derivatives can be obtained from the frequency equation.

Discretisation of PDE

Assumed Modes Method (Contd.)

- Time dependent frequency equation

$$
\begin{array}{r}
f\left(\beta_{i}, M_{j}, J_{j}, D_{j}\right)=\left(1+\cosh \beta_{i} \cos \beta_{i}\right)-M_{j} \beta_{i}\left(\cosh \beta_{i} \sin \beta_{i}-\sinh \beta_{i} \cos \beta_{i}\right) \\
-J_{j} \beta_{i}^{3}\left(\cosh \beta_{i} \sin \beta_{i}+\sinh \beta_{i} \cos \beta_{i}\right)+M_{j} J_{j} \beta_{i}{ }^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right) \\
-D_{j}{ }^{2} \beta_{i}^{4}\left(1-\cosh \beta_{i} \cos \beta_{i}\right)-2 D_{j} \beta_{i}{ }^{2} \sinh \beta_{i} \sin \beta_{i}=0
\end{array}
$$

- Above can be written as a ODE

$$
\frac{d \beta_{i}}{d t}=\frac{-\left(\frac{\partial f}{\partial M_{j}} \frac{d M_{j}}{d t}+\frac{\partial f}{\partial J_{j}} \frac{d J_{j}}{d t}+\frac{\partial f}{\partial D_{j}} \frac{d D_{j}}{d t}\right)}{\left(\frac{\partial f}{\partial \beta_{i}}\right)}
$$

where the derivatives can be obtained from the frequency equation.

- Solve for β_{i} once at $t=0$ and numerically integrate ODE with equations of motion \rightarrow No need to update β_{i} with configuration.

Discretisation of PDE

Assumed Modes Method (Contd.)

- After discretisation the 4×4 matrix ${ }_{j}^{j_{j}}\left[T_{e}\right]$ can be obtained.
- If joint $j-1$ is revolute

- If joint $j-1$ is prismatic

Discretisation of PDE

Assumed Modes Method (Contd.)

- After discretisation the 4×4 matrix ${ }_{j}^{j_{k}}\left[T_{e}\right]$ can be obtained.
- If joint $j-1$ is revolute

$$
{\underset{j}{j}}_{j_{*}}\left[T_{e}\right]=\sum_{i=1}^{N_{j-1}}\left(\begin{array}{cccc}
1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & \frac{\partial \psi_{i}^{w}}{\partial \eta}(1) \xi_{i}^{w}(t) & 0 \\
\frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & 1 & 0 & \psi_{i}^{v}(1) \xi_{i}^{v}(t) \\
-\frac{\partial \psi_{i}^{w}}{\partial \eta}(1) \xi_{i}^{w}(t) & 0 & 1 & \psi_{i}^{w}(1) \xi_{i}^{w}(t) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- If joint $j-1$ is prismatic

Discretisation of PDE

Assumed Modes Method (Contd.)

- After discretisation the 4×4 matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$ can be obtained.
- If joint $j-1$ is revolute

$$
{\underset{j}{j}}_{j_{k}}\left[T_{e}\right]=\sum_{i=1}^{N_{j-1}}\left(\begin{array}{cccc}
1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & \frac{\partial \psi_{i}^{w}}{\partial \eta}(1) \xi_{i}^{w}(t) & 0 \\
\frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & 1 & 0 & \psi_{i}^{v}(1) \xi_{i}^{v}(t) \\
-\frac{\partial \psi_{i}^{w}}{\partial \eta}(1) \xi_{i}^{w}(t) & 0 & 1 & \psi_{i}^{w}(1) \xi_{i}^{w}(t) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- If joint $j-1$ is prismatic

$$
{\underset{j}{*}}_{j_{*}}\left[T_{e}\right]=\sum_{i=1}^{N_{j-1}}\left(\begin{array}{cccc}
1 & 0 & \frac{\partial \psi_{i}^{u}}{\partial \eta}(1) \xi_{i}^{u}(t) & \psi_{i}^{u}(1) \xi_{i}^{u}(t) \\
0 & 1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & \psi_{i}^{v}(1) \xi_{i}^{v}(t) \\
-\frac{\partial \psi_{i}^{u}}{\partial \eta}(1) \xi_{i}^{u}(t) & \frac{\partial \psi_{i}^{v}}{\partial \eta}(1) \xi_{i}^{v}(t) & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Discretisation of PDE

Assumed Modes Method (Contd.)

- Derivative of \mathbf{r}_{j} is given by

$$
\dot{\mathbf{r}}_{j}=\left\{\begin{array}{c}
\left(\begin{array}{c}
0 \\
\sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t} \\
\sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d \xi_{i}^{w}(t)}{d t}
\end{array}\right) \\
\left(\begin{array}{l}
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{u}(\eta) \frac{d \xi_{i}^{u}(t)}{d t}-\frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}-\frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
U_{j}(t)
\end{array}\right.
\end{array} \quad \begin{array}{l}
\text { if joint } j \text { is revolute }
\end{array}\right.
$$

- $\ln { }_{j}^{0}[T]$, there are j rigid-joint variables $\mathrm{q}_{r_{j}}$
- Flexible variables $\left(\mathbf{q}_{f_{1}}, \mathbf{q}_{f_{2}}, \cdots, \mathbf{q}_{f_{j-1}}\right)$, each $\mathbf{q}_{f_{k}}$ has $2 \times N_{k}$ variables.
- From \mathbf{r}_{j}, additional $2 \times N_{j}$ flexible variables.

Discretisation of PDE

Assumed Modes Method (Contd.)

- Derivative of \mathbf{r}_{j} is given by

$$
\dot{\mathbf{r}}_{j}=\left\{\begin{array}{c}
\left(\begin{array}{c}
0 \\
\sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t} \\
\sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d \xi_{i}^{w}(t)}{d t}
\end{array}\right) \\
\left(\begin{array}{l}
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{u}(\eta) \frac{d \xi_{i}^{u}(t)}{d t}-\frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}-\frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
U_{j}(t)
\end{array}\right.
\end{array} \quad \begin{array}{r}
\text { if joint } j \text { is revolute }
\end{array}\right.
$$

- $\ln { }_{j}^{0}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables ($\mathrm{q}_{f_{1}}$

Discretisation of PDE

Assumed Modes Method (Contd.)

- Derivative of \mathbf{r}_{j} is given by

$$
\dot{\mathbf{r}}_{j}=\left\{\begin{array}{c}
0 \\
\binom{\sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}}{\sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d \xi_{i}^{w}(t)}{d t}} \\
\left(\begin{array}{l}
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{u}(\eta) \frac{d \xi_{i}^{u}(t)}{d t}-\frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}-\frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
U_{j}(t)
\end{array}\right.
\end{array} \quad \text { if joint } j\right. \text { is revolute }
$$

- $\ln { }_{j}^{0}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables $\left(\mathbf{q}_{f_{1}}, \mathbf{q}_{f_{2}}, \cdots, \mathbf{q}_{f_{j-1}}\right)$, each $\mathbf{q}_{f_{k}}$ has $2 \times N_{k}$ variables.

Discretisation of PDE

Assumed Modes Method (Contd.)

- Derivative of \mathbf{r}_{j} is given by

$$
\dot{\mathbf{r}}_{j}=\left\{\begin{array}{c}
0 \\
\binom{\sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}}{\sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d \xi_{i}^{w}(t)}{d t}} \\
\left(\begin{array}{l}
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{u}(\eta) \frac{d \xi_{i}^{u}(t)}{d t}-\frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
\sum_{i=1}^{N_{j}}\left[\psi_{i}^{v}(\eta) \frac{d \xi_{i}^{v}(t)}{d t}-\frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)}\right] \\
U_{j}(t)
\end{array}\right.
\end{array} \quad \begin{array}{l}
\text { if joint } j \text { is revolute }
\end{array}\right.
$$

- $\ln { }_{j}^{0}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables $\left(\mathbf{q}_{f_{1}}, \mathbf{q}_{f_{2}}, \cdots, \mathbf{q}_{f_{j-1}}\right)$, each $\mathbf{q}_{f_{k}}$ has $2 \times N_{k}$ variables.
- From \mathbf{r}_{j}, additional $2 \times N_{j}$ flexible variables.

Discretisation of PDE

Finite Element Method

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators - each link is 'broken' into finite number of elements.
- Displacements are made continuous inside an element and compatible across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from nodal displacements and by an interpolation function.

Discretisation of PDE

Finite Element Method

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators - each link is 'broken' into finite number of elements.
- Displacements are made continuous inside an element and compatible across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from nodal displacements and by an interpolation function.

Discretisation of PDE

Finite Element Method

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators - each link is 'broken' into finite number of elements.
- Displacements are made continuous inside an element and compatible across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from nodal displacements and by an interpolation function.

Discretisation of PDE

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators - each link is 'broken' into finite number of elements.
- Displacements are made continuous inside an element and compatible across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from nodal displacements and by an interpolation function.

Discretisation of PDE

Finite Element Method

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators - each link is 'broken' into finite number of elements.
- Displacements are made continuous inside an element and compatible across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from nodal displacements and by an interpolation function.

DIScretisation of PDE

Finite Element Method (Contd.)

Figure 14: A finite element discretisation of a link j with beam element i and its nodal displacement variables.

DIScretisation of PDE

Finite Element Method (Contd.)

- Figure 14 shows PQ , an element i on link j, with nodes i and $i+1$.
- Position vector $r_{j i}$ of any point along the neutral axis of the i th element, expressed in the undeformed link coordinate system is given by

$l_{j i}$ is the length of element i.
- $I_{i j}$ is constant for revolute jointed link and variable for prismatic jointed link!

DIScretisation of PDE

Finite Element Method (Contd.)

- Figure 14 shows PQ , an element i on link j, with nodes i and $i+1$.
- Position vector $\mathbf{r}_{j i}$ of any point along the neutral axis of the i th element, expressed in the undeformed link coordinate system is given by

$$
\mathbf{r}_{j i}=\left\{\begin{array}{c}
\left(\begin{array}{c}
(i-1) \iota_{j i}+s \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
v_{j i}(s, t) \\
w_{j i}(s, t)
\end{array}\right)
\end{array} \begin{array}{l}
\text { if joint } j \text { is revolute } \\
\left(\begin{array}{c}
0 \\
0 \\
(i-1) \iota_{j i}+s
\end{array}\right)+\left(\begin{array}{c}
u_{j i}(s, t) \\
v_{j i i}(s, t) \\
0
\end{array}\right)
\end{array}\right.
$$

$l_{j i}$ is the length of element i.

- $I_{j i}$ is constant
jointed link!

Discretisation of PDE

Finite Element Method (Contd.)

- Figure 14 shows PQ, an element i on link j, with nodes i and $i+1$.
- Position vector $\mathbf{r}_{j i}$ of any point along the neutral axis of the i th element, expressed in the undeformed link coordinate system is given by

$$
\mathbf{r}_{j i}=\left\{\begin{array}{c}
\left(\begin{array}{c}
(i-1) l_{j i}+s \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
v_{j i}(s, t) \\
w_{j i}(s, t)
\end{array}\right) \quad \text { if joint } j \text { is revolute } \\
\left(\begin{array}{c}
0 \\
0 \\
(i-1) l_{j i}+s
\end{array}\right)+\left(\begin{array}{c}
u_{j i}(s, t) \\
v_{j i j}(s, t) \\
0
\end{array}\right) \quad \text { if joint } j \text { is prismatic }
\end{array}\right.
$$

$l_{j i}$ is the length of element i.

- $I_{j j}$ is constant for revolute jointed link and variable for prismatic jointed link!

Discretisation of PDE

Finite Element Method (Contd.)

- Elastic displacements if joint j is revolute,

$$
v_{j i}(s, t)=\varphi_{i}^{v_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{v_{j}}(t), \quad w_{j i}(s, t)=\varphi_{i}^{w_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{w_{j}}(t)
$$

with $\mathbf{q}_{f_{j i}}^{v_{j}}(t)$ denoting the vector $\left(\delta_{i}^{v_{j}}(t), \phi_{i}^{w_{j}}(t), \delta_{i+1}^{v_{j}}(t), \phi_{i+1}^{w_{j}}(t)\right)^{T}$ and $\mathbf{q}_{f_{j i}}^{w_{j}}(t)$ denoting the vector $\left(\delta_{i}^{w_{j}}(t), \phi_{i}^{v_{j}}(t), \delta_{i+1}^{w_{j}}(t), \phi_{i+1}^{v_{j}}(t)\right)^{T}$.

- Elastic displacements if joint j is prismatic

with $\mathbf{q}_{f_{j i}}^{u_{j}}(t)$ denoting the vector $\left(\delta_{i}^{u_{j}}(t), \phi_{i}^{v_{j}}(t), \delta_{i+1}^{u_{j}}(t), \phi_{i+1}^{v_{j}}(t)\right)^{T}$ and

Discretisation of PDE

Finite Element Method (Contd.)

- Elastic displacements if joint j is revolute,

$$
v_{j i}(s, t)=\varphi_{i}^{v_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{v_{j}}(t), \quad w_{j i}(s, t)=\varphi_{i}^{w_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{w_{j}}(t)
$$

with $\mathbf{q}_{f_{j i}}^{v_{j}}(t)$ denoting the vector $\left(\delta_{i}^{v_{j}}(t), \phi_{i}^{w_{j}}(t), \delta_{i+1}^{v_{j}}(t), \phi_{i+1}^{w_{j}}(t)\right)^{T}$ and $\mathbf{q}_{f_{j i j}}^{w_{j}}(t)$ denoting the vector $\left(\delta_{i}^{w_{j}}(t), \phi_{i}^{v_{j}}(t), \delta_{i+1}^{w_{j}}(t), \phi_{i+1}^{v_{j}}(t)\right)^{T}$.

- Elastic displacements if joint j is prismatic

$$
u_{j i}(s, t)=\varphi_{i}^{u_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{u_{j}}(t), \quad v_{j i}(s, t)=\varphi_{i}^{v_{j}}(s)^{T} \mathbf{q}_{f_{j i}}^{v_{j}}(t)
$$

with $\mathbf{q}_{f_{j i}}^{u_{j}}(t)$ denoting the vector $\left(\delta_{i}^{u_{j}}(t), \phi_{i}^{v_{j}}(t), \delta_{i+1}^{u_{j}}(t), \phi_{i+1}^{v_{j}}(t)\right)^{T}$ and $\mathbf{q}_{f_{j i}}^{v_{j}}(t)$ denoting the vector $\left(\delta_{i}^{v_{j}}(t), \phi_{i}^{u_{j}}(t), \delta_{i+1}^{v_{j}}(t), \phi_{i+1}^{u_{j}}(t)\right)^{T}$.

Discretisation of PDE

Finite Element Method (Contd.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible \rightarrow choose simple cubic polynomials

- $l_{j i}$ is constant for revolute jointed link and variable for prismatic jointed link \rightarrow More difficult to model prismatic jointed link.

Discretisation of PDE

Finite Element Method (Contd.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible \rightarrow choose simple cubic polynomials

$$
\varphi_{i}^{u_{j}}(s)=\varphi_{i}^{v_{j}}(s)=\varphi_{i}^{w_{j}}(s)=\left(\begin{array}{c}
1-3\left(\frac{s}{l_{j i}}\right)^{2}+2\left(\frac{s}{l_{j i}}\right)^{3} \\
s\left(\frac{s}{l_{j i}}-1\right)^{2} \\
\left(\frac{s}{2}\right)^{2}\left(3-2 \frac{s}{\iota_{j i}}\right) \\
\frac{s^{2}}{l_{j i}}\left(\frac{s}{l_{j i}}-1\right)
\end{array}\right)
$$

- $l_{j i}$ is constant for revolute jointed link and variable for prismatic jointed link \rightarrow More difficult to model prismatic jointed link.

