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INTRODUCTION

Industrial robots: Required high accuracy and repeatability → Heavy,
high stiffness and slow.

 

Figure 1: PUMA 700 Series Industrial Robot

PUMA 700 series industrial
robot (PUMA 761) – Arm
weight 580 Kg, Static payload
10 kga.
Repeatability ± 0.2 mm.
Maximum straight line speed 1.0
m/sec.

aDocumentation on PUMA 700 series
robots available here
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INTRODUCTION (CONTD.)
Robots in aero-space applications → Light-weight and flexible.

Figure 2: Space Shuttle manipulator system Figure 3: Solar panels being deployed

Extreme flexibility in space-shuttle manipulator system → Can be
operated safely only in a gravity free environment!!
Solar panels – light weight and very large!!
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INTRODUCTION (CONTD.)

 
    Initial folded configuration  
 

 
   Deployment under progress 
 

 

Potentiometer to measure joint 
rotation 

Strain 
gauges 

Spring for actuation 

Air bearing 

Figure 4: Experimental set-up for
solar panel deployment studies

Two flexible Aluminum beams, initially
folded, and floating on air bearings.
Actuated by two springs at the joints
and locking mechanism at joints.
Final configuration – single cantilever
beam.
See details in Nagaraj et al.(1997) &
Nagaraj et al. (2003).
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INTRODUCTION (CONTD.)
SOLAR PANEL DEPLOYMENT STUDIES

Experimental data
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Figure 5: Rotation at joint 1
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Figure 6: Rotation at joint 2

Joint 2 lock a little after 3 seconds.
After joint 2 locks, motion of joint 1 is vibratory → Tip motion is also
vibratory!
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INTRODUCTION (CONTD.)

Light-weight, high speed robots can no longer be modeled as ‘rigid’.
During motion of flexible robots, vibrations are induced in links.
During locking at joints (in deployable mechanisms) vibrations are set
up.
Control: trajectory following & vibrations must also be suppressed in
flexible manipulators for tasks such as pick-n-place.
Accurate modeling of flexibility in links and joints is useful and
important to

Design ‘model based’ control schemes to damp out vibrations.
Reduce expensive experimentations.
For trimmer designs!
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CHARACTERISTIC OF A RIGID LINK

τ

θl

τ θ̈l θl1

J

1

s2

Figure 7: A rigid link with its block diagram representation

Simple dynamics → equation of motion, without friction, is

J θ̈l = τ

One-to-one relationship between τ and θl
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CHARACTERISTIC OF A FLEXIBLE JOINT

{0}

Ŷ0

X̂0

θm

θl

Ks

τ

Motor

m1, l1, r1, I1

Link 1

Figure 8: A link of a robot with a flexible joint

Flexible joint modeled as
torsional spring with a spring
constant Ks .
Motion in a plane – no out of
plane motion!
Rotation at motor θm.
Rotation of link θl .
Motor torque τ.
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CHARACTERISTIC OF A FLEXIBLE JOINT (CONTD.)

Equation of motion – Two linear coupled ODE’s

Jmθ̈m +Ks(θm −θl) = τ , Jl θ̈l +Ks(θl −θm) = 0

Jl = I1+m1r2
1 is the load inertia.

τ controls two outputs – θm and θl .
More complicated than rigid-link case.

τ
θ̈l

Ks
1

Jl

1

s2

1

Jm

θl

-

+

+

-

θ̈m θm
1

s2

Figure 9: A block diagram of the flexible-joint link
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CHARACTERISTIC OF A FLEXIBLE JOINT (CONTD.)
Test for controllability of θm and θl by τ
For state variables X = (θm,θl , ˙θm, θ̇l)

T , [F ] and [G ] matrices in
Ẋ = [F ]X+[G ]u are

[F ] =


0 0 1 0
0 0 0 1

−Ks/Jm Ks/Jm 0 0
Ks/Jl −Ks/Jl 0 0

 , [G ] =


0
0
1

Jm
0


Obtain controllability matrix [Qc ] = [[G ] | [F ][G ] | [F ]2[G ] | [F ]3[G ]]

det[Qc ] =−K 2
s /(J

4
mJ2

l ) ̸= 0 → Controllable with τ.
In presence of gravity, equations of motion are nonlinear!

Jmθ̈m +Ks(θm −θl) = τ, Jl θ̈l +Ks(θl −θm)+m1gr1 sinθl = 0

Model-based controller derived using Lie algebra (Marino and
Spong(1986)) for this non-linear system.
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CHARACTERISTIC OF A FLEXIBLE LINK

To start with – flexible links undergoing only bending vibrations.
Flexible link modeled as slender flexible beam.
Main assumptions:

Small deformations → Linear elasticity theory is applicable.
Each flexible link is a homogeneous, isotropic and elastic material.
Linear stress-strain relationship.
Euler-Bernoulli hypothesis for slender beams – Plain sections remain
plane etc.
Longitudinal deformation is negligible and no torsion due to transverse
loads.

Transverse vibration of a flexible beam → Partial differential equation.
Infinite degrees of freedom – contrast with rigid or flexible joint!!
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
EULER-BERNOULLI BEAM MODEL

X̂

Ŷ

Neutral Axis

s

l

u(s, t)

ρA(s), EI(s)

Figure 10: A beam in flexure
PDE describing the transverse free bending vibration of a beam

∂ 2

∂ s2

(
EI (s)

∂ 2u(s, t)
∂ s2

)
+ρA(s)

∂ 2u(s, t)
∂ t2 = 0

EI (s): flexural rigidity & ρA(s): mass per unit length.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
EULER-BERNOULLI BEAM MODEL

PDE second order in t → Need two initial conditions, u(s, t)|t=0 and
∂u(s,t)

∂ t |t=0. Since the PDE
Since PDE is fourth order in s → four boundary conditions required.
Geometric boundary conditions – deflection u(s, t) or slope ∂u(s,t)

∂ s at
the boundaries.
Natural boundary conditions – moment

(
EI (s) ∂2u(s,t)

∂ s2

)
or shear force

∂
∂ s

(
EI (s) ∂2u(s,t)

∂ s2

)
at the boundaries.

Boundary conditions at s = 0 depends on type of joint.
Two common types of joints – Rotary (R) and Prismatic (P) joint.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK

θ(t)

τ(t)

{0}

{1}

s l

u(s, t)

Ŷ0

Mp, Jp

Ŷ1

X̂0

X̂1

Revolute Joint

Figure 11: A flexible link with a rotary joint

Rotation of joint θ(t).

u(s, t) deflection at s and time t
in addition to rotation θ(t).
Motor torque τ(t).
Payload of mass Mp and inertia
Jp.
Two possible boundary
conditions at s = 0 – clamped or
pinned.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK

Clamped boundary conditions
X̂1 axis of {1}, rotating with the link, is chosen tangent to the link at
the origin → Deflection and slope at s = 0 is zero

[u(s, t)]s=0 = 0,
[

∂u(s, t)
∂ s

]
s=0

= 0

Pinned boundary conditions
X̂1 axis of {1} is chosen such that it passes through the centre of mass
of the flexible link at all times → Slope at s = 0 need not be zero.