Discretisation of PDE

Finite Element Method (Contd.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible \rightarrow choose simple cubic polynomials

$$
\varphi_{i}^{u_{j}}(s)=\varphi_{i}^{v_{j}}(s)=\varphi_{i}^{w_{j}}(s)=\left(\begin{array}{c}
1-3\left(\frac{s}{l_{j i}}\right)^{2}+2\left(\frac{s}{l_{j i}}\right)^{3} \\
s\left(\frac{s}{l_{j i}}-1\right)^{2} \\
\left(\frac{s}{l_{j i}}\right)^{2}\left(3-2 \frac{s}{l_{j i}}\right) \\
\frac{s^{2}}{l_{j i}}\left(\frac{s}{l_{j i}}-1\right)^{2}
\end{array}\right)
$$

- $l_{j i}$ is constant for revolute jointed link and variable for prismatic jointed link \rightarrow More difficult to model prismatic jointed link.

DISCRETISATION of PDE

Finite Element Method (Contd.)

- 4×4 homogeneous transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$ in the finite element model reduces to

$$
\begin{aligned}
& { }_{j}^{j_{k}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & -\phi_{N+1}^{N} & \phi_{N+1}^{v} & 0 \\
\phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{v} \\
-\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{N} \\
0 & 0 & 0 & 1
\end{array}\right), \text { Joint } j-1 \text { is revolute } \\
& { }_{j}^{j_{*}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & 0 & \phi_{N+1}^{v} & \delta_{N+1}^{u} \\
0 & 1 & -\phi_{N+1}^{U} & \delta_{N+1}^{v} \\
-\phi_{N+1}^{v} & \phi_{N+1}^{U} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { Joint } j-1 \text { is prismatic }
\end{aligned}
$$

- For clamped boundary conditions at element $1 \rightarrow \delta_{j 1}=\phi_{j 1}=0$.
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

Discretisation of PDE

Finite Element Method (Contd.)

- 4×4 homogeneous transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$ in the finite element model reduces to

$$
\begin{aligned}
& { }_{j}^{j_{*}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & -\phi_{N+1}^{N} & \phi_{N+1}^{N} & 0 \\
\phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{\Sigma} \\
-\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{N} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { Joint } j-1 \text { is revolute } \\
& { }_{j}^{j}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & 0 & \phi_{N+1}^{V} & \delta_{N+1}^{U} \\
0 & 1 & -\phi_{N+1}^{U} & \delta_{N+1}^{N} \\
-\phi_{N+1}^{v} & \phi_{N+1}^{U} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { Joint } j-1 \text { is prismatic }
\end{aligned}
$$

- For clamped boundary conditions at element $1 \rightarrow \delta_{j 1}=\phi_{j 1}=0$.
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

Discretisation of PDE

Finite Element Method (Contd.)

- 4×4 homogeneous transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$ in the finite element model reduces to

$$
\begin{aligned}
& { }_{j}^{j_{*}}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & -\phi_{N+1}^{N} & \phi_{N+1}^{N} & 0 \\
\phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{\Sigma} \\
-\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{N} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { Joint } j-1 \text { is revolute } \\
& { }_{j}^{j}\left[T_{e}\right]=\left(\begin{array}{cccc}
1 & 0 & \phi_{N+1}^{V} & \delta_{N+1}^{U} \\
0 & 1 & -\phi_{N+1}^{U} & \delta_{N+1}^{N} \\
-\phi_{N+1}^{v} & \phi_{N+1}^{U} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { Joint } j-1 \text { is prismatic }
\end{aligned}
$$

- For clamped boundary conditions at element $1 \rightarrow \delta_{j 1}=\phi_{j 1}=0$.
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

DIScretisation of PDE

Finite Element Method (Contd.)

- Velocity of any point on the neutral axis of the i th element in the j th link in the local undeformed coordinate system

DIScretisation of PDE

Comparison of AMM and FEM

- Number of modes Vs. Number of elements
- AMM: k modes k natural frequencies, FEM: k elements $2 k$ natural frequencies.

Mode No.	Number of Elements			Exact
1	1	2	3	
2	$2.0963 e+2$	$2.0873 e+2$	$2.0864 e+2$	$2.0864 e+2$
3		$4.4597 e+3$	$3.7067 e+3$	$3.6611 e+3$
4		$1.2944 e+4$	$8.3473 e+3$	$7.1742 e+3$
5			$1.5709 e+4$	$1.1860 e+4$
6			$3.1318 e+4$	$1.7716 e+4$

Table 1: Natural frequencies (Hz) of a clamped-free beam, $m=0.33 \mathrm{~kg}, I=1.0 \mathrm{~m}$, Inertia of joint $3.2 \mathrm{~kg} / \mathrm{m}^{2}$ and $E I=1165.5 \mathrm{~N} / \mathrm{m}^{2}$

DIScretisation of PDE

Comparison of AMM and FEM

- Number of modes Vs. Number of elements
- AMM: k modes k natural frequencies, FEM: k elements $2 k$ natural frequencies.

Mode No.	Number of Elements			Exact
1	1	2	3	
2	$2.0963 e+2$	$2.0873 e+2$	$2.0864 e+2$	$2.0864 e+2$
3		$4.4597 e+3$	$3.7067 e+3$	$3.6611 e+3$
4		$1.2944 e+4$	$8.3473 e+3$	$7.1742 e+3$
5			$1.5709 e+4$	$1.1860 e+4$
6			$3.1318 e+4$	$1.7716 e+4$

Table 1: Natural frequencies (Hz) of a clamped-free beam, $m=0.33 \mathrm{~kg}, \mathrm{l}=1.0 \mathrm{~m}$, Inertia of joint $3.2 \mathrm{~kg} / \mathrm{m}^{2}$ and $E I=1165.5 \mathrm{~N} / \mathrm{m}^{2}$

- Only first k frequencies from FEM are close $\rightarrow k$ modes are equivalent to k elements.

Discretisation of PDE

Comparison of AMM and FEM

- Number of modes Vs. Number of elements
- AMM: k modes k natural frequencies, FEM: k elements $2 k$ natural frequencies.

Mode No.	Number of Elements			Exact
1	1	2	3	
2	$2.0963 e+2$	$2.0873 e+2$	$2.0864 e+2$	$2.0864 e+2$
3		$4.4597 e+3$	$3.7067 e+3$	$3.6611 e+3$
4		$1.2944 e+4$	$8.3473 e+3$	$7.1742 e+3$
5			$1.5709 e+4$	$1.1860 e+4$
6			$3.1318 e+4$	$1.7716 e+4$

Table 1: Natural frequencies (Hz) of a clamped-free beam, $m=0.33 \mathrm{~kg}, I=1.0 \mathrm{~m}$, Inertia of joint $3.2 \mathrm{~kg} / \mathrm{m}^{2}$ and $E I=1165.5 \mathrm{~N} / \mathrm{m}^{2}$

- Only first k frequencies from FEM are close $\rightarrow k$ modes are equivalent to k elements.
- Typically 2 or three modes(elements) are enough to model dynamics.

Discretisation of PDE

Comparison of AMM and FEM

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FFM imnoses more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries. - 3D and other kinds of elements available in large body of research on FEM can be used

Discretisation of PDE

Comparison of AMM and FEM

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries. - 3D and other 'kinds of elements available in large body of research on FEM can be used

Discretisation of PDE

Comparison of AMM and FEM

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries. - 3D and other kinds of elements available in large body of research on FEM can be used.

Discretisation of PDE

Comparison of AMM and FEM

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries. - 3D and other kinds of elements available in large body of research on FEM can be used.

Discretisation of PDE

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries. FEM can be used.

Discretisation of PDE

- AMM mode shapes are defined over entire beam with trigonometric functions \rightarrow Diagonal mass and stiffness matrices.
- FEM interpolation function are local and are polynomials \rightarrow Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions - easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j_{*}}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j *}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j *}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j *}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

SUMMARY

- Extension of Denavit-Hartenberg convention to flexible links.
- Rigid 4×4 transformation matrix ${ }_{j_{*}}^{j-1}\left[T_{r}\right]$
- Small deformation and linear elasticity \rightarrow Elastic 4×4 transformation matrix ${ }_{j}^{j_{*}}\left[T_{e}\right]$.
- Complete 4×4 transformation matrix ${ }_{j}^{j-1}[T]={ }_{j_{*}}^{j-1}\left[T_{r}\right]_{j}^{j *}\left[T_{e}\right]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

Outline

Contents

(2) Lecture 1

- Flexible Manipulators
(3) Lecture 2*
- Kinematic Modeling of Flexible Link Manipulators
(4) Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(5) Lecture 4
- Experiments with a Planar Two Link Flexible System
(6) Module 8 - Additional Material
- Problems, References and Suggested Reading

Introduction

Overview

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion \& tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator

Introduction

Overview

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion \& tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator

Introduction
 Overview

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion \& tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

Introduction
 OvERVIEW

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion \& tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator

Introduction

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion \& tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see Module 6, Lecture 1).
- Lagrangian equations of motion
- For joint variable $q_{r_{i}}$

$$
\frac{d}{d t}\left(\frac{\partial K E}{\partial \dot{q}_{r_{j}}}\right)-\frac{\partial K E}{\partial q_{r_{j}}}+\frac{\partial P E}{\partial q_{r_{j}}}=\tau_{j}
$$

- For flexible variable $q_{f j i}$:

- KE is total kinetic energy \& PE is total potential energy due to elastic deformation and gravity.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see Module 6, Lecture 1).
- Lagrangian equations of motion
- For joint variable $q_{r_{j}}$

- For flexible variable $q_{f j i}$:

- KE is total kinetic energy \& PE is total potential energy due to elastic deformation and gravity.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see Module 6, Lecture 1).
- Lagrangian equations of motion
- For joint variable $q_{r_{j}}$:

$$
\frac{d}{d t}\left(\frac{\partial K E}{\partial \dot{q}_{r_{j}}}\right)-\frac{\partial K E}{\partial q_{r_{j}}}+\frac{\partial P E}{\partial q_{r_{j}}}=\tau_{j}
$$

- For flexible variable $q_{f_{j i}}$:

$$
\frac{d}{d t}\left(\frac{\partial K E}{\partial \dot{q}_{f j i}}\right)-\frac{\partial K E}{\partial q_{f_{j i}}}+\frac{\partial P E}{\partial q_{f j i}}=0
$$

- KE is total kinetic energy \& PE is total potential energy due to elastic deformation and gravity.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see Module 6, Lecture 1).
- Lagrangian equations of motion
- For joint variable $q_{r_{j}}$:

$$
\frac{d}{d t}\left(\frac{\partial K E}{\partial \dot{q}_{r_{j}}}\right)-\frac{\partial K E}{\partial q_{r_{j}}}+\frac{\partial P E}{\partial q_{r_{j}}}=\tau_{j}
$$

- For flexible variable $q_{f_{j i}}$:

$$
\frac{d}{d t}\left(\frac{\partial K E}{\partial \dot{q}_{f j i}}\right)-\frac{\partial K E}{\partial q_{f_{j i}}}+\frac{\partial P E}{\partial q_{f j i}}=0
$$

- KE is total kinetic energy \& PE is total potential energy due to elastic deformation and gravity.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

 MANIPULATORSKinetic Energy

- Total kinetic energy: $K E=\sum_{j=1}^{n}\left(K E_{\text {joint }_{j}}+K E_{\text {link }_{j}}\right)+K E_{\text {payload }}$
- Kinetic energy of joint in terms of mass, inertia and derivative of position vector

- Kinetic energy of flexible link j in terms of density, cross-sectional area and number of elements

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Kinetic Energy

- Total kinetic energy: $K E=\sum_{j=1}^{n}\left(K E_{\text {joint }_{j}}+K E_{\text {link }_{j}}\right)+K E_{\text {payload }}$
- Kinetic energy of joint in terms of mass, inertia and derivative of position vector

$$
K E_{\text {joint }_{j}}=\frac{1_{0}}{2} \Omega_{j}^{T}{ }^{0}\left[I_{\text {joint }}\right]_{j}^{0} \Omega_{j}+\frac{1}{2} m_{\text {joint }_{j}}\left(\frac{d^{0} \mathbf{O}_{j}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{O}_{j}}{d t}\right)
$$

- Kinetic energy of flexible link j in terms of density, cross-sectional area and number of elements

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Kinetic Energy

- Total kinetic energy: $K E=\sum_{j=1}^{n}\left(K E_{\text {joint }_{j}}+K E_{\text {link }_{j}}\right)+K E_{\text {payload }}$
- Kinetic energy of joint in terms of mass, inertia and derivative of position vector

$$
K E_{j o i n t}{ }_{j}=\frac{1_{0}}{2} \Omega_{j}^{T}{ }^{0}\left[I_{j o i n t}\right]_{j}^{0} \Omega_{j}+\frac{1}{2} m_{\text {joint }_{j}}\left(\frac{d^{0} \mathbf{O}_{j}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{O}_{j}}{d t}\right)
$$

- Kinetic energy of flexible link j in terms of density, cross-sectional area and number of elements

$$
K E_{\text {link }}^{j} \text { }= \begin{cases}\frac{1}{2} \int_{0}^{l_{j}} \rho_{j} A_{j}\left(\frac{d^{0} \mathbf{p}_{j}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{p}_{j}}{d t}\right) d s, & \text { for AMM } \\ \frac{1}{2} \sum_{i=1}^{N_{j}} \int_{0}^{l_{j i}} \rho_{j} A_{j}\left(\frac{d^{0} \mathbf{p}_{j i}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{p}_{j i}}{d t}\right) d s, & \text { for FEM }\end{cases}
$$

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Kinetic Energy (Contd.)

- If link j is rigid, kinetic energy, in terms of position of centre of mass

$$
K E_{l i n k_{j}}=\frac{1}{2} m_{j}\left(\frac{d^{0} \mathbf{p}_{c_{j}}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{p}_{c_{j}}}{d t}\right)
$$

- Kinetic energy of payload

${ }^{0} \mathbf{p}_{\text {Tool }}$ is the position vector of the centre of mass of the payload, m_{p} is mass of the payload, ${ }^{0}\left[J_{p}\right]$ and ${ }^{0 \cdot}$ Tool are the moment of inertia matrix of the payload and the angular velocity vector of the payload, respectively.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Kinetic Energy (Contd.)

- If link j is rigid, kinetic energy, in terms of position of centre of mass

$$
K E_{l i n k_{j}}=\frac{1}{2} m_{j}\left(\frac{d^{0} \mathbf{p}_{c_{j}}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{p}_{c_{j}}}{d t}\right)
$$

- Kinetic energy of payload

$$
K E_{\text {payload }}=\frac{1}{2} m_{p}\left(\frac{d^{0} \mathbf{p}_{\text {Tool }}}{d t}\right)^{T}\left(\frac{d^{0} \mathbf{p}_{\text {Tool }}}{d t}\right)+\frac{1}{2}^{0} \Omega_{\text {Tool }}{ }^{T}{ }^{0}\left[J_{p}\right]^{0} \Omega_{\text {Tool }}
$$

${ }^{0} \mathbf{p}_{\text {Tool }}$ is the position vector of the centre of mass of the payload, m_{p} is mass of the payload, ${ }^{0}\left[J_{p}\right]$ and ${ }^{0 \cdot}{ }_{T o o l}$ are the moment of inertia matrix of the payload and the angular velocity vector of the payload, respectively.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathrm{~g}^{T{ }^{0}} \mathrm{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{j o i n t} \mathbf{g} \mathrm{~g}^{T 0} \mathbf{O}_{j}+\int_{0}^{\iota_{j}} \rho_{j} A_{j} \mathbf{g}^{T 0} \mathbf{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

- For finite element model:
$P E_{f_{j}}=\sum_{i=1}^{N_{i}} \int_{0}^{\prime_{j i}}\left(\frac{E_{j} l_{j y}}{2}\left[\sum_{k=1}^{1} \frac{\partial^{2} \varphi_{i k}^{v_{j}}(s)}{\partial s^{2}} q_{f_{j i k}}^{v_{j}}(t)\right]^{2}+\frac{E_{j} l_{j z}}{2}\left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{i k}^{w_{j}}(s)}{\partial s^{2}} q_{f_{j i k}}^{w_{j}}(t)\right]^{2}\right) d s$

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathbf{g}^{T 0} \mathbf{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{\text {joint } \mathrm{g}_{\mathrm{g}}} \mathrm{g}^{T 0} \mathrm{O}_{j}+\int_{0} \rho_{j} A_{j} \mathrm{~g}^{T 0} \mathrm{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

- For finite element model:

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathbf{g}^{T 0} \mathbf{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{j o i n t} \mathbf{g}^{T 0} \mathbf{O}_{j}+\int_{0}^{l_{j}} \rho_{j} A_{j} \mathbf{g}^{T 0} \mathbf{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

- For finite element model:

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathbf{g}^{T 0} \mathbf{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{j o i n t} \mathbf{g}^{T 0} \mathbf{O}_{j}+\int_{0}^{l_{j}} \rho_{j} A_{j} \mathbf{g}^{T 0} \mathbf{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

- For finite element model:

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathbf{g}^{T 0} \mathbf{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{j o i n t} \mathbf{g}^{T 0} \mathbf{O}_{j}+\int_{0}^{l_{j}} \rho_{j} A_{j} \mathbf{g}^{T 0} \mathbf{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$
P E_{f_{j}}=\int_{0}^{1}\left(\frac{E_{j} l_{j y}}{2 l_{j}^{3}}\left[\sum_{i=1}^{N_{j}} \frac{\partial^{2} \psi_{i}^{v_{j}}(\eta)}{\partial \eta^{2}} \xi_{i}^{v_{j}}(t)\right]^{2}+\frac{E_{j} l_{j z}}{2 l_{j}^{3}}\left[\sum_{i=1}^{N_{j}} \frac{\partial^{2} \psi_{i}^{w_{j}}(\eta)}{\partial \eta^{2}} \xi_{i}^{w_{j}}(t)\right]^{2}\right) d \eta
$$

- For finite element model:

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Potential Energy

- Total potential energy: $P E=\sum_{i=1}^{n}\left(P E_{f_{j}}+P E_{g_{j}}\right)+P E_{g_{\text {payload }}}$
- Payload: $P E_{g_{\text {payload }}}=m_{p} \mathbf{g}^{T 0} \mathbf{p}_{\text {Tool }}$
- Gravity: $P E_{g_{j}}=m_{\text {joint }_{j}} \mathbf{g}^{T 0} \mathbf{O}_{j}+\int_{0}^{l_{j}} \rho_{j} A_{j} \mathbf{g}^{T 0} \mathbf{p}_{j} d s$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$
P E_{f_{j}}=\int_{0}^{1}\left(\frac{E_{j} l_{j y}}{2 l_{j}^{3}}\left[\sum_{i=1}^{N_{j}} \frac{\partial^{2} \psi_{i}^{v_{j}}(\eta)}{\partial \eta^{2}} \xi_{i}^{v_{j}}(t)\right]^{2}+\frac{E_{j} l_{j z}}{2 l_{j}^{3}}\left[\sum_{i=1}^{N_{j}} \frac{\partial^{2} \psi_{i}^{w_{j}}(\eta)}{\partial \eta^{2}} \xi_{i}^{w_{j}}(t)\right]^{2}\right) d \eta
$$

- For finite element model:

$$
P E_{f_{j}}=\sum_{i=1}^{N_{j}} \int_{0}^{\iota_{j i}}\left(\frac{E_{j} l_{j y}}{2}\left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{i k}^{v_{j}}(s)}{\partial s^{2}} q_{f_{j i k}}^{v_{j}}(t)\right]^{2}+\frac{E_{j} l_{j z}}{2}\left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{i k}^{w_{j}}(s)}{\partial s^{2}} q_{f_{j i k}}^{w_{j}}(t)\right]^{2}\right) d s
$$

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE
 MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathrm{M}_{r r}\right]} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathrm{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathrm{G}_{r}(\mathbf{q})}{\mathrm{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
0 & 0 \\
0 & {[\mathrm{~K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Variables \mathbf{q} : joint variables $\mathbf{q}_{r} \in \Re^{n}$ and flexible variables $\mathbf{q}_{f} \in \Re^{N}$
- For AMM with $n_{f} \leq n$ flexible links and N_{j} modes for each flexible link, $N=2 \sum_{j=1}^{n_{f}} N_{j}$ in 3D and $N=\sum_{j=1}^{n_{f}} N_{j}$ for plane.
- For FEM with N_{j} elements for each flexible link, $N=4 \sum_{j=1}^{n_{f}} N_{j}$ in 3D and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
- In FEM, in the first element in each link, $\delta_{j 1}=\phi_{j 1}=0$ to represent clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathbf{G}_{r}(\mathbf{q})}{\mathbf{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
\mathbf{0} & 0 \\
\mathbf{0} & {[\mathrm{~K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
\end{aligned}
$$

- Variables q : joint variables $\mathrm{q}_{r} \in \Re^{n}$ and flexible variables $\mathrm{q}_{f} \in \Re^{N}$
- For AMM with $n_{f} \leq n$ flexible links and N_{j} modes for each flexible link, $N=2 \sum_{i=1}^{n_{f}} N_{j}$ in 3D and $N=\sum_{i=1}^{n_{f}} N_{j}$ for plane.
- For FEM with N_{j} elements for each flexible link, $N=4 \sum_{j=1}^{n_{f}} N_{j}$ in 3D and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
- In FEM, in the first element in each link, $\delta_{j 1}=\phi_{j 1}=0$ to represent clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathrm{M}_{r r}\right]} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathbf{G}_{r}(\mathbf{q})}{\mathbf{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
\mathbf{0} & 0 \\
\mathbf{0} & {[\mathrm{~K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
\end{aligned}
$$

- Variables \mathbf{q} : joint variables $\mathbf{q}_{r} \in \mathfrak{R}^{n}$ and flexible variables $\mathbf{q}_{f} \in \mathfrak{R}^{N}$.
\square and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
- In FEM, in the first element in each link, $\delta_{j 1}=\phi_{j 1}=0$ to represent clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathrm{M}_{r r}\right]} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathrm{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathbf{G}_{r}(\mathbf{q})}{\mathbf{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
\mathbf{0} & 0 \\
\mathbf{0} & {[\mathrm{~K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
\end{aligned}
$$

- Variables \mathbf{q} : joint variables $\mathbf{q}_{r} \in \mathfrak{R}^{n}$ and flexible variables $\mathbf{q}_{f} \in \mathfrak{R}^{N}$.
- For AMM with $n_{f} \leq n$ flexible links and N_{j} modes for each flexible link, $N=2 \sum_{j=1}^{n_{f}} N_{j}$ in 3 D and $N=\sum_{j=1}^{n_{f}} N_{j}$ for plane.
- For FEM with N_{j} elements for each flexible link, $N=4 \sum_{j=1}^{n_{f}} N_{j}$ in $3[$
and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
- In FEM, in the first element in each link, $\delta_{j 1}=\phi_{j 1}=0$ to represent clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathbf{G}_{r}(\mathbf{q})}{\mathbf{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
\mathbf{0} & 0 \\
\mathbf{0} & {[\mathrm{~K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
\end{aligned}
$$

- Variables \mathbf{q} : joint variables $\mathbf{q}_{r} \in \mathfrak{R}^{n}$ and flexible variables $\mathbf{q}_{f} \in \mathfrak{R}^{N}$.
- For AMM with $n_{f} \leq n$ flexible links and N_{j} modes for each flexible link, $N=2 \sum_{j=1}^{n_{f}} N_{j}$ in 3 D and $N=\sum_{j=1}^{n_{f}} N_{j}$ for plane.
- For FEM with N_{j} elements for each flexible link, $N=4 \sum_{j=1}^{n_{f}} N_{j}$ in 3D and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$
\begin{aligned}
& \left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]^{T}} \\
{\left[\mathbf{M}_{r f}\right]} & {\left[\mathbf{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\binom{\mathbf{G}_{r}(\mathbf{q})}{\mathbf{G}_{f}(\mathbf{q})} \\
& +\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & {[\mathrm{K}]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
\end{aligned}
$$

- Variables \mathbf{q} : joint variables $\mathbf{q}_{r} \in \mathfrak{R}^{n}$ and flexible variables $\mathbf{q}_{f} \in \mathfrak{R}^{N}$.
- For AMM with $n_{f} \leq n$ flexible links and N_{j} modes for each flexible link, $N=2 \sum_{j=1}^{n_{f}} N_{j}$ in 3 D and $N=\sum_{j=1}^{n_{f}} N_{j}$ for plane.
- For FEM with N_{j} elements for each flexible link, $N=4 \sum_{j=1}^{n_{f}} N_{j}$ in 3D and $N=2 \sum_{j=1}^{n_{f}} N_{j}$ for plane.
- In FEM, in the first element in each link, $\delta_{j 1}=\phi_{j 1}=0$ to represent clamped boundary conditions.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Properties of terms in equations of motion

- Generalised mass matrix $[\mathrm{M}(\mathbf{q})]$ contain
- $n \times n$ symmetric, positive definite sub-matrix $\left[\mathrm{M}_{r r}\right]$ related to the rigid joint variables.
- $N \times N$ symmetric, positive definite sub-matrix $\left[\mathbf{M}_{f f}\right]$ related to the flexible variables.
- $N \times n$ sub-matrix [$\mathrm{M}_{r f}$] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix $[\mathrm{K}]$ is called the flexural stiffness matrix and arises from the strain energy of the flexible links [$\mathrm{M}_{f f}$] and $[\mathrm{K}]$ are used in FEM to compute natural frequencies.
- Only joint torques are acting $\rightarrow \tau$ is an $n \times 1$ vector

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

Properties of terms in equations of motion

- Generalised mass matrix $[\mathrm{M}(\mathbf{q})]$ contain
- $n \times n$ symmetric, positive definite sub-matrix $\left[\mathrm{M}_{r r}\right]$ related to the rigid joint variables.
- $N \times N$ symmetric, positive definite sub-matrix $\left[\mathbf{M}_{f f}\right]$ related to the flexible variables.
- $N \times n$ sub-matrix [$\mathbf{M}_{r f}$] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix $[\mathrm{K}]$ is called the flexural stiffness matrix and arises from the strain energy of the flexible links $\left[\mathrm{M}_{f f}\right]$ and $[\mathrm{K}]$ are used in FEM to compute natural frequencies.
- Only joint torques are acting $\rightarrow \tau$ is an $n \times 1$ vector.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

PROPERTIES OF TERMS IN EQUATIONS OF MOTION

- Generalised mass matrix $[\mathrm{M}(\mathbf{q})]$ contain
- $n \times n$ symmetric, positive definite sub-matrix $\left[\mathrm{M}_{r r}\right]$ related to the rigid joint variables.
- $N \times N$ symmetric, positive definite sub-matrix $\left[\mathbf{M}_{f f}\right]$ related to the flexible variables.
- $N \times n$ sub-matrix [$\mathbf{M}_{r f}$] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix $[\mathrm{K}]$ is called the flexural stiffness matrix and arises from the strain energy of the flexible links $\left[\mathrm{M}_{f f}\right]$ and $[\mathrm{K}]$ are used in FEM to compute natural frequencies.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

PROPERTIES OF TERMS IN EQUATIONS OF MOTION

- Generalised mass matrix $[\mathrm{M}(\mathbf{q})]$ contain
- $n \times n$ symmetric, positive definite sub-matrix $\left[\mathbf{M}_{r r}\right]$ related to the rigid joint variables.
- $N \times N$ symmetric, positive definite sub-matrix $\left[\mathbf{M}_{f f}\right]$ related to the flexible variables.
- $N \times n$ sub-matrix [$\mathrm{M}_{r f}$] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix [K] is called the flexural stiffness matrix and arises from the strain energy of the flexible links $\left[\mathrm{M}_{f f}\right]$ and $[\mathrm{K}]$ are used in FEM to compute natural frequencies.
- Only joint torques are acting $\rightarrow \tau$ is an $n \times 1$ vector.

Outline

(1) Contents

- Lecture 1
- Flexible Manipulators

3 Lecture 2*

- Kinematic Modeling of Flexible Link Manipulators
(4) Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(5) Lecture 4
- Experiments with a Planar Two Link Flexible System
a Module 8 - Additional Material
- Problems, References and Suggested Reading

Control of Flexible-Link Manipulators

Overview

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

Control of Flexible-Link Manipulators

OVERVIEW

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.
${ }^{2}$ One can use passive vibration damping and, more recently, active vibration control

Control of Flexible-Link Manipulators

Overview

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

[^0]
Control of Flexible-Link Manipulators

Overview

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

[^1]
Control of Flexible-Link Manipulators

Overview

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

[^2]
Control of Flexible-Link Manipulators

Overview

- Control of a single link flexible manipulator - controllability.
- Two control tasks: trajectory following \& tip vibration control.
- Active control using joint actuator ${ }^{2}$ only.
- Two stage control strategy - Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

[^3]
Block Diagram of a Single Link Flexible

 MAnipulator

Figure 15: Block diagram of a single flexible-link manipulator

Block Diagram (Contd.)

- Recall: Rigid manipulator τ directly influenced θ_{m} and in flexible joint manipulator τ related to θ_{m} and θ_{l}.
- Flexible manipulator: τ directly influence θ_{1} and indirectly q_{f} !
- Not clear if tip vibration $\left(\mathbf{q}_{f}\right)$ can be controlled by τ !
- Coupling between rigid and flexible variables!
- θ_{1} can excite flexible dynamics through [$\mathrm{M}_{r f}$]
- Resulting $\ddot{\mathbf{q}}_{f}$ can in turn influence rigid dynamics through $\left[\mathbf{M}_{r f}\right]^{T}$
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

Block Diagram (Contd.)

- Recall: Rigid manipulator τ directly influenced θ_{m} and in flexible joint manipulator τ related to θ_{m} and θ_{l}.
- Flexible manipulator: τ directly influence θ_{1} and indirectly \mathbf{q}_{f} !
- Not clear if tip vibration (q_{f}) can be controlled by τ !
- Coupling between rigid and flexible variables!!
- $\ddot{\theta}_{1}$ can excite flexible dynamics through [$\mathbf{M}_{r f}$]
- Resulting \ddot{q}_{f} can in turn influence rigid dynamics through $\left[\mathrm{M}_{r f}\right]^{T}$
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

Block Diagram (Contd.)