[u(s, t)]s=0 = 0,
[
EI (s)

∂ 2u(s, t)
∂ s2

]
s=0

= Ja

[
∂ 2

∂ t2

(
∂u(s, t)

∂ s

)]
s=0

Ja is the total inertia as seen by joint actuator.
Neither clamped nor pinned exactly – not a built in cantilever and
motor control torque provide non-zero stiffness!
If Ja >> flexible beam inertia (greater than 10) → Clamped boundary
conditions more reasonable (Cetinkunt and Yu, 1991).
We use clamped conditions at motor end.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK

Boundary conditions at s = l – free or mass.
Free boundary conditions at s = l[

EI (s)
∂ 2u(s, t)

∂ s2

]
s=l

= 0,
[

∂
∂ s

(
EI (s)

∂ 2u(s, t)
∂ s2

)]
s=l

= 0

Multi-link flexible manipulators or single link with payload → More
accurate to use mass boundary conditions.
Mass boundary conditions require moment and shear force balance.[

EI (s)
∂ 2u(s, t)

∂ s2

]
s=l

= −Jp

[
∂ 2

∂ t2

(
∂u(s, t)

∂ s

)]
s=l[

∂
∂ s

(
EI (s)

∂ 2u(s, t)
∂ s2

)]
s=l

= Mp

[
∂ 2u(s, t)

∂ t2

]
s=l

where Mp and Jp are the mass and rotary inertia of the payload
located at s = l .
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. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

Non-dimensional variables: ũ(s, t) = u(s, t)/l , η = s/l , τ = t/(l/Ug ),

with Ug
∆
= 1

l

√
EI
ρA

Ug has units of speed & l/Ug has units of time.
EI → ∞ (rigid)– l/Ug → 0 & EI is small (flexible) – l/Ug is large!
PDE and boundary conditions in terms of non-dimensional variables

∂ 4ũ(η ,τ)
∂η4 +

∂ 2ũ(η ,τ)
∂τ2 = 0, 0 < η < 1

[ũ(η ,τ)]η=0 = 0,
[

∂ 2ũ(η ,τ)
∂η2

]
η=1

=− Jp

ρAl3

[
∂ 2

∂τ2

(
∂ ũ(η ,τ)

∂η

)]
η=1[

∂ ũ(η ,τ)
∂η

]
η=0

= 0,
[

∂ 3ũ(η ,τ)
∂η3

]
η=1

=
Mp

ρAl

[
∂ 2ũ(η ,τ)

∂τ2

]
η=1
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∂ 2ũ(η ,τ)

∂τ2

]
η=1

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 20 / 117



. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM
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. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

In non-dimensional form easier to decide on boundary conditions at
s = l .

Use free end-conditions if Jp and Mp << rotary inertia (ρAl3) and
mass (ρAl) of the flexible link.
If Jp and Mp comparable to link quantities → Use mass end-conditions.

In multi-link flexible manipulators, links after the flexible link j can be
modeled as an effective Mpj and Jpj acting at s = l → More
appropriate to use mass end-condition.
PDE with boundary conditions can be solved by the method of
separation of variables.
ũ(η ,τ) is separable in space (η) and time (τ)

ũ(η ,τ) = ψ(η)qf (τ)

ψ(η) are called mode shape functions and qf (t) are the flexible
generalised coordinates.
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ũ(η ,τ) = ψ(η)qf (τ)

ψ(η) are called mode shape functions and qf (t) are the flexible
generalised coordinates.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 21 / 117



. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

In non-dimensional form easier to decide on boundary conditions at
s = l .

Use free end-conditions if Jp and Mp << rotary inertia (ρAl3) and
mass (ρAl) of the flexible link.
If Jp and Mp comparable to link quantities → Use mass end-conditions.

In multi-link flexible manipulators, links after the flexible link j can be
modeled as an effective Mpj and Jpj acting at s = l → More
appropriate to use mass end-condition.
PDE with boundary conditions can be solved by the method of
separation of variables.
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. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – SOLUTION OF PDE

Substitute ũ(η ,τ) = ψ(η)qf (τ) in PDE and rearrange

1
qf (τ)

d2qf (τ)
dτ2 =− 1

ψ(η)

d4ψ(η)

dη4

Both terms are equal to a real constant, −ω2, and

d2qf (τ)
dτ2 +ω2qf (τ) = 0,

d4ψ(η)

dη4 −ω2ψ(η) = 0, 0 < η < 1

Boundary conditions

[ψ(η)]η=0 = 0,
[
d2ψ(η)

dη2

]
η=1

=
Jpω2

ρAl3

[
dψ(η)

dη

]
η=1[

dψ(η)

dη

]
η=0

= 0,
[
d3ψ(η)

dη3

]
η=1

=−Mpω2

ρAl
[ψ(η)]η=1

Infinite number of eigenvalues ω2 – ωi are system natural frequencies.
For each ωi , an eigenfunction or natural mode ψi (η).
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
ROTATING FLEXIBLE LINK – SOLUTION OF PDE
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
TRANSLATING FLEXIBLE LINK

{0}

Prismatic Joint

u(s, t)

U(t)

s

l(t)

l0

Mp, Jp

Ẑ0

F (t)

X̂0

Figure 12: A flexible link with a prismatic joint

Vibration in the horizontal plane spanned by X̂0 and Ẑ0.
Prismatic joint axis along Ẑ0, Total length of link l0.
l(t) vibrating length outside the rigid joint hub at time t.
The beam inside the hub, (l0− l(t)), is assumed not to be vibrating.
The axial velocity U(t) is assumed to be independent of s.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
TRANSLATING FLEXIBLE LINK

Free bending vibration of a translating beam with Euler-Bernoulli
assumptions

∂ 2

∂ s2

(
EI

∂ 2u(s, t)
∂ s2

)
+

ρA
(

∂ 2u(s, t)
∂ t2 +2U

∂ 2u(s, t)
∂ s∂ t

+U2 ∂ 2u(s, t)
∂ s2 +

dU
dt

∂u(s, t)
∂ s

)
= 0

where 0 < s < l(t).
Clamped-mass boundary conditions are

[u(s, t)]s=0 = 0, EI
[

∂ 2u(s, t)
∂ s2

]
s=l(t)

=−Jp

[
∂ 2

∂ t2

(
∂u(s, t)

∂ s

)]
s=l(t)[

∂u(s, t)
∂ s

]
s=0

= 0, EI
[

∂ 3u(s, t)
∂ s3

]
s=l(t)

= Mp

[
∂ 2u(s, t)

∂ t2

]
s=l(t)
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. . . . . .

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
TRANSLATING FLEXIBLE LINK (CONTD.)

Length of beam, l(t), is a function of time – moving boundary value
problem.

Presence of convective terms 2ρAU
∂ 2u(s, t)

∂ s∂ t
, ρAU2 ∂ 2u(s, t)

∂ s2 , and

ρA
dU
dt

∂u(s, t)
∂ s

due to the coupling of axial rigid-body and transverse

vibratory motions.

The centripetal term ρAU2 ∂ 2u(s, t)
∂ s2 will alter the the ‘stiffness’ of the

system.
For large U, the centripetal force may overcome the flexural restoring
force and the system’s oscillatory frequencies would decrease with
increasing U (Stylianou and Tabarrok, 1994).
Much more complicated that rotating link → General analytical
solution not known!
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
TRANSLATING FLEXIBLE LINK (CONTD.)

Using ũ(s, t) = u(s, t)/l0, η = s/l0, τ = t/(l0/Ug ), and Ug
∆
=

1
l0

√
EI
ρA

PDE is1,

∂ 4ũ(η ,τ)
∂η4 +

∂ 2ũ(η ,τ)
∂τ2 +2

(
U
Ug

)
∂ 2ũ(η ,τ)

∂η∂τ

+

(
U
Ug

)2 ∂ 2ũ(η ,τ)
∂η2 +

(
d
dτ

(
U
Ug

))
∂ ũ(η ,τ)

∂η
= 0

Boundary conditions

[ũ(η ,τ)]η=0 = 0,
[

∂ 2ũ(η ,τ)
∂η2

]
η= l(t)

l0

=− Jp

ρAl3

[
∂ 2

∂τ2

(
∂ ũ(η ,τ)

∂η

)]
η= l(t)

l0[
∂ ũ(η ,τ)

∂η

]
η=0

= 0,
[

∂ 3ũ(η ,τ)
∂η3

]
η= l(t)

l0

=
Mp

ρAl

[
∂ 2ũ(η ,τ)

∂τ2

]
η= l(t)

l0

1Ug is based on l0 or the smallest Ug value is used.
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CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.)
TRANSLATING FLEXIBLE LINK (CONTD.)

Using ũ(η ,τ) = ψ(η)qf (τ), PDE can be written as

ψ(η)
d2qf (τ)

dτ2 +2
U
Ug

dψ(η)

dη
dqf (τ)

dτ

=−

(
d4ψ(η)

dη4 +

(
U
Ug

)2 d2ψ(η)

dη2 +
d
dτ

(
U
Ug

)
dψ(η)

dη

)
qf (τ)

Above equation not separable in η and τ!!

If U ≪ Ug and constant (
d
dτ

(
U
Ug

)
= 0), the convective terms can be

dropped and one can approximately use separation of variables.
Mode shape functions ψi (η) and the natural frequencies ωi time
dependent.
Time varying boundary conditions solved using an ODE (Theodore
and Ghosal, 1995 – See Lecture 2).
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. . . . . .

SUMMARY

Flexibility of links and joints important for aero-space, high-speed
application and for “trimmer” design of all manipulators.
Rigid link → Simple ODE model & one-to-one relationship between
joint torque and link rotation.
Flexible joint

Modeled as torsional spring.
Coupled ODE model → one input and two outputs.
Motor torque can control both rotation of joint and link.

Flexible link
Partial differential equation for bending vibration → infinite
dimensional system.
Boundary conditions depend on rotary (R) or prismatic (P) joint →
Clamped-mass boundary conditions more reasonable.
Separation of variables can be used for rotary joints and under
simplifying assumptions for prismatic joint.
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. . . . . .

INTRODUCTION
OVERVIEW

Extension of Denavit-Hartenberg convention to flexible link
manipulators.
Discretisation of PDE for finite dimensional model.

Assumed modes method (AMM).
Frequency equation as ODE for translating link.
Finite element method (FEM).

Position vector of a point on a flexible link and its velocity.
Comparison of AMM and FEM.
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. . . . . .

EXTENSION OF D-H CONVENTION TO FLEXIBLE LINKS

Multi-link manipulator with flexible links connected by rotary (R) or
prismatic (P) joints.
Links undergoing only transverse bending vibration – axial and
torsional deformation not considered.
Links satisfy Euler-Bernoulli beam assumptions.
Similar to Denavit-Hartenberg convention for rigid links (see
Module 2, Lecture 2)

Assign coordinate system {j} to link j with {0} as the fixed link and
{n} as the last link.
The coordinate axes (X̂j , Ŷj , Ẑj) are assigned to link j and the origin Oj
is on the joint axis j .
Axis Ẑj is along the axis of joint j .

Define a coordinate system {j∗} in such a way that when the link j −1
is in its undeformed configuration, the {j} and {j∗} are coincident (see
figure next page).
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. . . . . .

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)

Ẑ0

X̂0

Ŷ0

Link j − 1
undeformed

Link j − 1 deformed

Link j

Ŷj∗

Ẑj∗

{j∗}

{j}Oj

Ẑj

X̂j

Ŷj

Link j

Ẑj−1

X̂j−1

Ŷj−1

{j − 1}

Oj−1

X̂j∗

Oj∗

Figure 13: Assignment of frames for the flexible links
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. . . . . .

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)
4×4 TRANSFORMATION MATRIX

The 4×4 homogeneous transformation matrix relating {j∗} to {j −1}
same as for a rigid manipulator (see Module 2, Lecture 2)

j−1
j∗ [Tr ] =


cθj −sθj 0 aj−1

sθj cαj−1 cθj cαj−1 −sαj−1 −sαj−1dj
sθj sαj−1 cθj sαj−1 cαj−1 cαj−1dj

0 0 0 1


αj−1, aj−1, dj , and θj are the D-H parameters which describe {j∗}
with respect to {j −1}.
qjr is the joint variable – either θj or dj .
n×1 vector qr denote rigid joint variables and the flexibility in the link
j will be denoted by qfj .
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. . . . . .

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)
4×4 TRANSFORMATION MATRIX (CONTD.)

Any 3D spatial transformation → three rotations and three
translations.
{j∗} can be taken to {j} by

Rot(Ẑ ,ϕzj−1)Trans(Ẑ ,δzj−1)Rot(Ŷ ,ϕyj−1)Trans(Ŷ ,δyj−1)

Rot(X̂ ,ϕxj−1)Trans(X̂ ,δxj−1)

Assuming small elastic deformation, sequence becomes (Book 1984)

j∗
j [Te ] =


1 −ϕzj−1 ϕyj−1 δxj−1

ϕzj−1 1 −ϕxj−1 δyj−1

−ϕyj−1 ϕxj−1 1 δzj−1

0 0 0 1


Note: If link j −1 is rigid, j∗

j [T ] is a 4×4 identity matrix.
4×4 homogeneous transformation matrix relating {j} to {j −1} is

j−1
j [T ] = j−1

j∗ [Tr ]
j∗
j [Te ]
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. . . . . .

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)
LINK TRANSFORMATION MATRIX

0
j [T ] can be obtained by usual matrix multiplication

0
j [T ] = 0

1∗ [Tr ]
1∗
1 [Te ]

1
2∗ [Tr ]

2∗
2 [Te ] · · · j−1

j∗ [Tr ]
j∗
j [Te ]

0
j [T ], as in the rigid case, contains position vector 0Oj and the
rotation matrix 0

j [R].
As in the rigid case, information is up to the start of the link.
For a point on the link after the origin and along the neutral axis

0pj =
0 Oj +

0
j [R]rj

Need to find vector rj !!
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. . . . . .

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)
LINK TRANSFORMATION MATRIX

Link j can deflect in 3D space.
Denote deformation along the X , Y and Z axes by uj(s, t), vj(s, t)
and wj(s, t).
Only transverse deformations → Only 2 out u, v and w are variable!

For a rotary joint uj(s, t) = s and vj(s, t), wj(s, t) represent the Y and
Z transverse deformations.
For a prismatic joint, wj(s, t) = s and uj(s, t) and vj(s, t) represent the
X and Y transverse deformations.

Local position vector rj is

rj =



 s
0
0

+

 0
vj(s, t)
wj(s, t)

 if joint j is revolute 0
0
s

+

 uj(s, t)
vj(s, t)

0

 if joint j is prismatic
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. . . . . .

VELOCITY OF A POINT ON A FLEXIBLE LINK

The velocity of the material point 0pj on link j in {0}

0Vp
∆
=

d
dt

(0pj) =
d
dt

(0Oj)+
d
dt

(0j [R])rj + 0
j [R]

d
dt

(rj)

d
dt

(rj) is given by

ṙj =



 0
v̇j(s, t)
ẇj(s, t)

 R joint

 0
0

Uj(t)

+


u̇j(s, t)+

∂uj(s, t)
∂ s

Uj(t)

v̇j(s, t)+
∂vj(s, t)

∂ s
Uj(t)

0

 P joint

Uj(t)
∆
= ṡ is the translational velocity of the prismatic jointed link j .
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. . . . . .

DISCRETISATION OF PDE

Elastic displacements uj(s, t), vj(s, t) and wj(s, t) are governed by
PDE’s and boundary conditions.
PDE’s are similar to the free transverse bending vibration equation
discussed earlier.
Infinite dimensional system – infinite number of natural frequencies
and mode shapes.
PDE’s need to be discretised for analysis, simulation and development
of controllers.
Two approaches – Assumed Modes Method and Finite Element
Method.
After discretisation, expression for j∗

j [Te ] can be obtained.
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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD

Elastic displacements, (uj ,vj , and wj) are written in terms of modal
shape functions and time-dependent mode amplitudes.

Xj(η , t) =
Nj

∑
i=1

ψXj
i (η)ξXj

i (t), X is u, v , or w

η = s/lj and Nj is the number of modes chosen.
For a revolute joint, link length lj is constant and for a prismatic joint,
lj and the mode shape functions are time dependent.
The mode shape functions ψi (η) are typically chosen as

ψi (η) = C1i cos(βiη)+C2i sin(βiη)+C3i cosh(βiη)+C4i sinh(βiη)

βi
4 ∆
=

ρjAj l4j
Ej Ij

ωi
2 and ωi is the ith natural angular frequency of the

eigenvalue problem for link j .
Constants Ci , i = 1,2,3,4 are determined using boundary conditions.
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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

For clamped conditions at η = 0 end:

[ψi (η)]η=0 = 0,
[
dψi (η)

dη

]
η=0

= 0

For mass conditions at η = 1 end:[
d2ψi (η)

dη2

]
η=1

=
Jpj β 4

i

ρjAj l3j

[
dψi (η)

dη

]
η=1

+
MDpj β 4

i

ρjAj l2j
[ψi (η)]η=1[

d3ψi (η)

dη3

]
η=1

= −
Mpj β 4

i

ρjAj lj
[ψi (η)]η=1−

MDpj β 4
i

ρjAj l2j

[
dψi (η)

dη

]
η=1

ρj ,Aj are density and cross-section area.
Mpj , Jpj reflects all masses and inertia beyond link j .
MDpj accounts for the contributions of masses non-collocated at the
end of link j .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 40 / 117



. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

For clamped conditions at η = 0 end:

[ψi (η)]η=0 = 0,
[
dψi (η)

dη

]
η=0

= 0

For mass conditions at η = 1 end:[
d2ψi (η)

dη2

]
η=1

=
Jpj β 4

i

ρjAj l3j

[
dψi (η)

dη

]
η=1

+
MDpj β 4

i

ρjAj l2j
[ψi (η)]η=1[

d3ψi (η)

dη3

]
η=1

= −
Mpj β 4

i

ρjAj lj
[ψi (η)]η=1−

MDpj β 4
i

ρjAj l2j

[
dψi (η)

dη

]
η=1

ρj ,Aj are density and cross-section area.
Mpj , Jpj reflects all masses and inertia beyond link j .
MDpj accounts for the contributions of masses non-collocated at the
end of link j .