- Recall: Rigid manipulator τ directly influenced θ_{m} and in flexible joint manipulator τ related to θ_{m} and $\theta_{/}$.
- Flexible manipulator: τ directly influence θ_{1} and indirectly \mathbf{q}_{f} !
- Not clear if tip vibration $\left(\mathbf{q}_{f}\right)$ can be controlled by τ !
- Coupling between rigid and flexible variables!!
- $\ddot{\theta}_{1}$ can excite flexible dynamics through [$\mathbf{M}_{r f}$]
- Resulting $\ddot{\mathbf{q}}_{f}$ can in turn influence rigid dynamics through $\left[\mathrm{M}_{\mathrm{ff}}\right]^{T}$
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

Block Diagram (Contd.)

- Recall: Rigid manipulator τ directly influenced θ_{m} and in flexible joint manipulator τ related to θ_{m} and $\theta_{/}$.
- Flexible manipulator: τ directly influence θ_{1} and indirectly \mathbf{q}_{f} !
- Not clear if tip vibration (\mathbf{q}_{f}) can be controlled by τ !
- Coupling between rigid and flexible variables!!
- $\ddot{\theta}_{1}$ can excite flexible dynamics through [$\mathbf{M}_{r f}$]
- Resulting $\ddot{\mathbf{q}}_{f}$ can in turn influence rigid dynamics through $\left[\mathbf{M}_{r f}\right]^{T}$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

Block Diagram (Contd.)

- Recall: Rigid manipulator τ directly influenced θ_{m} and in flexible joint manipulator τ related to θ_{m} and θ_{l}.
- Flexible manipulator: τ directly influence θ_{1} and indirectly \mathbf{q}_{f} !
- Not clear if tip vibration (\mathbf{q}_{f}) can be controlled by τ !
- Coupling between rigid and flexible variables!!
- $\ddot{\theta}_{1}$ can excite flexible dynamics through [$\mathbf{M}_{r f}$]
- Resulting $\ddot{\mathbf{q}}_{f}$ can in turn influence rigid dynamics through $\left[\mathbf{M}_{r f}\right]^{T}$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

Controllability of Flexible-Link Manipulato $\frac{1 .}{100}$

- Rewrite equations of motion as

$$
\begin{aligned}
\ddot{\mathbf{q}}_{r} & =\left[\mathbf{H}_{r r}\right] \tau-\left[\mathbf{H}_{r r}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{r f}\right]^{T}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\ddot{\mathbf{q}}_{f} & =\left[\mathbf{H}_{r f}\right] \tau-\left[\mathbf{H}_{r f}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\mathbf{H}_{r r}\right] } & =\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1} \\
{\left[\mathbf{H}_{r f}\right]^{T} } & =-\left[\mathbf{H}_{r r}\right]\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1} \\
{\left[\mathbf{H}_{f f}\right] } & =\left(\left[\mathrm{M}_{f f}\right]-\left[\mathrm{M}_{r f}\right]\left[\mathrm{M}_{r r}\right]^{-1}\left[\mathrm{M}_{r f}\right]^{T}\right)^{-1}
\end{aligned}
$$

by τ - inaccessibility condition.

- $q_{f_{i}}$ induces a moment about the joint axis \rightarrow controllable.
- Joint axis lies in plane of deflection components \rightarrow cannot be controlled.
- $q_{f_{i}}$ influenced indirectly by non-zero $\left[\mathrm{H}_{f f}\right]\left(\mathrm{C}_{f}+\mathrm{G}_{f}+[\mathrm{K}]_{\mathrm{q}_{f}}\right) \rightarrow$ Can be controlled even if the row of $\left[\mathrm{H}_{r f}\right]$ is 0 !

Controllability of Flexible-Link Manipulato is

- Rewrite equations of motion as

$$
\begin{aligned}
\ddot{\mathbf{q}}_{r} & =\left[\mathbf{H}_{r r}\right] \tau-\left[\mathbf{H}_{r r}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{r f}\right]^{T}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\ddot{\mathbf{q}}_{f} & =\left[\mathbf{H}_{r f}\right] \tau-\left[\mathbf{H}_{r f}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\mathbf{H}_{r r}\right] } & =\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1} \\
{\left[\mathbf{H}_{r f}\right]^{T} } & =-\left[\mathbf{H}_{r r}\right]\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1} \\
{\left[\mathbf{H}_{f f}\right] } & =\left(\left[\mathbf{M}_{f f}\right]-\left[\mathbf{M}_{r f}\right]\left[\mathrm{M}_{r r}\right]^{-1}\left[\mathrm{M}_{r f}\right]^{T}\right)^{-1}
\end{aligned}
$$

- If a row of $\left[\mathbf{H}_{r f}\right]$ is $\mathbf{0} \rightarrow$ corresponding \ddot{q}_{f} cannot be directly controlled by τ - inaccessibility condition.
- Joint axis lies in plane of deflection components \rightarrow cannot be controlled.

Controllability of Flexible-Link Manipulato

- Rewrite equations of motion as

$$
\begin{aligned}
\ddot{\mathbf{q}}_{r} & =\left[\mathbf{H}_{r r}\right] \tau-\left[\mathbf{H}_{r r}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{r f}\right]^{T}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\ddot{\mathbf{q}}_{f} & =\left[\mathbf{H}_{r f}\right] \tau-\left[\mathbf{H}_{r f}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\mathbf{H}_{r r}\right] } & =\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1} \\
{\left[\mathbf{H}_{r f}\right]^{T} } & =-\left[\mathbf{H}_{r r}\right]\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1} \\
{\left[\mathbf{H}_{f f}\right] } & =\left(\left[\mathbf{M}_{f f}\right]-\left[\mathbf{M}_{r f}\right]\left[\mathrm{M}_{r r}\right]^{-1}\left[\mathrm{M}_{r f}\right]^{T}\right)^{-1}
\end{aligned}
$$

- If a row of $\left[\mathbf{H}_{r f}\right]$ is $\mathbf{0} \rightarrow$ corresponding $\ddot{\boldsymbol{q}}_{f}$ cannot be directly controlled by τ - inaccessibility condition.
- $q_{f_{i}}$ induces a moment about the joint axis \rightarrow controllable.

Controllability of Flexible-Link Manipulato

- Rewrite equations of motion as

$$
\begin{aligned}
\ddot{\mathbf{q}}_{r} & =\left[\mathbf{H}_{r r}\right] \tau-\left[\mathbf{H}_{r r}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{r f}\right]^{T}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\ddot{\mathbf{q}}_{f} & =\left[\mathbf{H}_{r f}\right] \tau-\left[\mathbf{H}_{r f}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\mathbf{H}_{r r}\right] } & =\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1} \\
{\left[\mathbf{H}_{r f}\right]^{T} } & =-\left[\mathbf{H}_{r r}\right]\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1} \\
{\left[\mathbf{H}_{f f}\right] } & =\left(\left[\mathbf{M}_{f f}\right]-\left[\mathbf{M}_{r f}\right]\left[\mathrm{M}_{r r}\right]^{-1}\left[\mathrm{M}_{r f}\right]^{T}\right)^{-1}
\end{aligned}
$$

- If a row of $\left[\mathbf{H}_{r f}\right]$ is $\mathbf{0} \rightarrow$ corresponding $\ddot{\boldsymbol{q}}_{f}$ cannot be directly controlled by τ - inaccessibility condition.
- $q_{f_{i}}$ induces a moment about the joint axis \rightarrow controllable.
- Joint axis lies in plane of deflection components \rightarrow cannot be controlled.

Controllability of Flexible-Link Manipulato is

- Rewrite equations of motion as

$$
\begin{aligned}
& \ddot{\mathbf{q}}_{r}=\left[\mathbf{H}_{r r}\right] \tau-\left[\mathbf{H}_{r r}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{r f}\right]^{T}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
& \ddot{\mathbf{q}}_{f}=\left[\mathbf{H}_{r f}\right] \tau-\left[\mathbf{H}_{r f}\right]\left(\mathbf{C}_{r}+\mathbf{G}_{r}\right)-\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\mathbf{H}_{r r}\right] } & =\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1} \\
{\left[\mathbf{H}_{r f}\right]^{T} } & =-\left[\mathbf{H}_{r r}\right]\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1} \\
{\left[\mathbf{H}_{f f}\right] } & =\left(\left[\mathbf{M}_{f f}\right]-\left[\mathbf{M}_{r f}\right]\left[\mathrm{M}_{r r}\right]^{-1}\left[\mathrm{M}_{r f}\right]^{T}\right)^{-1}
\end{aligned}
$$

- If a row of $\left[\mathbf{H}_{r f}\right]$ is $\mathbf{0} \rightarrow$ corresponding \ddot{q}_{f} cannot be directly controlled by τ - inaccessibility condition.
- $q_{f_{i}}$ induces a moment about the joint axis \rightarrow controllable.
- Joint axis lies in plane of deflection components \rightarrow cannot be controlled.
- $q_{f_{i}}$ influenced indirectly by non-zero $\left[\mathbf{H}_{f f}\right]\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathrm{K}] \mathbf{q}_{f}\right) \rightarrow$ Can be controlled even if the row of $\left[\mathrm{H}_{r f}\right]$ is $\mathbf{0}$!

Model-based Control for Trajectory Following

- Rewrite equations of motion as

$$
\begin{aligned}
{\left[\mathbf{M}_{r r}\right] \ddot{\mathbf{q}}_{r}+\left[\mathrm{M}_{r f}\right]^{T} \ddot{\mathbf{q}}_{f}+\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{r}(\mathbf{q}) } & =\tau \\
{\left[\mathrm{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\left[\mathrm{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathrm{K}] \mathbf{q}_{f} } & =0
\end{aligned}
$$

- Solve for \ddot{q}_{f} as

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathrm{M}_{f f}\right]^{-1}\left(\left[\mathrm{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
$$

and substitute in first equation to get

- Similar to rigid manipulators, choose $\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta$ where

Model-based Control for Trajectory

Following

- Rewrite equations of motion as

$$
\begin{aligned}
{\left[\mathbf{M}_{r r}\right] \ddot{\mathbf{q}}_{r}+\left[\mathrm{M}_{r f}\right]^{T} \ddot{\mathbf{q}}_{f}+\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{r}(\mathbf{q}) } & =\tau \\
{\left[\mathrm{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\left[\mathrm{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathrm{K}] \mathbf{q}_{f} } & =0
\end{aligned}
$$

- Solve for $\ddot{\mathbf{q}}_{f}$ as

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathbf{M}_{f f}\right]^{-1}\left(\left[\mathbf{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
$$

and substitute in first equation to get

$$
\begin{aligned}
& \left(\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right) \ddot{\mathbf{q}}_{r}+ \\
& \left(\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)\right)=\tau
\end{aligned}
$$

- Similar to rigid manipulators, choose τ

Model-based Control for Trajectory

Following

- Rewrite equations of motion as

$$
\begin{aligned}
{\left[\mathbf{M}_{r r}\right] \ddot{\mathbf{q}}_{r}+\left[\mathbf{M}_{r f}\right]^{T} \ddot{\mathbf{q}}_{f}+\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{r}(\mathbf{q}) } & =\tau \\
{\left[\mathbf{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\left[\mathbf{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathrm{K}] \mathbf{q}_{f} } & =0
\end{aligned}
$$

- Solve for $\ddot{\mathbf{q}}_{f}$ as

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathbf{M}_{f f}\right]^{-1}\left(\left[\mathbf{M}_{r f}\right] \ddot{\mathbf{q}}_{r}+\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
$$

and substitute in first equation to get

$$
\begin{aligned}
& \left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right) \ddot{\mathbf{q}}_{r}+ \\
& \left(\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathrm{K}] \mathbf{q}_{f}\right)\right)=\tau
\end{aligned}
$$

- Similar to rigid manipulators, choose $\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta$ where

$$
\begin{aligned}
{[\alpha] } & =\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \\
\beta & =\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathrm{K}] \mathbf{q}_{f}\right)
\end{aligned}
$$

Model-based Control for Trajectory Following

- Similar to rigid manipulators, substitute $[\alpha]$ and β to get an unit inertia plant with new input $\tau_{\mathbf{q}_{r}}^{\prime}$

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r}
$$

- Choose $\tau^{\prime} \mathbf{q}_{r}$ as

$$
\tau_{\mathrm{q}_{r}}^{\prime}=\ddot{\mathrm{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathrm{q}_{r}} \mathrm{e}(t)+\left[K_{v}\right]_{\mathrm{q}_{r}} \dot{\mathrm{e}}(t)
$$

- For $\mathbf{e}(t)=\mathbf{q}_{r_{d}}-\mathbf{q}_{r}$ and $\mathbf{q}_{r_{d}}(t)$ as the desired joint trajectory, the error equation becomes

$$
\ddot{\mathrm{e}}_{r}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}_{r}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}_{r}(t)=\mathbf{0}
$$

- For appropriate controller gains $\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}, \mathbf{e}_{r}(t), \dot{\mathbf{e}}_{r}(t) \rightarrow 0$ asymptotically and desired trajectory can be followed.

Model-based Control for Trajectory Following

- Similar to rigid manipulators, substitute $[\alpha]$ and β to get an unit inertia plant with new input $\tau_{\mathbf{q}_{r}}^{\prime}$

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r}
$$

- Choose $\tau_{\mathbf{q}_{r}}^{\prime}$ as

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
$$

- For $\mathrm{e}(t)=\mathrm{q}_{r_{d}}-\mathrm{q}_{r}$ and $\mathrm{q}_{r_{d}}(t)$ as the desired joint trajectory, the error equation becomes

$$
\ddot{\mathrm{e}}_{r}(t)+\left[\mathrm{K}_{p}\right]_{\mathrm{q}_{r}} \mathrm{e}_{r}(t)+\left[K_{v}\right]_{\mathrm{q}_{r}} \dot{\mathrm{e}}_{r}(t)=0
$$

- For appropriate controller gains $\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}, \mathbf{e}_{r}(t), \dot{e}_{r}(t) \rightarrow 0$ asymptotically and desired trajectory can be followed.

Model-based Control for Trajectory Following

- Similar to rigid manipulators, substitute $[\alpha]$ and β to get an unit inertia plant with new input $\tau_{\mathbf{q}_{r}}^{\prime}$

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r}
$$

- Choose $\tau_{\mathbf{q}_{r}}^{\prime}$ as

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
$$

- For $\mathbf{e}(t)=\mathbf{q}_{r_{d}}-\mathbf{q}_{r}$ and $\mathbf{q}_{r_{d}}(t)$ as the desired joint trajectory, the error equation becomes

$$
\ddot{\mathbf{e}}_{r}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}_{r}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}_{r}(t)=\mathbf{0}
$$

- For appropriate controller gains $\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}, \mathbf{e}_{r}(t), \dot{\mathbf{e}}_{r}(t) \rightarrow 0$ asymptotically and desired trajectory can be followed.