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 40 / 117



. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

The clamped conditions at the link base yield C3i =−C1i and
C4i =−C2i

The mass conditions at the η = 1 yield

[F](βi )

(
C1i

C2i

)
= 0

For non-trivial solution when det(F) = 0 → Simplify to

(1+ coshβicosβi )−Mjβi (coshβi sinβi − sinhβicosβi )

−Jjβi
3(coshβi sinβi + sinhβicosβi )+MjJjβi

4(1− coshβicosβi )

−D2
j βi

4(1− coshβicosβi )−2Djβi
2sinhβi sinβi = 0

where Mj =
Mpj

ρjAj lj
, Jj =

Jpj

ρjAj lj3
, and Dj =

MDpj

ρjAj lj2
.

Infinite number of solutions → Truncated to Nj roots.
Both C1i and C2i cannot be determined uniquely and hence mode
shapes can be obtained upto a scale factor.
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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

For clamped-mass boundary condition

ψi (η) = C2i [ cos(βiη)− cosh(βiη)+νi (sin(βiη)− sinh(βiη)) ]

where

νi =
sinβi − sinhβi +Mjβi (cosβi − coshβi )−Djβi

2(sinβi + sinhβi )

cosβi + coshβi −Mjβi (sinβi − sinhβi )−Djβi
2(cosβi − coshβi )

Above can be solved for one link with rotary joint!
For a prismatic joint and a multi-link flexible manipulator, MDpj and
Jpj are functions of time t!
Modes shapes and frequency are time dependent!!
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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

Time dependent frequency equation

f (βi ,Mj ,Jj ,Dj) = (1+ coshβicosβi )−Mjβi (coshβi sinβi − sinhβicosβi )

−Jjβi
3(coshβi sinβi + sinhβicosβi )+MjJjβi

4(1− coshβicosβi )

−Dj
2βi

4(1− coshβicosβi )−2Djβi
2sinhβi sinβi = 0

Above can be written as a ODE

dβi

dt
=

−
(

∂ f
∂Mj

dMj

dt
+

∂ f
∂Jj

dJj

dt
+

∂ f
∂Dj

dDj

dt

)
(

∂ f
∂βi

)
where the derivatives can be obtained from the frequency equation.
Solve for βi once at t = 0 and numerically integrate ODE with
equations of motion → No need to update βi with configuration.
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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

After discretisation the 4×4 matrix j∗
j [Te ] can be obtained.

If joint j −1 is revolute

j∗
j [Te ] =

Nj−1

∑
i=1



1 −
∂ψv

i
∂η

(1)ξ v
i (t)

∂ψw
i

∂η
(1)ξw

i (t) 0

∂ψv
i

∂η
(1)ξ v

i (t) 1 0 ψv
i (1)ξ

v
i (t)

−
∂ψw

i
∂η

(1)ξw
i (t) 0 1 ψw

i (1)ξw
i (t)

0 0 0 1


If joint j −1 is prismatic

j∗
j [Te ] =

Nj−1

∑
i=1



1 0
∂ψu

i
∂η

(1)ξu
i (t) ψu

i (1)ξ
u
i (t)

0 1 −
∂ψv

i
∂η

(1)ξ v
i (t) ψv

i (1)ξ
v
i (t)

−
∂ψu

i
∂η

(1)ξu
i (t)

∂ψv
i

∂η
(1)ξ v

i (t) 1 0

0 0 0 1


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. . . . . .

DISCRETISATION OF PDE
ASSUMED MODES METHOD (CONTD.)

Derivative of rj is given by

ṙj =




0

Nj

∑
i=1

ψv
i (η)

dξ v
i (t)
dt

Nj

∑
i=1

ψw
i (η)

dξw
i (t)
dt

 if joint j is revolute



Nj

∑
i=1

[
ψu

i (η)
dξu

i (t)
dt

−
∂ψu

i (η)
∂η

ξu
i (t)

ηUj (t)
lj (t)

]
Nj

∑
i=1

[
ψv

i (η)
dξ v

i (t)
dt

−
∂ψv

i (η)

∂η
ξ v
i (t)

ηUj (t)
lj (t)

]
Uj (t)

 if joint j is prismatic

In 0
j [T ], there are j rigid-joint variables qrj .

Flexible variables (qf1 ,qf2 , · · · ,qfj−1), each qfk has 2×Nk variables.
From rj , additional 2×Nj flexible variables.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD

Finite element method is popular in many applications involving
deformation in solids and fluid flows.
In flexible manipulators – each link is ‘broken’ into finite number of
elements.
Displacements are made continuous inside an element and compatible
across elements.
Internal force balance at points, called ‘nodes’, in an element.
Displacement at any point inside an element is obtained from nodal
displacements and by an interpolation function.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)
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O0

{j}
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lji
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Ẑj
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Figure 14: A finite element discretisation of a link j with beam element i and its nodal
displacement variables.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)

Figure 14 shows PQ, an element i on link j , with nodes i and i +1.
Position vector rji of any point along the neutral axis of the ith
element, expressed in the undeformed link coordinate system is given
by

rji =



 (i −1)lji + s
0
0

+

 0
vji (s, t)
wji (s, t)

 if joint j is revolute

 0
0

(i −1)lji + s

+

 uji (s, t)
vji (s, t)

0

 if joint j is prismatic

lji is the length of element i .
lji is constant for revolute jointed link and variable for prismatic
jointed link!
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)

Elastic displacements if joint j is revolute,

vji (s, t) = φvj
i (s)

Tqvj
fji
(t), wji (s, t) = φwj

i (s)
Tqwj

fji
(t)

with qvj
fji
(t) denoting the vector

(
δ vj
i (t),ϕwj

i (t),δ vj
i+1(t),ϕ

wj
i+1(t)

)T
and

qwj
fji
(t) denoting the vector

(
δwj
i (t),ϕ vj

i (t),δwj
i+1(t),ϕ

vj
i+1(t)

)T
.

Elastic displacements if joint j is prismatic

uji (s, t) = φuj
i (s)

Tquj
fji
(t), vji (s, t) = φvj

i (s)
Tqvj

fji
(t)

with quj
fji
(t) denoting the vector

(
δ uj
i (t),ϕ vj

i (t),δ uj
i+1(t),ϕ

vj
i+1(t)

)T
and

qvj
fji
(t) denoting the vector

(
δ vj
i (t),ϕuj

i (t),δ vj
i+1(t),ϕ

uj
i+1(t)

)T
.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)

Interpolation functions are assumed same for u, v and w .
Various choices possible → choose simple cubic polynomials

φuj
i (s) = φvj

i (s) = φwj
i (s) =



1−3
(

s
lji

)2

+2
(

s
lji

)3

s
(

s
lji
−1
)2

(
s
lji

)2(
3−2

s
lji

)
s2

lji

(
s
lji
−1
)


lji is constant for revolute jointed link and variable for prismatic
jointed link → More difficult to model prismatic jointed link.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)

4×4 homogeneous transformation matrix j∗
j [Te ] in the finite element

model reduces to

j∗
j [Te ] =


1 −ϕw

N+1 ϕv
N+1 0

ϕw
N+1 1 0 δ v

N+1
−ϕv

N+1 0 1 δw
N+1

0 0 0 1

 , Joint j −1 is revolute

j∗
j [Te ] =


1 0 ϕv

N+1 δu
N+1

0 1 −ϕu
N+1 δ v

N+1
−ϕv

N+1 ϕu
N+1 1 0

0 0 0 1

 , Joint j −1 is prismatic

For clamped boundary conditions at element 1 → δj1 = ϕj1 = 0.
To enforce natural boundary conditions proper energy expressions for
additional masses and inertia should be used.
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. . . . . .