Model-based Control for Trajectory Following

- Similar to rigid manipulators, substitute $[\alpha]$ and β to get an unit inertia plant with new input $\tau_{\mathbf{q}_{r}}^{\prime}$

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r}
$$

- Choose $\tau_{\mathbf{q}_{r}}^{\prime}$ as

$$
\tau_{\mathbf{q}_{r}}^{\prime}=\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
$$

- For $\mathbf{e}(t)=\mathbf{q}_{r_{d}}-\mathbf{q}_{r}$ and $\mathbf{q}_{r_{d}}(t)$ as the desired joint trajectory, the error equation becomes

$$
\ddot{\mathbf{e}}_{r}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}_{r}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}_{r}(t)=\mathbf{0}
$$

- For appropriate controller gains $\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}, \mathbf{e}_{r}(t), \dot{\mathbf{e}}_{r}(t) \rightarrow 0$ asymptotically and desired trajectory can be followed.

Model-based Control for Trajectory
 Following

Stability Analysis

- The closed-loop system equations for the model-based controller are

$$
\begin{aligned}
& \ddot{\mathbf{q}}_{r}(t)=\tau_{\mathbf{q}_{r}}^{\prime} \\
& {\left[\mathbf{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathbf{K}] \mathbf{q}_{f}=-\left[\mathbf{M}_{r f}\right] \tau_{\mathbf{q}_{r}}^{\prime}}
\end{aligned}
$$

- Smooth tracking of $\mathrm{q}_{r_{d}}(t)$ as long as flexible variables q_{f} are stable.
- The flexible variables \mathbf{q}_{f} are coupled to control input $\tau^{\prime}{ }_{\mathbf{q}_{r}}$ through the matrix [$\mathrm{M}_{r f}$]
- The stability of q_{f} are determined by the zero dynamics ${ }^{3}$.

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathrm{M}_{f f}\right]^{-1}\left(\mathrm{C}_{f}+\mathrm{G}_{f}+[\mathrm{K}] \mathbf{q}_{f}\right)
$$

where all terms are evaluated for a constant q_{r}^{*} and $\dot{\mathrm{q}}_{r}=0$.

[^4]
Model-based Control for Trajectory Following

Stability Analysis

- The closed-loop system equations for the model-based controller are

$$
\begin{aligned}
& \ddot{\mathbf{q}}_{r}(t)=\tau_{\mathbf{q}_{r}}^{\prime} \\
& {\left[\mathbf{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathbf{K}] \mathbf{q}_{f}=-\left[\mathbf{M}_{r f}\right] \tau_{\mathbf{q}_{r}}^{\prime}}
\end{aligned}
$$

- Smooth tracking of $\mathbf{q}_{r_{d}}(t)$ as long as flexible variables \mathbf{q}_{f} are stable.
- The flexible variables \mathbf{q}_{f} are coupled to control input $\tau^{\prime}{ }_{\mathbf{q}_{r}}$ through the matrix [$\mathrm{M}_{r f}$].
- The stability of q_{f} are determined by the zero dynamics ${ }^{3}$

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
$$

where all terms are evaluated for a constant q_{r}^{*} and $\dot{\mathrm{q}}_{r}=0$.

[^5] constant (Isidori 1989)

Model-based Control for Trajectory Following

Stability Analysis

- The closed-loop system equations for the model-based controller are

$$
\begin{aligned}
& \ddot{\mathbf{q}}_{r}(t)=\tau_{\mathbf{q}_{r}}^{\prime} \\
& {\left[\mathbf{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathbf{K}] \mathbf{q}_{f}=-\left[\mathbf{M}_{r f}\right] \tau_{\mathbf{q}_{r}}^{\prime}}
\end{aligned}
$$

- Smooth tracking of $\mathbf{q}_{r_{d}}(t)$ as long as flexible variables \mathbf{q}_{f} are stable.
- The flexible variables \mathbf{q}_{f} are coupled to control input $\tau_{\mathbf{q}_{r}}^{\prime}$ through the matrix [$\mathrm{M}_{r f}$].
- The stability of q_{f} are determined by the zero dynamics ${ }^{3}$

[^6]
Model-based Control for Trajectory

Following

Stability Analysis

- The closed-loop system equations for the model-based controller are

$$
\begin{aligned}
& \ddot{\mathbf{q}}_{r}(t)=\tau_{\mathbf{q}_{r}}^{\prime} \\
& {\left[\mathbf{M}_{f f}\right] \ddot{\mathbf{q}}_{f}+\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{G}_{f}(\mathbf{q})+[\mathbf{K}] \mathbf{q}_{f}=-\left[\mathbf{M}_{r f}\right] \tau_{\mathbf{q}_{r}}^{\prime}}
\end{aligned}
$$

- Smooth tracking of $\mathbf{q}_{r_{d}}(t)$ as long as flexible variables \mathbf{q}_{f} are stable.
- The flexible variables \mathbf{q}_{f} are coupled to control input $\tau_{\mathbf{q}_{r}}^{\prime}$ through the matrix [$\mathrm{M}_{r f}$].
- The stability of \mathbf{q}_{f} are determined by the zero dynamics ${ }^{3}$.

$$
\ddot{\mathbf{q}}_{f}=-\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right)
$$

where all terms are evaluated for a constant \mathbf{q}_{r}^{*} and $\dot{\mathbf{q}}_{r}=\mathbf{0}$.

[^7]
Model-based Control for Trajectory

 FollowingStability Analysis (Contd.)

- Equilibrium points: $\dot{\mathbf{q}}_{f}=\mathbf{0}$ and a static deflection \mathbf{q}_{f}^{*} which satisfies

$$
[\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)=\mathbf{0}
$$

- Candidate Lyapunov function

V_{G} denotes the gravitational potential energy yielding \mathbf{G}_{f}
- The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{M}_{f f}\right]-2\left[\mathrm{C}_{f f}\right]\right]$, is

$$
\dot{V}=\frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left(\left[\dot{\mathbf{M}}_{f f}\right]-2\left[\mathbf{C}_{f f}\right]\right) \dot{\mathbf{q}}_{f}-\dot{\mathbf{q}}_{f}^{T}\left([\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)=0
$$

- Critically stable \rightarrow With damping asymptotically stable

Model-based Control for Trajectory
 Following

Stability Analysis (Contd.)

- Equilibrium points: $\dot{\mathbf{q}}_{f}=\mathbf{0}$ and a static deflection \mathbf{q}_{f}^{*} which satisfies

$$
[\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)=\mathbf{0}
$$

- Candidate Lyapunov function

$$
\begin{aligned}
V\left(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}\right)= & \frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left[\mathbf{M}_{f f}\right] \dot{\mathbf{q}}_{f}+\frac{1}{2}\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T}[\mathbf{K}]\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right) \\
& +\left(V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}\right)-V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)+\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T} \mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)
\end{aligned}
$$

V_{G} denotes the gravitational potential energy yielding \mathbf{G}_{f}.

- The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{\mathrm{M}}_{f f}\right]-2\left[\mathrm{C}_{f f}\right]\right]$, is

$$
\dot{V}=\frac{1}{2} \dot{\mathrm{q}}_{f}^{T}\left(\left[\dot{\mathrm{M}}_{f f}\right]-2\left[\mathrm{C}_{f f}\right]\right) \dot{\mathrm{q}}_{f}-\dot{\mathrm{q}}_{f}^{T}\left([\mathrm{~K}] \mathrm{q}_{f}^{*}+\mathrm{G}_{f}\left(\mathrm{q}_{r}^{*}, \mathrm{q}_{f}^{*}\right)\right)=0
$$

- Critically stable \rightarrow With damping asymptotically stable

Model-based Control for Trajectory

Following

Stability Analysis (Contd.)

- Equilibrium points: $\dot{\mathbf{q}}_{f}=\mathbf{0}$ and a static deflection \mathbf{q}_{f}^{*} which satisfies

$$
[\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)=\mathbf{0}
$$

- Candidate Lyapunov function

$$
\begin{aligned}
V\left(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}\right)= & \frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left[\mathbf{M}_{f f}\right] \dot{\mathbf{q}}_{f}+\frac{1}{2}\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T}[\mathbf{K}]\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right) \\
& +\left(V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}\right)-V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)+\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T} \mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)
\end{aligned}
$$

V_{G} denotes the gravitational potential energy yielding \mathbf{G}_{f}.

- The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{\mathbf{M}}_{f f}\right]-2\left[\mathbf{C}_{f f}\right]\right]$, is

$$
\dot{V}=\frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left(\left[\dot{\mathbf{M}}_{f f}\right]-2\left[\mathbf{C}_{f f}\right]\right) \dot{\mathbf{q}}_{f}-\dot{\mathbf{q}}_{f}^{T}\left([\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)=0
$$

Model-based Control for Trajectory

Following

Stability Analysis (Contd.)

- Equilibrium points: $\dot{\mathbf{q}}_{f}=\mathbf{0}$ and a static deflection \mathbf{q}_{f}^{*} which satisfies

$$
[\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)=\mathbf{0}
$$

- Candidate Lyapunov function

$$
\begin{aligned}
V\left(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}\right)= & \frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left[\mathbf{M}_{f f}\right] \dot{\mathbf{q}}_{f}+\frac{1}{2}\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T}[\mathbf{K}]\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right) \\
& +\left(V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}\right)-V_{G}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)+\left(\mathbf{q}_{f}^{*}-\mathbf{q}_{f}\right)^{T} \mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)
\end{aligned}
$$

V_{G} denotes the gravitational potential energy yielding \mathbf{G}_{f}.

- The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{\mathbf{M}}_{f f}\right]-2\left[\mathbf{C}_{f f}\right]\right]$, is

$$
\dot{V}=\frac{1}{2} \dot{\mathbf{q}}_{f}^{T}\left(\left[\dot{\mathbf{M}}_{f f}\right]-2\left[\mathbf{C}_{f f}\right]\right) \dot{\mathbf{q}}_{f}-\dot{\mathbf{q}}_{f}^{T}\left([\mathbf{K}] \mathbf{q}_{f}^{*}+\mathbf{G}_{f}\left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}\right)\right)=0
$$

- Critically stable \rightarrow With damping asymptotically stable.

End Position Vibration Control

- Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion - Jacobian matrix (similar to rigid case).
- Full Jacobian contain joint rotation variables q_{r} and flexible variable \mathbf{q}_{f} - Difficult to measure all components of \mathbf{q}_{f}.
- Control law using Jacobian derived from desired rigid variables - same as the rigid Jacobian matrix - always exist.

$$
\left[J_{\mathbf{q}_{r}}^{r}\left(\mathbf{q}_{r_{d}}\right)\right]=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}}, \mathbf{q}_{f}=0}
$$

$\mathscr{X}=\mathbf{f}\left(\mathbf{q}_{r}, \mathbf{q}_{f}\right)$ represents the kinematic equations of the flexible manipulator.

End Position Vibration Control

- Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion - Jacobian matrix (similar to rigid case)
- Full Jacobian contain joint rotation variables q_{r} and flexible variable q_{f} - Difficult to measure all components of q_{f}
- Control law using Jacobian derived from desired rigid variables - same as the rigid Jacobian matrix - always exist.

$$
\left[J_{\mathbf{q}_{r}}^{r}\left(\mathbf{q}_{r_{d}}\right)\right]=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}}, \mathbf{q}_{f}=0}
$$

[^8]
End Position Vibration Control

- Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion - Jacobian matrix (similar to rigid case).
- Full Jacobian contain joint rotation variables q_{r} and flexible variable \mathbf{q}_{f} - Difficult to measure all components of \mathbf{q}_{f}
- Control law using Jacobian derived from desired rigid variables - same as the rigid Jacobian matrix - always exist.

$\mathbf{q}_{\mathrm{r}}=\mathbf{q}_{r_{d}}, \mathbf{q}_{f}=\mathbf{0}$
$\mathscr{X}=f\left(q_{r}, q_{f}\right)$ represents the kinematic equations of the flexible manipulator

End Position Vibration Control

- Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion - Jacobian matrix (similar to rigid case).
- Full Jacobian contain joint rotation variables \mathbf{q}_{r} and flexible variable \mathbf{q}_{f} - Difficult to measure all components of \mathbf{q}_{f}.
- Control law using Jacobian derived from desired rigid variables - same as the rigid Jacobian matrix - always exist.

$\mathbf{q}_{r}=\mathbf{q}_{r_{d}}, \mathbf{q}_{f}=\mathbf{0}$
$\mathscr{A}=f\left(q_{r}, q_{f}\right)$ represents the kinematic equations of the flexible manipulator.

End Position Vibration Control

- Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion - Jacobian matrix (similar to rigid case).
- Full Jacobian contain joint rotation variables \mathbf{q}_{r} and flexible variable \mathbf{q}_{f} - Difficult to measure all components of \mathbf{q}_{f}.
- Control law using Jacobian derived from desired rigid variables - same as the rigid Jacobian matrix - always exist.

$$
\left[J^{r} \mathbf{q}_{r}\left(\mathbf{q}_{r_{d}}\right)\right]=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}}, \mathbf{q}_{f}=\mathbf{0}}
$$

$\mathscr{X}=\mathbf{f}\left(\mathbf{q}_{r}, \mathbf{q}_{f}\right)$ represents the kinematic equations of the flexible manipulator.

End Position Vibration Control

- A controller using the rigid Jacobian

$$
\tau_{\mathscr{X}}=\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left(-\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}-\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)+\mathbf{G}_{r}\left(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}}\right)
$$

- \mathscr{X} represents position and orientation of the end-effector \& $\delta \mathscr{X}=\mathscr{X}-\mathscr{X}_{d}{ }^{4}$.
- Gain matrices $\left[K_{p}\right]_{\mathscr{X}}$ and $\left[K_{v}\right]_{\mathscr{X}}$ are constant diagonal matrices.
- $\mathbf{q}_{r_{d}}$ is the final point of the desired joint trajectory and $\mathbf{q}_{f_{d}}$ is obtained from the static deflection under gravity

$$
\mathbf{q}_{f_{d}}=-[\mathbf{K}]^{-1} \mathbf{G}_{f}\left(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}}\right)
$$

- $\mathscr{X}-\mathscr{X}_{d}$ is due to flexible vibrations and is expected to be small.
- Control torque $\tau_{\mathscr{X}}$ at joint although $\mathscr{X}-\mathscr{X}_{d}$ is a Cartesian error vector - Similar to Cartesian control of rigid robots, Jacobian $\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}$ relates Cartesian force/moments to joint torques (see Module 7, Lecture 4).

[^9]
End Position Vibration Control

Stability Analysis

- Equilibrium points under end-position control: $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$.
- Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$
\lambda_{\min }([\mathrm{K}])>c, \quad \lambda_{\min }\left(\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left[K_{p}\right]_{\mathscr{X}}\right)>c
$$

- Physically: The manipulator can be placed at an $\operatorname{arbitrary} \mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathrm{q}}=\mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function
$V=\frac{1}{2} \dot{q}^{\top}[M(\mathrm{q})] \dot{\mathrm{q}}+\frac{1}{2}\left(\mathrm{q}_{f_{d}}-\mathrm{q}_{f}\right)^{\top}[\mathrm{K}]\left(\mathrm{q}_{f_{d}}-\mathrm{q}_{f}\right)$

V_{G} denotes the gravitational potential energy giving rise to $\mathrm{G}(\mathrm{q})$

End Position Vibration Control

Stability Analysis

- Equilibrium points under end-position control: $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$.
- Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$
\lambda_{\min }([\mathrm{K}])>c, \quad \lambda_{\min }\left(\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left[K_{p}\right]_{\mathscr{X}}\right)>c
$$

- Physically: The manipulator can be placed at an arbitrary $\mathrm{q}=\mathrm{q}_{d}$ and $\dot{\mathrm{q}}=0$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

End Position Vibration Control

Stability AnALYSIS

- Equilibrium points under end-position control: $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$.
- Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$
\lambda_{\min }([\mathrm{K}])>c, \quad \lambda_{\min }\left(\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left[K_{p}\right]_{\mathscr{X}}\right)>c
$$

- Physically: The manipulator can be placed at an arbitrary $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function
V_{G} denotes the gravitational potential energy giving rise to $\mathrm{G}(\mathrm{q})$

End Position Vibration Control

Stability AnALYSIS

- Equilibrium points under end-position control: $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$.
- Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$
\lambda_{\min }([\mathrm{K}])>c, \quad \lambda_{\min }\left(\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left[K_{p}\right]_{\mathscr{X}}\right)>c
$$

- Physically: The manipulator can be placed at an arbitrary $\mathbf{q}=\mathbf{q}_{d}$ and $\dot{\mathbf{q}}=\mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

$$
\begin{aligned}
V= & \frac{1}{2} \dot{\mathbf{q}}^{T}[\mathbf{M}(\mathbf{q})] \dot{\mathbf{q}}+\frac{1}{2}\left(\mathbf{q}_{f_{d}}-\mathbf{q}_{f}\right)^{T}[\mathbf{K}]\left(\mathbf{q}_{f_{d}}-\mathbf{q}_{f}\right) \\
& +\left(V_{G}(\mathbf{q})-V_{G}\left(\mathbf{q}_{d}\right)\right)+\left(\mathbf{q}_{d}-\mathbf{q}\right)^{T} \mathbf{G}\left(\mathbf{q}_{d}\right)+\frac{1}{2} \delta \mathscr{X}^{T}\left[K_{p}\right] \mathscr{X} \boldsymbol{\delta} \mathscr{X}
\end{aligned}
$$

V_{G} denotes the gravitational potential energy giving rise to $\mathbf{G}(\mathbf{q})$.

End Position Vibration Control

Stability Analysis (Contd.)

- Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$
\dot{V}=-\dot{X}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}+\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \delta \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\right.
$$

- \dot{V} is strictly negative if

- $\left[K_{v}\right]_{\mathscr{X}}$ satisfies inequality if minimum eigenvalue of $\left[K_{v}\right]_{\mathscr{X}}, \lambda_{v}$, satisfy

where $\left\|\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r}\right] \dot{\mathbf{q}}_{r}\right)\right\|=\gamma,\|\delta \mathscr{X}\|=\alpha,\|\dot{\mathscr{X}}\|=\beta$, $\lambda_{\text {min }}\left(\left[K_{p}\right]_{\mathscr{X}}\right)=\lambda_{p}$, at the end of the trajectory following phase.
- Note: Link vibration are not zero at the end of the trajectory following

End Position Vibration Control

Stability Analysis (Contd.)

- Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$
\dot{V}=-\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}+\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\right.
$$

- \dot{V} is strictly negative if

$$
\mid\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\left|<\left|\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right|\right.\right.
$$

End Position Vibration Control

Stability Analysis (Contd.)

- Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$
\dot{V}=-\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}+\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\right.
$$

- \dot{V} is strictly negative if

$$
\left|\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r}\right] \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\right|<\left|\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right|
$$

- $\left[K_{v}\right]_{\mathscr{X}}$ satisfies inequality if minimum eigenvalue of $\left[K_{v}\right]_{\mathscr{X}}, \lambda_{v}$, satisfy

$$
\lambda_{v}>\frac{\gamma \lambda_{p} \alpha}{\beta(\beta-\gamma)}
$$

where $\left\|\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r}\right] \dot{\mathbf{q}}_{r}\right)\right\|=\gamma,\|\delta \mathscr{X}\|=\alpha,\|\dot{\mathscr{X}}\|=\beta$, $\lambda_{\text {min }}\left(\left[K_{p}\right]_{\mathscr{X}}\right)=\lambda_{p}$, at the end of the trajectory following phase.

End Position Vibration Control

Stability Analysis (Contd.)

- Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$
\dot{V}=-\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}+\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\right.
$$

- \dot{V} is strictly negative if

$$
\mid\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r} \dot{\mathbf{q}}_{r}\right)^{T}\left(\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}+\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)\left|<\left|\dot{\mathscr{X}}^{T}\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right|\right.\right.
$$

- $\left[K_{v}\right]_{\mathscr{X}}$ satisfies inequality if minimum eigenvalue of $\left[K_{v}\right]_{\mathscr{X}}, \lambda_{v}$, satisfy

$$
\lambda_{v}>\frac{\gamma \lambda_{p} \alpha}{\beta(\beta-\gamma)}
$$

where $\left\|\left(\dot{\mathscr{X}}-\left[J_{\mathbf{q}_{r}}^{r}\right] \dot{\mathbf{q}}_{r}\right)\right\|=\gamma,\|\delta \mathscr{X}\|=\alpha,\|\dot{\mathscr{X}}\|=\beta$, $\lambda_{\text {min }}\left(\left[K_{p}\right]_{\mathscr{X}}\right)=\lambda_{p}$, at the end of the trajectory following phase.

- Note: Link vibration are not zero at the end of the trajectory following phase $\Rightarrow \beta \neq 0$.

Two-stage Control Algorithm

- Model based control law

$$
\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta
$$

with

$$
\begin{aligned}
{[\alpha] } & =\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \\
\beta & =\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\tau_{\mathbf{q}_{r}}^{\prime} & =\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
\end{aligned}
$$

provide asymptotic trajectory following for \mathbf{q}_{r}.

- End-effector vibrations induced can be damped out by

- Two-stage controller

$$
\tau=([U]-[\mathrm{S}]) \tau_{\mathrm{q}_{r}}+[\mathrm{S}] \tau_{\nu}
$$

$[S]=\left\{\begin{array}{l}{[0]} \\ {[U]}\end{array}\right.$

Two-stage Control Algorithm

- Model based control law

$$
\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta
$$

with

$$
\begin{aligned}
{[\alpha] } & =\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \\
\beta & =\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\tau_{\mathbf{q}_{r}}^{\prime} & =\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
\end{aligned}
$$

provide asymptotic trajectory following for \mathbf{q}_{r}.

- End-effector vibrations induced can be damped out by

$$
\tau_{\mathscr{X}}=\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left(-\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}-\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)+\mathbf{G}_{r}\left(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}}\right)
$$

- Two-stage controller

$$
\tau=([U]-[\mathbf{S}]) \tau_{\mathbf{q}_{r}}+[\mathbf{S}] \tau_{\mathscr{X}}
$$

Two-stage Control Algorithm

- Model based control law

$$
\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta
$$

with

$$
\begin{aligned}
{[\alpha] } & =\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \\
\beta & =\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\tau_{\mathbf{q}_{r}}^{\prime} & =\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
\end{aligned}
$$

provide asymptotic trajectory following for \mathbf{q}_{r}.

- End-effector vibrations induced can be damped out by

$$
\tau_{\mathscr{X}}=\left[J_{\mathbf{q}_{r}}^{r}\right]^{T}\left(-\left[K_{p}\right]_{\mathscr{X}} \boldsymbol{\delta} \mathscr{X}-\left[K_{v}\right]_{\mathscr{X}} \dot{\mathscr{X}}\right)+\mathbf{G}_{r}\left(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}}\right)
$$

- Two-stage controller

$$
\tau=([U]-[\mathbf{S}]) \tau_{\mathbf{q}_{r}}+[\mathbf{S}] \tau_{\mathscr{X}}
$$

$[\mathbf{S}]= \begin{cases}{[0]} & \text { null matrix during joint trajectory tracking stage } \\ {[U]} & \text { identity matrix during end position vibration control }\end{cases}$

Two-stage Control Algorithm

Figure 16: Two-stage controller for flexible link manipulators - $[\alpha], \beta$ are model-based terms

Robustness of Trajectory Following Controller

- Uncertainty in stiffness matrix $[\mathrm{K}]$ \& in mass matrix $[\mathrm{M}(\mathbf{q})]$.
- Considered together as uncertainty in structural natural frequencies

$$
\omega_{i}^{2}=\lambda_{i}([\Omega])=\lambda_{i}\left(\left[\mathbf{M}_{f f}\right]^{-1}[\mathbf{K}]\right), \quad i=1,2, \ldots, N
$$

$\lambda_{i}(\cdot)$ denotes the i th eigenvalue.

- AMM and FEM (or any discretisation method) always overestimates stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is more than actual stiffness!
- Model (estimated) natural frequencies larger than actual natural frequencies.

Robustness of Trajectory Following Controller

- Uncertainty in stiffness matrix $[K] \&$ in mass matrix $[M(q)]$.
- Considered together as uncertainty in structural natural frequencies

$$
\omega_{i}^{2}=\lambda_{i}([\Omega])=\lambda_{i}\left(\left[\mathrm{M}_{f f}\right]^{-1}[\mathrm{~K}]\right), \quad i=1,2, \ldots, N
$$

$\lambda_{i}(\cdot)$ denotes the i th eigenvalue.

- AMM and FEM (or any discretisation method) always overestimates stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is more than actual stiffness!
- Model (estimated) natural frequencies larger than actual natural frequencies.

Robustness of Trajectory Following Controller

- Uncertainty in stiffness matrix $[K] \&$ in mass matrix $[M(q)]$.
- Considered together as uncertainty in structural natural frequencies

$$
\omega_{i}^{2}=\lambda_{i}([\Omega])=\lambda_{i}\left(\left[\mathrm{M}_{f f}\right]^{-1}[\mathrm{~K}]\right), \quad i=1,2, \ldots, N
$$

$\lambda_{i}(\cdot)$ denotes the i th eigenvalue.

- AMM and FEM (or any discretisation method) always overestimates stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is more than actual stiffness!
- Model (estimated) natural frequencies larger than actual natural frequencies.

Robustness of Trajectory Following Controller

- Uncertainty in stiffness matrix $[\mathrm{K}]$ \& in mass matrix $[\mathrm{M}(\mathbf{q})]$.
- Considered together as uncertainty in structural natural frequencies

$$
\omega_{i}^{2}=\lambda_{i}([\Omega])=\lambda_{i}\left(\left[\mathrm{M}_{f f}\right]^{-1}[\mathrm{~K}]\right), \quad i=1,2, \ldots, N
$$

$\lambda_{i}(\cdot)$ denotes the i th eigenvalue.

- AMM and FEM (or any discretisation method) always overestimates stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is more than actual stiffness!
- Model (estimated) natural frequencies larger than actual natural frequencies.

Robustness of Trajectory Following Controller

- Uncertainty in stiffness matrix $[K] \&$ in mass matrix $[M(q)]$.
- Considered together as uncertainty in structural natural frequencies

$$
\omega_{i}^{2}=\lambda_{i}([\Omega])=\lambda_{i}\left(\left[\mathrm{M}_{f f}\right]^{-1}[\mathrm{~K}]\right), \quad i=1,2, \ldots, N
$$

$\lambda_{i}(\cdot)$ denotes the i th eigenvalue.

- AMM and FEM (or any discretisation method) always overestimates stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is more than actual stiffness!
- Model (estimated) natural frequencies larger than actual natural frequencies.

Robustness of Trajectory Following
 Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- Rewrite trajectory following control law as

$$
\begin{aligned}
\tau_{\mathbf{q}_{r}}= & \left(\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right]\right) \tau_{\mathbf{q}_{r}}^{\prime} \\
& \left.+\left(\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left(\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}\right)+\widehat{[\Omega}\right] \mathbf{q}_{f}\right)\right)
\end{aligned}
$$

Symbol $[\widehat{\Omega}]$ denotes estimated (computed) $\left[\mathrm{M}_{f f}\right]^{-1}[\mathrm{~K}]$.

-

\square
Flexible variables \boldsymbol{a}_{f} are governed by

where $[\mathscr{M}]=\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1}\left[\mathrm{M}_{r f}\right]^{T}$ and $[\Delta \Omega]=[\Omega]-[\Omega]$.

Robustness of Trajectory Following Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- Rewrite trajectory following control law as

$$
\begin{aligned}
\tau_{\mathbf{q}_{r}}= & \left(\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right]\right) \tau_{\mathbf{q}_{r}}^{\prime} \\
& \left.+\left(\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left(\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}\right)+\widehat{\Omega}\right] \mathbf{q}_{f}\right)\right)
\end{aligned}
$$

Symbol $[\widehat{\Omega}]$ denotes estimated (computed) $\left[\mathbf{M}_{f f}\right]^{-1}[\mathbf{K}]$.

- The closed-loop error equation becomes
$\ddot{\mathbf{e}}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)=-\left(\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right]\right)^{-1}\left[\mathbf{M}_{r f}\right]^{T}$
Flexible variables \mathbf{q}_{f} are governed by

$$
\ddot{\mathbf{q}}_{f}+\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}\right)+([\Omega]-[\mathscr{M}][\Delta \Omega]) \mathbf{q}_{f}=-\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \tau_{\mathbf{q}_{r}}^{\prime}
$$

where $[\mathscr{M}]=\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\left(\left[\mathrm{M}_{r r}\right]-\left[\mathrm{M}_{r f}\right]^{T}\left[\mathrm{M}_{f f}\right]^{-1}\left[\mathrm{M}_{r f}\right]\right)^{-1}\left[\mathrm{M}_{r f}\right]^{T}$ and $[\Delta \Omega]=[\widehat{\Omega}]-[\Omega]$.