DISCRETISATION OF PDE
FINITE ELEMENT METHOD (CONTD.)

Velocity of any point on the neutral axis of the ith element in the jth
link in the local undeformed coordinate system

ṙji =




0

4

∑
k=1

φv
ik(s, lji )

dqv
fjik

(t)

dt
4

∑
k=1

φw
ik (s, lji )

dqw
fjik

(t)

dt

 joint j is R



4

∑
k=1

[
φu

ik(s, lji )
dqu

fjik
(t)

dt
+

∂φu
ik(s, lji )

∂ lji (t)
qu
fjik

(t)
Uj (t)
Nj

]
4

∑
k=1

[
φv

ik(s, lji )
dqv

fjik
(t)

dt
+

∂φv
ik(s, lji )

∂ lji (t)
qv
fjik

(t)
Uj (t)
Nj

]
iUj (t)

Nj


joint j is P
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. . . . . .

DISCRETISATION OF PDE
COMPARISON OF AMM AND FEM

Number of modes Vs. Number of elements
AMM: k modes k natural frequencies, FEM: k elements 2k natural
frequencies.

Mode Number of Elements Exact
No. 1 2 3 Values
1 2.0963e+2 2.0873e+2 2.0864e+2 2.0864e+2
2 2.0654e+3 1.3186e+3 1.3118e+3 1.3075e+3
3 4.4597e+3 3.7067e+3 3.6611e+3
4 1.2944e+4 8.3473e+3 7.1742e+3
5 1.5709e+4 1.1860e+4
6 3.1318e+4 1.7716e+4

Table 1: Natural frequencies(Hz) of a clamped-free beam, m = 0.33kg , l = 1.0m,
Inertia of joint 3.2 kg/m2 and EI = 1165.5N/m2

Only first k frequencies from FEM are close → k modes are equivalent
to k elements.
Typically 2 or three modes(elements) are enough to model dynamics.
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. . . . . .

DISCRETISATION OF PDE
COMPARISON OF AMM AND FEM

AMM mode shapes are defined over entire beam with trigonometric
functions → Diagonal mass and stiffness matrices.
FEM interpolation function are local and are polynomials → Banded
mass and stiffness matrices.
FEM imposes more constraints (due to use of polynomials) →
Overestimates natural frequencies more than AMM.
Overestimation of natural frequencies leads to “locking” and difficulties
in using model-based control.
Local interpolations functions – easier to use for complex geometries.
3D and other kinds of elements available in large body of research on
FEM can be used.
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. . . . . .

SUMMARY

Extension of Denavit-Hartenberg convention to flexible links.
Rigid 4×4 transformation matrix j−1

j∗ [Tr ]
Small deformation and linear elasticity → Elastic 4×4 transformation
matrix j∗

j [Te ].
Complete 4×4 transformation matrix j−1

j [T ] = j−1
j∗ [Tr ]

j∗
j [Te ].

Position vector and velocity of a point on the flexible link for rotary
jointed and prismatic jointed link.
Assumed modes method to discretise PDE.
Frequency equation as an ODE.
FEM approach to discretise PDE.
Comparison of AMM and FEM approaches.
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INTRODUCTION
OVERVIEW

Dynamic equations of motion for flexible link manipulators.
Controllability of flexible-link manipulators.
Control of joint motion & tip vibration in flexible link manipulator.
Robustness issues in model-based control schemes.
Numerical simulation of a multi-link flexible manipulator.
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS

Symbolic equations of motion using MAPLE or Mathematica.
Lagrangian formulation (see Module 6, Lecture 1).
Lagrangian equations of motion

For joint variable qrj :

d
dt

(
∂KE
∂ q̇rj

)
− ∂KE

∂qrj
+

∂PE
∂qrj

= τj

For flexible variable qfji :

d
dt

(
∂KE
∂ q̇fji

)
− ∂KE

∂qfji
+

∂PE
∂qfji

= 0

KE is total kinetic energy & PE is total potential energy due to elastic
deformation and gravity.
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS
KINETIC ENERGY

Total kinetic energy: KE = ∑n
j=1(KEjointj +KElinkj )+KEpayload

Kinetic energy of joint in terms of mass, inertia and derivative of
position vector

KEjointj =
1
2

0Ωj
T 0[Ijoint ]j

0Ωj +
1
2
mjointj

(
d 0Oj

dt

)T(d 0Oj

dt

)
Kinetic energy of flexible link j in terms of density, cross-sectional area
and number of elements

KElinkj =



1
2

∫ lj

0
ρjAj

(
d 0pj

dt

)T(d 0pj

dt

)
ds, for AMM

1
2

Nj

∑
i=1

∫ lji

0
ρjAj

(
d 0pji

dt

)T(d 0pji

dt

)
ds, for FEM
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS
KINETIC ENERGY (CONTD.)

If link j is rigid, kinetic energy, in terms of position of centre of mass

KElinkj =
1
2
mj

(
d 0pcj

dt

)T(
d 0pcj

dt

)

Kinetic energy of payload

KEpayload =
1
2
mp

(
d 0pTool

dt

)T(d 0pTool

dt

)
+

1
2

0ΩTool
T 0[Jp]

0ΩTool

0pTool is the position vector of the centre of mass of the payload, mp
is mass of the payload, 0[Jp] and 0˙Tool are the moment of inertia
matrix of the payload and the angular velocity vector of the payload,
respectively.
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS
POTENTIAL ENERGY

Total potential energy: PE = ∑n
i=1(PEfj +PEgj )+PEgpayload

Payload: PE gpayload = mpgT 0pTool

Gravity: PE gj = mjointjg
T 0Oj +

∫ lj

0
ρjAjgT 0pjds

Strain energy, assuming linear elasticity and neglecting axial and
torsional deformation
For assumed modes model:

PE fj =
∫ 1

0

Ej Ijy
2l3j

[
Nj

∑
i=1

∂2ψvj
i (η)

∂η2 ξ vj
i (t)

]2

+
Ej Ijz
2l3j

[
Nj

∑
i=1

∂2ψwj
i (η)

∂η2 ξwj
i (t)

]2dη

For finite element model:

PE fj =
Nj

∑
i=1

∫ lji

0

Ej Ijy
2

[
4

∑
k=1

∂2φvj
ik (s)

∂ s2 qvj
fjik

(t)

]2

+
Ej Ijz

2

[
4

∑
k=1

∂2φwj
ik (s)

∂ s2 qwj
fjik

(t)

]2
ds
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS

Kinetic and potential energy → Lagrangian formulation → equations
of motion.
Equations of motion in a compact form(

[Mrr ] [Mrf ]
T

[Mrf ] [Mff ]

)(
q̈r
q̈f

)
+

(
Cr (q, q̇)
Cf (q, q̇)

)
+

(
Gr (q)
Gf (q)

)
+

(
0 0
0 [K]

)(
qr
qf

)
=

(
τ
0

)
Variables q: joint variables qr ∈ ℜn and flexible variables qf ∈ ℜN .
For AMM with nf ≤ n flexible links and Nj modes for each flexible
link, N = 2∑nf

j=1 Nj in 3D and N = ∑nf
j=1 Nj for plane.

For FEM with Nj elements for each flexible link, N = 4∑nf
j=1 Nj in 3D

and N = 2∑nf
j=1 Nj for plane.

In FEM, in the first element in each link, δj1 = ϕj1 = 0 to represent
clamped boundary conditions.
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. . . . . .

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE

MANIPULATORS
PROPERTIES OF TERMS IN EQUATIONS OF MOTION

Generalised mass matrix [M(q)] contain
n×n symmetric, positive definite sub-matrix [Mrr ] related to the rigid
joint variables.
N ×N symmetric, positive definite sub-matrix [Mff ] related to the
flexible variables.
N ×n sub-matrix [Mrf ] representing coupling between the rigid joint
and the elastic displacement variables.

The Coriolis/centripetal terms and the gravity terms can also be
partitioned.
N ×N symmetric, positive definite matrix [K] is called the flexural
stiffness matrix and arises from the strain energy of the flexible links –
[Mff ] and [K] are used in FEM to compute natural frequencies.
Only joint torques are acting → τ is an n×1 vector.
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. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

CONTROL OF FLEXIBLE-LINK MANIPULATORS
OVERVIEW

Control of a single link flexible manipulator – controllability.
Two control tasks: trajectory following & tip vibration control.
Active control using joint actuator2 only.
Two stage control strategy – Model-based control strategy for
trajectory following and end-position vibration control at the end of
trajectory following.
Stability and robustness analysis.
Numerical simulation results.

2One can use passive vibration damping and, more recently, active vibration control
using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 65 / 117



. . . . . .

BLOCK DIAGRAM OF A SINGLE LINK FLEXIBLE

MANIPULATOR

τ

θ1

τ θ̈1

θ1

[K]

[Mrf ]

−[Mrf ]T

1

s2

1

s2

q̈f

qf

−[Mff ]−1

u(s, t)

+
+

+

+

1

mrr

Figure 15: Block diagram of a single flexible-link manipulator

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 66 / 117



. . . . . .

BLOCK DIAGRAM (CONTD.)

Recall: Rigid manipulator τ directly influenced θm and in flexible joint
manipulator τ related to θm and θl .
Flexible manipulator: τ directly influence θ1 and indirectly qf !
Not clear if tip vibration (qf ) can be controlled by τ!
Coupling between rigid and flexible variables!!

θ̈1 can excite flexible dynamics through [Mrf ]
Resulting q̈f can in turn influence rigid dynamics through [Mrf ]

T .

In a multi-link flexible manipulator, there will be additional coupling
due to the centripetal/Coriolis terms.
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. . . . . .

CONTROLLABILITY OF FLEXIBLE-LINK MANIPULATORS

Rewrite equations of motion as

q̈r = [Hrr ]τ − [Hrr ](Cr +Gr )− [Hrf ]
T (Cf +Gf +[K]qf )

q̈f = [Hrf ]τ − [Hrf ](Cr +Gr )− [Hff ](Cf +Gf +[K]qf )

where

[Hrr ] = ([Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ])
−1

[Hrf ]
T = −[Hrr ][Mrf ]

T [Mff ]
−1

[Hff ] = ([Mff ]− [Mrf ][Mrr ]
−1[Mrf ]

T )−1

If a row of [Hrf ] is 0 → corresponding q̈f cannot be directly controlled
by τ – inaccessibility condition.
qfi induces a moment about the joint axis → controllable.
Joint axis lies in plane of deflection components → cannot be
controlled.
qfi influenced indirectly by non-zero [Hff ](Cf +Gf +[K]qf ) → Can be
controlled even if the row of [Hrf ] is 0!
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. . . . . .

MODEL-BASED CONTROL FOR TRAJECTORY

FOLLOWING

Rewrite equations of motion as

[Mrr ]q̈r + [Mrf ]
T q̈f + Cr (q, q̇) + Gr (q) = τ

[Mrf ]q̈r + [Mff ]q̈f + Cf (q, q̇) + Gf (q) + [K]qf = 0

Solve for q̈f as

q̈f =−[Mff ]
−1([Mrf ]q̈r + Cf + Gf + [K]qf )

and substitute in first equation to get

([Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ])q̈r +

(Cr +Gr − [Mrf ]
T [Mff ]

−1(Cf +Gf +[K]qf )) = τ

Similar to rigid manipulators, choose τqr = [α]τ ′
qr +β where

[α] = [Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ]

β = Cr +Gr − [Mrf ]
T [Mff ]

−1(Cf +Gf +[K]qf )
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. . . . . .

MODEL-BASED CONTROL FOR TRAJECTORY

FOLLOWING

Similar to rigid manipulators, substitute [α] and β to get an unit
inertia plant with new input τ ′

qr

τ ′
qr = q̈r

Choose τ ′
qr as

τ ′
qr = q̈rd (t)+ [Kp]qr

e(t)+ [Kv ]qr
ė(t)

For e(t) = qrd −qr and qrd (t) as the desired joint trajectory, the error
equation becomes

ër (t)+ [Kp]qr
er (t)+ [Kv ]qr

ėr (t) = 0

For appropriate controller gains [Kp]qr
and [Kv ]qr

, er (t), ėr (t)→ 0
asymptotically and desired trajectory can be followed.
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asymptotically and desired trajectory can be followed.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 70 / 117



. . . . . .

MODEL-BASED CONTROL FOR TRAJECTORY

FOLLOWING

Similar to rigid manipulators, substitute [α] and β to get an unit
inertia plant with new input τ ′

qr

τ ′
qr = q̈r

Choose τ ′
qr as

τ ′
qr = q̈rd (t)+ [Kp]qr

e(t)+ [Kv ]qr
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. . . . . .

MODEL-BASED CONTROL FOR TRAJECTORY

FOLLOWING
STABILITY ANALYSIS

The closed-loop system equations for the model-based controller are

q̈r (t) = τ ′
qr

[Mff ]q̈f +Cf (q, q̇)+Gf (q) + [K]qf =−[Mrf ]τ ′
qr

Smooth tracking of qrd (t) as long as flexible variables qf are stable.
The flexible variables qf are coupled to control input τ ′

qr through the
matrix [Mrf ].
The stability of qf are determined by the zero dynamics3.

q̈f =−[Mff ]
−1 (Cf +Gf +[K]qf )

where all terms are evaluated for a constant q∗
r and q̇r = 0.

3The zero dynamics of a non-linear system describe the dynamic behaviour of the
system when inputs are chosen to constrain the outputs of the system to be zero or
constant (Isidori 1989).
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. . . . . .

MODEL-BASED CONTROL FOR TRAJECTORY

FOLLOWING
STABILITY ANALYSIS (CONTD.)

Equilibrium points: q̇f = 0 and a static deflection q∗
f which satisfies

[K]q∗
f +Gf (q∗

r ,q
∗
f ) = 0

Candidate Lyapunov function

V (qf , q̇f ) =
1
2
q̇T

f [Mff ]q̇f +
1
2
(q∗

f −qf )
T [K](q∗

f −qf )

+(VG (q∗
r ,qf )−VG (q∗

r ,q
∗
f ))+(q∗

f −qf )
TGf (q∗

r ,q
∗
f )

VG denotes the gravitational potential energy yielding Gf .
The time derivative, after simplification and using skew-symmetric
nature of

[
[Ṁff ]−2[Cff ]

]
, is

V̇ =
1
2
q̇T

f

(
[Ṁff ]−2[Cff ]

)
q̇f − q̇T

f ([K]q∗
f +Gf (q∗

r ,q
∗
f )) = 0

Critically stable → With damping asymptotically stable.
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[Ṁff ]−2[Cff ]

]
, is

V̇ =
1
2
q̇T

f

(
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. . . . . .

END POSITION VIBRATION CONTROL

Joint motion excites vibration in link → Need to be suppressed for
task.
Tip vibration to be controlled by joint rotation alone!
Relationship between tip motion and joint motion – Jacobian matrix
(similar to rigid case).
Full Jacobian contain joint rotation variables qr and flexible variable
qf – Difficult to measure all components of qf .
Control law using Jacobian derived from desired rigid variables – same
as the rigid Jacobian matrix – always exist.

[J r
qr (qrd )] =

(
∂ f

∂qr

)
qr=qrd ,qf =0

X = f(qr ,qf ) represents the kinematic equations of the flexible
manipulator.
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. . . . . .

END POSITION VIBRATION CONTROL

A controller using the rigid Jacobian

τX = [J r
qr
]T
(
−[Kp]X δX − [Kv ]X Ẋ

)
+Gr (qrd ,qfd )

X represents position and orientation of the end-effector &
δX = X −Xd

4.
Gain matrices [Kp]X and [Kv ]X are constant diagonal matrices.
qrd is the final point of the desired joint trajectory and qfd is obtained
from the static deflection under gravity

qfd =−[K]−1Gf (qrd ,qfd )

X −Xd is due to flexible vibrations and is expected to be small.
Control torque τX at joint although X −Xd is a Cartesian error
vector – Similar to Cartesian control of rigid robots, Jacobian [J r

qr ]
T

relates Cartesian force/moments to joint torques (see Module 7,
Lecture 4).

4Error defined opposite to definition (·)d − (·) till now and hence the − sign in
control law. This is required for consistency in definition of rigid Jacobian using Taylor
series expansion.
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. . . . . .