Robustness of Trajectory Following Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For \mathbf{q}_{f} to be stable, the closed-loop frequency matrix ($[\Omega]-[\mathscr{M}] \Delta[\Omega]$) must be positive definite (Inman 1989).
- Intuitive justification:
- Spring-mass-damper system $\ddot{x}+\omega^{2} x=u(t)-\omega^{2}<0 \rightarrow x(t) \rightarrow \infty$. - $([\Omega]-[\mathscr{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator - positive definite for $\mathbf{q}_{f}(t)$ to be bounded.
- $\Delta \Omega]<0 \rightarrow$ Closed-loon frequency matrix is positive definite and q_{f} will be stable.
- $[\Delta \Omega]>0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_{f} may be unstable.
- Bounds on uncertainty in natural frequency for stable q_{f} can be derived (see Theodore (1995), Theodore and Ghosal $(1995,2003)$)

Robustness of Trajectory Following CONTROLLER

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For \mathbf{q}_{f} to be stable, the closed-loop frequency matrix ($[\Omega]-[\mathscr{M}] \Delta[\Omega]$) must be positive definite (Inman 1989).
- Intuitive justification:
- Spring-mass-damper system $\ddot{x}+\omega^{2} x=u(t)-\omega^{2}<0 \rightarrow x(t) \rightarrow \infty$.
- ($[\Omega]-[\mathscr{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator - positive definite for $\mathbf{q}_{f}(t)$ to be bounded.
- $[\Delta \Omega]<0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_{f} will be stable.
- $[\Delta \Omega]>0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and q_{f} may be unstable.
- Bounds on uncertainty in natural frequency for stable \mathbf{q}_{f} can be derived (see Theodore (1995), Theodore and Ghosal $(1995,2003)$)

Robustness of Trajectory Following Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For \mathbf{q}_{f} to be stable, the closed-loop frequency matrix ($[\Omega]-[\mathscr{M}] \Delta[\Omega]$) must be positive definite (Inman 1989).
- Intuitive justification:
- Spring-mass-damper system $\ddot{x}+\omega^{2} x=u(t)-\omega^{2}<0 \rightarrow x(t) \rightarrow \infty$.
- ($[\Omega]-[\mathscr{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator - positive definite for $\mathbf{q}_{f}(t)$ to be bounded.
- $[\Delta \Omega]<0 \rightarrow$ Closed-loop frequency matrix is positive definite and \mathbf{q}_{f} will be stable.
- $[\Delta \Omega]>0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_{f} may be unstable.
- Bounds on uncertainty in natural frequency for stable q_{f} can be derived (see Theodore (1995), Theodore and Ghosal $(1995,2003)$)

Robustness of Trajectory Following Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For \mathbf{q}_{f} to be stable, the closed-loop frequency matrix ($[\Omega]-[\mathscr{M}] \Delta[\Omega]$) must be positive definite (Inman 1989).
- Intuitive justification:
- Spring-mass-damper system $\ddot{x}+\omega^{2} x=u(t)-\omega^{2}<0 \rightarrow x(t) \rightarrow \infty$.
- ($[\Omega]-[\mathscr{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator - positive definite for $\mathbf{q}_{f}(t)$ to be bounded.
- $[\Delta \Omega]<0 \rightarrow$ Closed-loop frequency matrix is positive definite and \mathbf{q}_{f} will be stable.
- $[\Delta \Omega]>0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_{f} may be unstable.
- Bounds on uncertainty in natural frequency for stable q_{f} can be derived (see Theodore (1995), Theodore and Ghosal $(1995,2003)$

Robustness of Trajectory Following Controller

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For \mathbf{q}_{f} to be stable, the closed-loop frequency matrix ($[\Omega]-[\mathscr{M}] \Delta[\Omega]$) must be positive definite (Inman 1989).
- Intuitive justification:
- Spring-mass-damper system $\ddot{x}+\omega^{2} x=u(t)-\omega^{2}<0 \rightarrow x(t) \rightarrow \infty$.
- ($[\Omega]-[\mathscr{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator - positive definite for $\mathbf{q}_{f}(t)$ to be bounded.
- $[\Delta \Omega]<0 \rightarrow$ Closed-loop frequency matrix is positive definite and \mathbf{q}_{f} will be stable.
- $[\Delta \Omega]>0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_{f} may be unstable.
- Bounds on uncertainty in natural frequency for stable \mathbf{q}_{f} can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

Numerical Simulation of a Flexible Link Manipulator

- Three DOF manipulator with two flexible links - Parameters.

Physical system parameters	Value
mass of link 1 $\left(m_{1}\right)$	3.66 kg
linear mass density of link $2\left(\rho_{2} A_{2}\right)$	$0.331 \mathrm{kgm}^{-1}$
linear mass density of link $3\left(\rho_{3} A_{3}\right)$	$0.331 \mathrm{~kg} \mathrm{~m}^{-1}$
mass of payload $\left(m_{p}\right)$	0.1 kg
length of link 1	0.12 m
length of link 2	1.0 m
length of link 3	1.0 m
rotary inertia of joint $1\left(I_{\text {joint }_{1}}\right)$	$0.4 \mathrm{~kg} \mathrm{~m}^{2}$
rotary inertia of joint $2\left(l_{\text {joint }_{2}}\right)$	$3.275 \mathrm{kgm}^{2}$
rotary inertia of joint $3\left(l_{\text {joint }}\right)$	$3.275 \mathrm{kgm}^{2}$
flexural rigidity of link $2\left((E l)_{2}\right)$	$1165.4916 \mathrm{Nm}^{2}$
flexural rigidity of link $3\left((E l)_{3}\right)$	$1165.4916 \mathrm{Nm}^{2}$

Numerical Simulation of a Flexible Link

 MANIPULATOR

Figure 17: Schematic of a 3R flexible manipulator

Numerical Simulation of a Flexible Link Manipulator

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end - represents a right-circular helix of radius 25 cm , pitch 2.5 cm , and 3π rotations about the helix axis.
- After 1.0 seconds, $\mathscr{X}_{d}=0$ is chosen to be zero \& 1.0 seconds to damp vibrations.
- Controller gains:

- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

Numerical Simulation of a Flexible Link Manipulator

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end - represents a right-circular helix of radius 25 cm , pitch 2.5 cm , and 3π rotations about the helix axis.
- Total time is 1.0 seconds - chosen 'fast' to excite vibrations!
- After 1.0 seconds,

damp vibrations.
- Controller gains:

- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

Numerical Simulation of a Flexible Link Manipulator

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end - represents a right-circular helix of radius 25 cm , pitch 2.5 cm , and 3π rotations about the helix axis.
- Total time is 1.0 seconds - chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}}_{d}=0$ is chosen to be zero \& 1.0 seconds to damp vibrations.
- Controller gains:

- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

Numerical Simulation of a Flexible Link MAnipulator

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end - represents a right-circular helix of radius 25 cm , pitch 2.5 cm , and 3π rotations about the helix axis.
- Total time is 1.0 seconds - chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{X}_{d}=0$ is chosen to be zero \& 1.0 seconds to damp vibrations.
- Controller gains:
- I-stage $-\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
- Il-stage $-\left[K_{p}\right]_{\mathscr{X}}$ and $\left[K_{v}\right]_{\mathscr{X}}$ are chosen as diagonal matrices with elements $\{100.0,100.0,400.0\}$ and $\{40.0,40.0,80.0\}$, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

Numerical Simulation of a Flexible Link MANIPULATOR

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end - represents a right-circular helix of radius 25 cm , pitch 2.5 cm , and 3π rotations about the helix axis.
- Total time is 1.0 seconds - chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}}_{d}=0$ is chosen to be zero \& 1.0 seconds to damp vibrations.
- Controller gains:
- I-stage $-\left[K_{p}\right]_{\mathbf{q}_{r}}$ and $\left[K_{v}\right]_{\mathbf{q}_{r}}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
- Il-stage $-\left[K_{p}\right]_{\mathscr{X}}$ and $\left[K_{v}\right]_{\mathscr{X}}$ are chosen as diagonal matrices with elements $\{100.0,100.0,400.0\}$ and $\{40.0,40.0,80.0\}$, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

Numerical Simulation of a Flexible Link

Manipulator

Figure 18: Desired trajectories $\left(-: q_{r_{1}}^{d}\left(\dot{q}_{r_{1}}^{d}\right), \cdots: q_{r_{2}}^{d}\left(\dot{q}_{r_{2}}^{d}\right), \cdots: q_{r_{3}}^{d}\left(\dot{q}_{r_{3}}^{d}\right)\right)$

Numerical Simulation of a Flexible Link Manipulator

- Two simulation result cases:

CASE 1: Two-stage control algorithm with no uncertainties in model parameters $-\tau_{\mathbf{q}_{r}}=[\alpha] \tau_{\mathbf{q}_{r}}^{\prime}+\beta$ and

$$
\begin{aligned}
{[\alpha] } & =\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right] \\
\beta & =\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}+[\mathbf{K}] \mathbf{q}_{f}\right) \\
\tau_{\mathbf{q}_{r}}^{\prime} & =\ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t)
\end{aligned}
$$

CASE 2: Two-stage control algorithm with uncertainty in model parameters

$$
\begin{aligned}
\tau_{\mathbf{q}_{r}}= & \left(\left[\mathbf{M}_{r r}\right]-\left[\mathbf{M}_{r f}\right]^{T}\left[\mathbf{M}_{f f}\right]^{-1}\left[\mathbf{M}_{r f}\right]\right) \tau_{\mathbf{q}_{r}}^{\prime} \\
& \left.+\left(\mathbf{C}_{r}+\mathbf{G}_{r}-\left[\mathbf{M}_{r f}\right]^{T}\left(\left[\mathbf{M}_{f f}\right]^{-1}\left(\mathbf{C}_{f}+\mathbf{G}_{f}\right)+\widehat{\Omega}\right] \mathbf{q}_{f}\right)\right) \\
\tau_{\mathbf{q}_{r}}^{\prime}= & \ddot{\mathbf{q}}_{r_{d}}(t)+\left[K_{p}\right]_{\mathbf{q}_{r}} \mathbf{e}(t)+\left[K_{v}\right]_{\mathbf{q}_{r}} \dot{e}(t)
\end{aligned}
$$

Numerical Simulation of a Flexible Link

MANIPULATOR

Figure 19: Case 1: Time history of the joint position and velocime (sec), ${ }^{\text {tim }}$ (sip position and velocity errors for two-stage controller (joint error: - : $e_{1}\left(\dot{e}_{1}\right),---: e_{2}\left(\dot{e}_{2}\right),----: e_{3}\left(\dot{e}_{3}\right)$; tip error: - : $e_{x}\left(\dot{e}_{x}\right),---: e_{y}\left(\dot{e}_{y}\right),----: e_{z}\left(\dot{e}_{z}\right)$

Numerical Simulation of a Flexible Link

MANIPULATOR

Figure 20: Case 1: Time history time the elastic deflection variabime affec) the Y direction, at the tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z direction, at the tip of flexible link 2 , and its rate

Numerical Simulation of a Flexible Link

MANIPULATOR

 errors for two-stage controller (joint error: - : $e_{1}\left(\dot{e}_{1}\right),---: e_{2}\left(\dot{e}_{2}\right),-\cdots: e_{3}\left(\dot{e}_{3}\right)$; tip error: $-: e_{x}\left(\dot{e}_{x}\right),---: e_{y}\left(\dot{e}_{y}\right),-\cdots \cdot e_{z}\left(\dot{e}_{z}\right)$

Numerical Simulation of a Flexible Link

 MANIPULATOR

 tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z direction, at the tip of flexible link 2 , and its rate

Numerical Simulation of a Flexible Link MANIPULATOR

Summary of simulation results

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm .
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

Numerical Simulation of a Flexible Link MANIPULATOR

Summary of Simulation results

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2 and 3 cm
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003))

Numerical Simulation of a Flexible Link MANIPULATOR

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

Numerical Simulation of a Flexible Link MANIPULATOR

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controler (between 1 and 2 sec
joint and tip position errors are again driven to lower levels of
and 3 cm .
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

Numerical Simulation of a Flexible Link Manipulator

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm .
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

Numerical Simulation of a Flexible Link Manipulator

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following ($t=1 \mathrm{sec}$) are $\approx 5 \mathrm{~cm}$ - quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to $\approx 1 \mathrm{~cm}$.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ} \& \approx 30 \mathrm{~cm}$.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm .
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple $® ®$ or Mathematica $®$. .
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple \mathbb{R} or Mathematica \mathbb{R}.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in $A M M$ and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple \mathbb{R} or Mathematica \mathbb{R}.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple $®$ R or Mathematica $®$.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint - Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple $®$ R or Mathematica $®$.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple $®$ or Mathematica $®$.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple $®$ or Mathematica $®$.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_{f} flexible links and N_{j} modes or elements for each flexible link $-2 \sum_{j=1}^{n_{f}} N_{j}$ in AMM and $4 \sum_{j=1}^{n_{f}} N_{j}$ in FEM.
- Trajectory and end-position vibration control using only rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

Outline

Contents

(2) Lecture 1

- Flexible Manipulators

3 Lecture 2*

- Kinematic Modeling of Flexible Link Manipulators
© Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(5) Lecture 4
- Experiments with a Planar Two Link Flexible System
(6) Module 8 - Additional Material
- Problems, References and Suggested Reading

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration)
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration)
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Introduction

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation \& compare with experimental data.
- See details in Nagaraj et al.(1997) \& Nagaraj et al. (2003).

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as (d).
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as (d).
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as (d).
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as (d).
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

- Initially both links are folded - shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) - Stage 1 motion shown in (b).
- The second joint locks first when $\theta_{2}=0$ - shown as (c).
- Both links rotate as one in a CCW manner - Stage 2 motion shown as (d).
- At $\theta_{1}=90^{\circ}$, the first joint locks - shown as (e).
- Both links together vibrate as a cantilever - Stage 3.

Motion Stages of a Planar 2R System

(a) Folded
(b)Stage 1

Figure 23: Planar 2R system in different stages of motion

Modeling of Stage

- Potential energy from strain energy of both links and torsion springs.
- Torque due to rocker arm in the locking mechanism.
- Dynamic equations of motion obtained using Lagrangian formulation.

Modeling of Stage 1

Modeling of Locking

- Equations of motion for Stage 1 motion (see Lecture 3)
$\left(\begin{array}{cc}{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]} \\ {\left[\mathbf{M}_{r f}\right]} & {\left[\mathbf{M}_{f f}\right]}\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\left(\begin{array}{cc}{\left[\mathrm{K}_{j}\right]} & \mathbf{0} \\ 0 & {\left[\mathrm{~K}_{f}\right]}\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}$
Note: the gravity term is not present, the stiffness due to torsional springs is $\left[\mathrm{K}_{j}\right]$ and τ is due to the rocker-arm force.
- After θ_{2} rotates by π (CW direction), the joint locks $\rightarrow 2 \mathrm{R}$ system changes to 1 R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using momentum balance.
- Assumptions:
- Time duration of impact during locking is neglected.
- Generalised coordinates before and after locking is same $\rightarrow \mathrm{q}_{+}=\mathrm{q}-$ - Velocities are bounded during impact.

Modeling of Stage 1

Modeling of Locking

- Equations of motion for Stage 1 motion (see Lecture 3)

$$
\left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]^{T}} \\
{\left[\mathbf{M}_{r f}\right]} & {\left[\mathbf{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\left(\begin{array}{cc}
{\left[\mathrm{K}_{j}\right]} & \mathbf{0} \\
0 & {\left[\mathrm{~K}_{f}\right]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
$$

Note: the gravity term is not present, the stiffness due to torsional springs is $\left[\mathrm{K}_{j}\right]$ and τ is due to the rocker-arm force.

- After θ_{2} rotates by π (CW direction), the joint locks $\rightarrow 2 \mathrm{R}$ system changes to 1 R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using momentum balance.
- Assumptions:
- Time duration of impact during locking is neglected.
- Generalised coordinates before and after locking is same $\rightarrow \mathbf{q}_{+}=\mathbf{q}$ - Velocities are bounded during impact.

Modeling of Stage 1

Modeling of Locking

- Equations of motion for Stage 1 motion (see Lecture 3)

$$
\left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]} \\
{\left[\mathbf{M}_{r f}\right]} & {\left[\mathbf{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\left(\begin{array}{cc}
{\left[\mathbf{K}_{j}\right]} & \mathbf{0} \\
\mathbf{0} & {\left[\mathbf{K}_{f}\right]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
$$

Note: the gravity term is not present, the stiffness due to torsional springs is $\left[\mathrm{K}_{j}\right]$ and τ is due to the rocker-arm force.

- After θ_{2} rotates by π (CW direction), the joint locks $\rightarrow 2 \mathrm{R}$ system changes to 1 R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using momentum balance.
- Assumptions:
- Time duration of impact during locking is neglected.
- Generalised coordinates before and after locking is sam $\epsilon \mathrm{q}_{+}=\mathrm{q}_{-}$
- Velocities are bounded during impact.

Modeling of Stage 1

Modeling of Locking

- Equations of motion for Stage 1 motion (see Lecture 3)

$$
\left(\begin{array}{cc}
{\left[\mathbf{M}_{r r}\right]} & {\left[\mathbf{M}_{r f}\right]} \\
{\left[\mathbf{M}_{r f}\right]} & {\left[\mathbf{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{\mathbf{q}}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{\mathbf{C}_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathbf{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})}+\left(\begin{array}{cc}
{\left[\mathrm{K}_{j}\right]} & \mathbf{0} \\
0 & {\left[\mathbf{K}_{f}\right]}
\end{array}\right)\binom{\mathbf{q}_{r}}{\mathbf{q}_{f}}=\binom{\tau}{\mathbf{0}}
$$

Note: the gravity term is not present, the stiffness due to torsional springs is $\left[\mathrm{K}_{j}\right]$ and τ is due to the rocker-arm force.