END POSITION VIBRATION CONTROL
STABILITY ANALYSIS

Equilibrium points under end-position control: q = qd and q̇ = 0.
Equilibrium points are unique (see Ghosal 2006) if for a positive
constant c

λmin ([K])> c , λmin

(
[J r

qr
]T [Kp]X

)
> c

Physically: The manipulator can be placed at an arbitrary q = qd and
q̇= 0, if the minimum stiffness and minimum controller gains are large
enough to overcome static deflection due to gravity!
Candidate Lyapunov function

V =
1
2
q̇T [M(q)]q̇+

1
2
(qfd −qf )

T [K](qfd −qf )

+(VG (q)−VG (qd ))+(qd −q)TG(qd)+
1
2

δX T [Kp]X δX

VG denotes the gravitational potential energy giving rise to G(q).
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constant c
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[J r

qr
]T [Kp]X

)
> c

Physically: The manipulator can be placed at an arbitrary q = qd and
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. . . . . .

END POSITION VIBRATION CONTROL
STABILITY ANALYSIS (CONTD.)

Time derivative of V , after simplification using equations of motion,
the skew-symmetry property and the control law based on rigid
Jacobian

V̇ =−Ẋ T [Kv ]X Ẋ +
(
Ẋ − [J r

qr
]q̇r

)T (
[Kp]X δX +[Kv ]X Ẋ

)
V̇ is strictly negative if

|
(
Ẋ − [J r

qr
]q̇r

)T (
[Kp]X δX +[Kv ]X Ẋ

)
| < | Ẋ T [Kv ]X Ẋ |

[Kv ]X satisfies inequality if minimum eigenvalue of [Kv ]X , λv , satisfy

λv >
γ λp α

β (β − γ)

where ∥ (Ẋ − [J r
qr
]q̇r ) ∥= γ , ∥ δX ∥= α, ∥ Ẋ ∥= β ,

λmin([Kp]X ) = λp, at the end of the trajectory following phase.
Note: Link vibration are not zero at the end of the trajectory following
phase ⇒ β ̸= 0.
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λmin([Kp]X ) = λp, at the end of the trajectory following phase.
Note: Link vibration are not zero at the end of the trajectory following
phase ⇒ β ̸= 0.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 76 / 117



. . . . . .

END POSITION VIBRATION CONTROL
STABILITY ANALYSIS (CONTD.)

Time derivative of V , after simplification using equations of motion,
the skew-symmetry property and the control law based on rigid
Jacobian
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. . . . . .

TWO-STAGE CONTROL ALGORITHM

Model based control law

τqr = [α]τ ′
qr +β

with

[α] = [Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ]

β = Cr +Gr − [Mrf ]
T [Mff ]

−1(Cf +Gf +[K]qf )

τ ′
qr = q̈rd (t)+ [Kp]qr

e(t)+ [Kv ]qr
ė(t)

provide asymptotic trajectory following for qr .
End-effector vibrations induced can be damped out by

τX = [J r
qr
]T
(
−[Kp]X δX − [Kv ]X Ẋ

)
+Gr (qrd ,qfd )

Two-stage controller

τ = ([U]− [S])τqr +[S]τX

[S] =
{

[0] null matrix during joint trajectory tracking stage
[U] identity matrix during end position vibration control
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TWO-STAGE CONTROL ALGORITHM
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Figure 16: Two-stage controller for flexible link manipulators – [α], β are model-based terms
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. . . . . .

ROBUSTNESS OF TRAJECTORY FOLLOWING

CONTROLLER

Uncertainty in stiffness matrix [K] & in mass matrix [M(q)].
Considered together as uncertainty in structural natural frequencies

ω2
i = λi ([Ω]) = λi ([Mff ]

−1[K]), i = 1,2, . . . ,N

λi (·) denotes the ith eigenvalue.
AMM and FEM (or any discretisation method) always overestimates
stiffness matrix.
Due to mechanical joints and play, estimated stiffness is more than
actual stiffness!
Model (estimated) natural frequencies larger than actual natural
frequencies.
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. . . . . .

ROBUSTNESS OF TRAJECTORY FOLLOWING

CONTROLLER
EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

Rewrite trajectory following control law as

τqr = ([Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ])τ ′
qr

+(Cr +Gr − [Mrf ]
T ([Mff ]

−1(Cf +Gf )+ [̂Ω]qf ))

Symbol [̂Ω] denotes estimated (computed) [Mff ]
−1[K].

The closed-loop error equation becomes

ë(t)+[Kv ]qr
ė(t)+[Kp]qr

e(t)=−([Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ])
−1

[Mrf ]
T∆[Ω]qf

Flexible variables qf are governed by

q̈f +[Mff ]
−1(Cf +Gf )+([Ω]− [M ][∆ Ω])qf =−[Mff ]

−1[Mrf ]τ ′
qr

where [M ] = [Mff ]
−1[Mrf ]( [Mrr ]− [Mrf ]

T [Mff ]
−1[Mrf ] )

−1
[Mrf ]

T

and [∆Ω] = [̂Ω]− [Ω].
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. . . . . .

ROBUSTNESS OF TRAJECTORY FOLLOWING

CONTROLLER
EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

For qf to be stable, the closed-loop frequency matrix
( [Ω]− [M ]∆[Ω]) must be positive definite (Inman 1989).
Intuitive justification:

Spring-mass-damper system ẍ +ω2x = u(t) – ω2 < 0 → x(t)→ ∞.
( [Ω]− [M ][∆ Ω]) is like an equivalent closed-loop natural frequency
matrix for the multi-link flexible manipulator – positive definite for
qf (t) to be bounded.

[∆ Ω]< 0 → Closed-loop frequency matrix is positive definite and qf
will be stable.
[∆ Ω]> 0 → Closed-loop frequency matrix may not be positive
definite and qf may be unstable.
Bounds on uncertainty in natural frequency for stable qf can be
derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).
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. . . . . .

NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR

Three DOF manipulator with two flexible links – Parameters.

Physical system parameters Value
mass of link 1 (m1) 3.66 kg
linear mass density of link 2 (ρ2A2) 0.331 kgm−1

linear mass density of link 3 (ρ3A3) 0.331 kgm−1

mass of payload (mp) 0.1 kg
length of link 1 0.12 m
length of link 2 1.0 m
length of link 3 1.0 m
rotary inertia of joint 1 (Ijoint1) 0.4 kgm2

rotary inertia of joint 2 (Ijoint2) 3.275 kgm2

rotary inertia of joint 3 (Ijoint3) 3.275 kgm2

flexural rigidity of link 2 ((EI )2) 1165.4916 Nm2

flexural rigidity of link 3 ((EI )3) 1165.4916 Nm2
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NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR
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Figure 17: Schematic of a 3R flexible manipulator
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. . . . . .

NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR

Desired trajectory is smooth sine profile with zero velocity and
acceleration at the start and end – represents a right-circular helix of
radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
Total time is 1.0 seconds – chosen ‘fast’ to excite vibrations!
After 1.0 seconds, Ẋd = 0 is chosen to be zero & 1.0 seconds to
damp vibrations.
Controller gains:

I-stage – [Kp]qr
and [Kv ]qr

are diagonal matrices with equal diagonal
elements of 64.0 and 32.0.
II-stage – [Kp]X and [Kv ]X are chosen as diagonal matrices with
elements {100.0,100.0,400.0} and {40.0,40.0,80.0}, respectively.

Mass parameters underestimated by 25% and stiffness parameters
overestimated by 25%.
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After 1.0 seconds, Ẋd = 0 is chosen to be zero & 1.0 seconds to
damp vibrations.
Controller gains:

I-stage – [Kp]qr
and [Kv ]qr

are diagonal matrices with equal diagonal
elements of 64.0 and 32.0.
II-stage – [Kp]X and [Kv ]X are chosen as diagonal matrices with
elements {100.0,100.0,400.0} and {40.0,40.0,80.0}, respectively.

Mass parameters underestimated by 25% and stiffness parameters
overestimated by 25%.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 84 / 117



. . . . . .

NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR

Desired trajectory is smooth sine profile with zero velocity and
acceleration at the start and end – represents a right-circular helix of
radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
Total time is 1.0 seconds – chosen ‘fast’ to excite vibrations!
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Total time is 1.0 seconds – chosen ‘fast’ to excite vibrations!
After 1.0 seconds, Ẋd = 0 is chosen to be zero & 1.0 seconds to
damp vibrations.
Controller gains:

I-stage – [Kp]qr
and [Kv ]qr

are diagonal matrices with equal diagonal
elements of 64.0 and 32.0.
II-stage – [Kp]X and [Kv ]X are chosen as diagonal matrices with
elements {100.0,100.0,400.0} and {40.0,40.0,80.0}, respectively.