- After θ_{2} rotates by π (CW direction), the joint locks $\rightarrow 2 \mathrm{R}$ system changes to 1 R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using momentum balance.
- Assumptions:
- Time duration of impact during locking is neglected.
- Generalised coordinates before and after locking is same $\rightarrow \mathbf{q}_{+}=\mathbf{q}_{-}$
- Velocities are bounded during impact.

Modeling of Stage 1

Modeling of Locking (Contd.)

- Momentum balance equation, with \mathbf{H} denoting generalised impulse,

$$
[\mathrm{M}(\mathbf{q})] \Delta \dot{\mathbf{q}}=\mathrm{H}
$$

- The velocity after locking is $\dot{\mathrm{q}}_{+}=\dot{\mathrm{q}}_{-}+\Delta \dot{\mathrm{q}}, \quad \dot{\theta}_{2+}=0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)
$\left(\begin{array}{ccccc}M_{r r_{11}} & M_{r f_{11}} & \cdots & M_{r f_{14}} & 0 \\ M_{r r_{21}} & M_{r f_{21}} & \cdots & M_{r f_{24}} & -1 \\ M_{r f_{11}} & M_{f f_{11}} & \cdots & M_{f f_{14}} & 0 \\ M_{r f_{14}} & M_{f f_{41}} & \cdots & M_{f f_{44}} & 0\end{array}\right)\left(\begin{array}{c}\wedge \dot{\theta}_{1} \\ \Delta \dot{q}_{11} \\ \cdots \\ \cdots \\ \cdots \\ H_{1}\end{array}\right)=\dot{\theta}_{2-}\left(\begin{array}{c}M_{r r_{12}} \\ M_{r r_{22}} \\ M_{r f_{21}} \\ \cdots \\ M_{r f_{24}}\end{array}\right)$
where H_{1} is the impulse acting on joint 2 and $M_{r f_{i j}}$ is computed assuming 2 elements in each link.
- The velocities after locking are

Modeling of Stage 1

Modeling of Locking (Contd.)

- Momentum balance equation, with \mathbf{H} denoting generalised impulse,

$$
[\mathrm{M}(\mathbf{q})] \Delta \dot{\mathbf{q}}=\mathbf{H}
$$

- The velocity after locking is $\dot{\mathbf{q}}_{+}=\dot{\mathbf{q}}_{-}+\Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+}=0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)
$\left(\begin{array}{lllll}M_{r r_{11}} & M_{r f_{11}} & \ldots & M_{r f_{14}} & 0 \\ M_{r r_{21}} & M_{r f_{21}} & \ldots & M_{r f_{24}} & -1 \\ M_{r f_{11}} & M_{f f_{11}} & \ldots & M_{f f_{14}} & 0 \\ . . & . & \ldots & . . & \ldots \\ M_{r f_{14}} & M_{f f_{41}} & \ldots & M_{f f_{44}} & 0\end{array}\right)\left(\begin{array}{l}\Delta \dot{\theta}_{1} \\ \Delta \dot{q}_{11} \\ . . \\ \cdot \\ \cdots \\ H_{1}\end{array}\right)=\dot{\theta}_{2-}\left(\begin{array}{l}M_{r r_{12}} \\ M_{r r_{22}} \\ M_{r f_{21}} \\ . . \\ \cdots \\ M_{r f_{24}}\end{array}\right)$
where H_{1} is the impulse acting on joint 2 and $M_{-f_{i j}}$ is computed
assuming 2 elements in each link.
- The velocities after locking are

Modeling of Stage 1

Modeling of Locking (Contd.)

- Momentum balance equation, with H denoting generalised impulse,

$$
[\mathrm{M}(\mathbf{q})] \Delta \dot{\mathbf{q}}=\mathrm{H}
$$

- The velocity after locking is $\dot{\mathbf{q}}_{+}=\dot{\mathbf{q}}_{-}+\Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+}=0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

$$
\left(\begin{array}{lllll}
M_{r r_{11}} & M_{r f_{11}} & \ldots & M_{r f_{14}} & 0 \\
M_{r r_{21}} & M_{r f_{21}} & \ldots & M_{r f_{24}} & -1 \\
M_{r f_{11}} & M_{f f_{11}} & \ldots & M_{f f_{14}} & 0 \\
. & . & \ldots & . . & . . \\
M_{r f_{14}} & M_{f f_{41}} & \ldots & M_{f f_{44}} & 0
\end{array}\right)\left(\begin{array}{l}
\Delta \dot{\theta}_{1} \\
\Delta \dot{q}_{11} \\
. . \\
. \\
. \\
H_{1}
\end{array}\right)=\dot{\theta}_{2-}\left(\begin{array}{l}
M_{r r_{12}} \\
M_{r r_{22}} \\
M_{r f_{21}} \\
. . \\
. \\
M_{r f_{24}}
\end{array}\right)
$$

where H_{1} is the impulse acting on joint 2 and $M_{r f}$ is computed assuming 2 elements in each link.

Modeling of Stage 1

Modeling of Locking (Contd.)

- Momentum balance equation, with H denoting generalised impulse,

$$
[\mathrm{M}(\mathbf{q})] \Delta \dot{\mathbf{q}}=\mathbf{H}
$$

- The velocity after locking is $\dot{\mathbf{q}}_{+}=\dot{\mathbf{q}}_{-}+\Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+}=0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

$$
\left(\begin{array}{lllll}
M_{r r_{11}} & M_{r f_{11}} & \ldots & M_{r f_{14}} & 0 \\
M_{r r_{21}} & M_{r f_{21}} & \ldots & M_{r f_{24}} & -1 \\
M_{r f_{11}} & M_{f f_{11}} & \ldots & M_{f f_{14}} & 0 \\
. & . & \ldots & . . & . . \\
M_{r f_{14}} & M_{f f_{41}} & \ldots & M_{f f_{44}} & 0
\end{array}\right)\left(\begin{array}{l}
\Delta \dot{\theta}_{1} \\
\Delta \dot{q}_{11} \\
. . \\
. \\
. \\
. \\
H_{1}
\end{array}\right)=\dot{\theta}_{2-}\left(\begin{array}{l}
M_{r r_{12}} \\
M_{r r_{22}} \\
M_{r f_{21}} \\
. . \\
. \\
M_{r f_{24}}
\end{array}\right)
$$

where H_{1} is the impulse acting on joint 2 and $M_{r f_{i j}}$ is computed assuming 2 elements in each link.

- The velocities after locking are

$$
\dot{\theta}_{1+}=\dot{\theta}_{1-}+\Delta \dot{\theta}_{1}, \quad \dot{\mathbf{q}}_{f+}=\dot{\mathbf{q}}_{f-}+\Delta \dot{\mathbf{q}}_{f}
$$

Modeling of Stage 2

- Potential energy from strain energy and torsion spring.
- Torque due to rocker arm in the locking mechanism.
- Dynamic equations of motion obtained using Lagrangian formulation.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathbf{K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_{f} \in \Re^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathbf{K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathrm{q}_{f} \in \Re^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathrm{~K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_{f} \in \mathfrak{R}^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathbf{K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_{f} \in \mathfrak{R}^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathrm{~K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_{f} \in \mathfrak{R}^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 2 (Contd.)

- Equations of motion are (see Lecture 3)

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{r r} & {\left[\mathrm{M}_{r f}\right]^{T}} \\
{\left[\mathrm{M}_{r f}\right]} & {\left[\mathrm{M}_{f f}\right]}
\end{array}\right)\binom{\ddot{q}_{r}}{\ddot{\mathbf{q}}_{f}}+\binom{C_{r}(\mathbf{q}, \dot{\mathbf{q}})}{\mathrm{C}_{f}(\mathbf{q}, \dot{\mathbf{q}})} \\
& +\left(\begin{array}{cc}
K_{j} & 0 \\
0 & {\left[\mathrm{~K}_{f}\right]}
\end{array}\right)\binom{q_{r}}{\mathbf{q}_{f}}=\binom{\tau}{0}
\end{aligned}
$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_{f} \in \mathfrak{R}^{2\left(n_{1}+n_{2}\right)}, n_{1}$ and n_{2} are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_{1}=\pi / 2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

Modeling of Stage 3

- FEM with clamped-mass boundary conditions.
- Equations of motion

$$
\left[\mathbf{M}_{c}\right] \ddot{\mathbf{q}}_{f}+\left[\mathbf{K}_{c}\right] \mathbf{q}_{f}=\mathbf{0}
$$

[M_{c}] and $\left[\mathrm{K}_{c}\right]$ are the mass and stiffness matrix and \mathbf{q}_{f} are the
Deformed shape

- Undeformed shape flexible variables for the cantilever.

Figure 26: Vibrating flexible cantilever

- $\dot{\theta}_{1+}=0$.
- Velocity after locking $\dot{\mathbf{q}}_{f+}=\dot{\mathbf{q}}_{f-}+\Delta \dot{\mathbf{q}}_{f-}$, and $\Delta \dot{\mathbf{q}}_{f-}$ is obtained from

$$
\left(\begin{array}{llll}
M_{r f_{11}} & & & M_{r f_{14}} \\
-1 \\
& {\left[M_{f f}\right]} & & 0^{T}
\end{array}\right)\binom{\Delta \dot{\mathbf{q}}_{f-}}{H_{2}}=\dot{\theta}_{1-}\left(\begin{array}{c}
M_{r r_{11}} \\
M_{r f_{11}} \\
. . \\
M_{r f_{14}}
\end{array}\right)
$$

H_{2} is the impulse acting at joint 1.

Numerical Simulation

- Parameters of link 1 (from hardware)
- Length $=1.006423 \mathrm{~m}$
- X-section $=1.7807610^{-4} \mathrm{~m}^{2}$
- Thickness $=4.451910^{-3} \mathrm{~m}$
- Flexural Rigidity $E I=20.5879 \mathrm{~N}-\mathrm{m}^{2}$
- Link mass $=0.52334 \mathrm{Kg}$
- Spring stiffness $=0.0789 \mathrm{~N} \mathrm{~m} / \mathrm{rad}$
- Parameters of link 2 (from hardware)
- Length $=0.9945 \mathrm{~m}$
- X-section $=1.7774810^{-4} \mathrm{~m}^{2}$
- Thickness $=4.43710^{-3} \mathrm{~m}$
- Flexural Rigidity $E I=20.3819 \mathrm{~N}-\mathrm{m}^{2}$
- Link mass $=0.42958 \mathrm{Kg}$
- Spring stiffness $=0.0789 \mathrm{~N} \mathrm{~m} / \mathrm{rad}$

Numerical Simulation

Rigid Body Simulation

Figure 27: Motion of joint 1

Figure 28: Motion of joint 2

- Time to first lock -2.898 sec
- Time to second lock -4.38 sec

Numerical Simulation

Flexible Link Simulation - Joint Motion

Figure 29: Motion of joint 1

Figure 30: Motion of joint 2

- Time to first lock -2.923 sec
- Time to second lock -5.78 sec

Numerical Simulation

Flexible Link Simulation - Strains

Figure 31: Strain at a location near base of
Figure 32: Strain at location near base of link link 1 2

- Maximum strain (Stage 1): link 1 and link $2<50 \mu$-strains.
- Maximum strain (Stage 2): link $1 \approx 150 \&$ link $2 \approx 400 \mu$-strains.
- Maximum strain (Stage 3): link $1 \approx 700 \&$ link $2 \approx 400 \mu$-strains.

Experimental Set-up

Figure 33: Experimental set-up for planar 2R motion studies

- Flexible Aluminum beams floating on air bearings on a horizontal glass table and actuated by two springs.
- Locking mechanism to lock after deployment.
- Instrumented to measure rotation and strain.

Experimental Set-up

First-joint Assembly

TOP VIEW
Figure 34: First joint assembly at initial configuration

Figure 35: First joint assembly at locked configuration

- Rocker arm moves on cam and pressed by a spring.
- At $\theta_{1}=\pi / 2$, the joint 1 is locked.

EXPERIMENTAL SET-UP

INSTRUMENTATION

Strain gage circuit

Figure 36: Instrumentation to measure rotation and strain

- Potentiometer measures joint rotation.
- Strain gages used to measure strains near the base of the links.
- All readings stored on a PC.

Experimental Hardware

Deployment under progress

Figure 37: Experimental set-up for planar 2R motion studies

Experimental Results

Joint Rotation

Figure 38: Rotation at joint 1 in Stage 1 and Stage 2

Figure 39: Rotation at joint 2

- Time to first lock -3.07 sec
- Time to second lock -6.13 sec

Experimental Results

Strain in Link 1 and 2

Figure 40: Strain measurement in link 1

Figure 41: Strain measurement in link 2

- Maximum strain (Stage 1): link 1 and link $2<50 \mu$-strains
- Maximum strain (Stage 2): link $1 \approx 150$ and link $2 \approx 600 \mu$-strains.
- Maximum strain (Stage 3): link $1 \approx 500$ and link $2 \approx 300 \mu$-strains.

COMPARISON OF EXPERIMENTAL AND NUMERICAL SIMULATION

Figure 42: Comparison of joint rotations

- Time for first locking - $2.92 \mathrm{sec}($ computed) Vs. $3.07 \mathrm{sec}($ measured).
- Time for second locking - $5.87 \mathrm{sec}($ computed) Vs. 6.13 sec(measured).

COMPARISON OF EXPERIMENTAL AND NUMERICAL

SIMULATION

Figure 43: Comparison of strains near base of links

- Simulation $\approx 700 \mu$-strains Vs. experimental $\approx 500 \mu$-strains
- Simulation $\approx 400 \mu$-strain Vs. experimental $\approx 600 \mu$-strains.
- Frequency after first lock: 1.95 Hz - good agreement with simulation.
- Two frequencies after second lock: 0.39 Hz and 2.73 Hz (simulation) Vs. 0.49 Hz and 2.93 Hz (experiments).

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

SUMMARY

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion - Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well - time for locking is underestimated due to un-modeled friction.

Outline

Contents

(2) Lecture 1

- Flexible Manipulators

3 Lecture 2*

- Kinematic Modeling of Flexible Link Manipulators
- Lecture 3*
- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators
(3) Lecture 4
- Experiments with a Planar Two Link Flexible System
(6) Module 8 - Additional Material
- Problems, References and Suggested Reading

Module 8 - Additional Material

- Exercise Problems
- References \& Suggested Reading

[^0]: ${ }^{2}$ One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

[^1]: ${ }^{2}$ One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

[^2]: ${ }^{2}$ One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

[^3]: ${ }^{2}$ One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

[^4]: ${ }^{3}$ The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (Isidori 1989)

[^5]: ${ }^{3}$ The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or

[^6]: ${ }^{3}$ The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or

[^7]: ${ }^{3}$ The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (Isidori 1989).

[^8]: $\mathscr{X}=\mathbf{f}\left(\mathbf{q}_{r}, \mathbf{q}_{f}\right)$ represents the kinematic equations of the flexible manipulator.

[^9]: ${ }^{4}$ Error defined opposite to definition $(\cdot)_{d}-(\cdot)$ till now and hence the - sign in control law. This is required for consistency in definition of rigid Jacobian using Taylor series expansion.