Mass parameters underestimated by 25% and stiffness parameters
overestimated by 25%.
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NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR

Two simulation result cases:
CASE 1: Two-stage control algorithm with no uncertainties in

model parameters – τqr = [α]τ ′
qr +β and

[α] = [Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ]

β = Cr +Gr − [Mrf ]
T [Mff ]

−1(Cf +Gf +[K]qf )

τ ′
qr = q̈rd (t)+ [Kp]qr

e(t)+ [Kv ]qr
ė(t)

CASE 2: Two-stage control algorithm with uncertainty in model
parameters

τqr = ([Mrr ]− [Mrf ]
T [Mff ]

−1[Mrf ])τ ′
qr

+(Cr +Gr − [Mrf ]
T ([Mff ]

−1(Cf +Gf )+ [̂Ω]qf ))

τ ′
qr = q̈rd (t)+ [Kp]qr

e(t)+ [Kv ]qr
ė(t)
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Figure 19: Case 1: Time history of the joint position and velocity, and tip position and
velocity errors for two-stage controller (joint error: — : e1(ė1), - - - : e2(ė2), -·-·- : e3(ė3); tip
error: — : ex (ėx ), - - - : ey (ėy ), -·-·- : ez (ėz )
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Figure 20: Case 1: Time history of the elastic deflection variable along the Y direction, at the
tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z
direction, at the tip of flexible link 2, and its rate
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Figure 21: Case 2: Time history of the joint position and velocity, and tip position and velocity
errors for two-stage controller (joint error: — : e1(ė1), - - - : e2(ė2), -·-·- : e3(ė3); tip error:
— : ex (ėx ), - - - : ey (ėy ), -·-·- : ez (ėz )
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Figure 22: Case 2: Time history of the elastic deflection variable along the Y direction, at the
tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z
direction, at the tip of flexible link 2, and its rate
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NUMERICAL SIMULATION OF A FLEXIBLE LINK

MANIPULATOR
SUMMARY OF SIMULATION RESULTS

Without any uncertainty (Case 1), joint trajectory errors (between 0
and 1 sec) are quite small.
Even in Case 1, the tip errors at the the end of trajectory following
(t = 1 sec) are ≈ 5 cm – quite large!
With the end-position controller (between 1 and 2 sec), the tip
vibration errors are reduced to ≈ 1 cm.
In presence of uncertainties in model parameters (Case 2), joint and
tip errors are much larger – ≈ 20◦ & ≈ 30 cm.
Due to end position vibration controller (between 1 and 2 sec), the
joint and tip position errors are again driven to lower levels of about 2◦

and 3 cm.
To reduce errors further, robust compensator is required (See
Theodore and Ghosal (2003)).
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. . . . . .

SUMMARY

Kinematic modeling → Dynamic equations of motion using
Lagrangian formulation.
Equations of motion can be done using computer algebra software
such as Maple R⃝ or Mathematica R⃝.
Two-way coupling between rigid joint variables and flexible vibration
variables!
Number of ODE’s in 3D with nf flexible links and Nj modes or
elements for each flexible link – 2∑nf

j=1 Nj in AMM and 4∑nf
j=1 Nj in

FEM.
Trajectory and end-position vibration control using only rigid joint
variable.
Overestimation of natural frequency → unstable behaviour!
Numerical simulation results for 2-stage controller.
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INTRODUCTION

A planar 2R flexible link system moving on a horizontal table on air
bearings.
Simulate deployment of a two element solar panel in zero gravity
environment.
Added complication: Locking at the end of motion induces flexible
vibration.
Modeled as flexible beams (made of Aluminum), actuated by two
springs and locking mechanism.
Instrumented with potentiometer (to measure joint rotation) and
strain gages (to estimate vibration).
Goal is to do modeling and numerical simulation & compare with
experimental data.
See details in Nagaraj et al.(1997) & Nagaraj et al. (2003).
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. . . . . .

MOTION STAGES OF A PLANAR 2R SYSTEM

Initially both links are folded – shown in (a).
Both joints are actuated by torsional springs with link 1 rotating
counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage
1 motion shown in (b).
The second joint locks first when θ2 = 0 – shown as (c).
Both links rotate as one in a CCW manner – Stage 2 motion shown as
(d).
At θ1 = 90◦, the first joint locks – shown as (e).
Both links together vibrate as a cantilever – Stage 3.
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The second joint locks first when θ2 = 0 – shown as (c).
Both links rotate as one in a CCW manner – Stage 2 motion shown as
(d).
At θ1 = 90◦, the first joint locks – shown as (e).
Both links together vibrate as a cantilever – Stage 3.
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. . . . . .

MOTION STAGES OF A PLANAR 2R SYSTEM

(e) Both locked
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Figure 23: Planar 2R system in different stages of motion
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MODELING OF STAGE 1

Figure 24: Flexible 2R system in Stage 1 – τ2
is actually CW

FEM approach for modeling.
Two elements in each link and
Hermite cubic shape functions.
Clamped-mass boundary
conditions for both links.

Kinetic energy from Links 1 and
2, Revolute joints 1 and 2m and
tip mass at end of both links.

Potential energy from strain energy of both links and torsion springs.
Torque due to rocker arm in the locking mechanism.
Dynamic equations of motion obtained using Lagrangian formulation.
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. . . . . .

MODELING OF STAGE 1
MODELING OF LOCKING

Equations of motion for Stage 1 motion (see Lecture 3)(
[Mrr ] [Mrf ]

T

[Mrf ] [Mff ]

)(
q̈r
q̈f

)
+

(
Cr (q, q̇)
Cf (q, q̇)

)
+

(
[Kj ] 0
0 [Kf ]

)(
qr
qf

)
=

(
τ
0

)
Note: the gravity term is not present, the stiffness due to torsional springs is [Kj ]

and τ is due to the rocker-arm force.

After θ2 rotates by π (CW direction), the joint locks → 2R system
changes to 1R system.
Initial conditions for motion just after locking (Stage 2 motion)
obtained using momentum balance.
Assumptions:

Time duration of impact during locking is neglected.
Generalised coordinates before and after locking is same → q+ = q−
Velocities are bounded during impact.
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. . . . . .

MODELING OF STAGE 1
MODELING OF LOCKING (CONTD.)

Momentum balance equation, with H denoting generalised impulse,

[M(q)]∆q̇ = H

The velocity after locking is q̇+ = q̇−+∆q̇, θ̇2+ = 0
Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

Mrr11 Mrf 11 ... Mrf 14 0
Mrr21 Mrf 21 ... Mrf 24 −1
Mrf 11 Mff 11 ... Mff 14 0
.. .. ... .. ..
Mrf 14 Mff 41 ... Mff 44 0





∆θ̇1
∆q̇11
..
..
..
H1

= θ̇2−



Mrr12

Mrr22

Mrf 21

..

..
Mrf 24


where H1 is the impulse acting on joint 2 and Mrf ij is computed
assuming 2 elements in each link.
The velocities after locking are

θ̇1+ = θ̇1−+∆θ̇1, q̇f + = q̇f −+∆q̇f
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. . . . . .

MODELING OF STAGE 2

Figure 25: Flexible 1R system in Stage 2

After locking at joint 2, single
link flexible manipulator.
FEM approach with Hermite
cubic shape functions.
Clamped-mass boundary
conditions.

Kinetic energy from link,
revolute joint and payload at end
of link 1 and link 2.

Potential energy from strain energy and torsion spring.
Torque due to rocker arm in the locking mechanism.
Dynamic equations of motion obtained using Lagrangian formulation.
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MODELING OF STAGE 2 (CONTD.)

Equations of motion are (see Lecture 3)(
Mrr [Mrf ]

T

[Mrf ] [Mff ]

)(
q̈r
q̈f

)
+

(
Cr (q, q̇)
Cf (q, q̇)

)
+

(
Kj 0
0 [Kf ]

)(
qr
qf

)
=

(
τ
0

)
Only one rigid body equation and scalar joint spring stiffness.
qf ∈ ℜ2(n1+n2), n1 and n2 are number of element in link 1 and 2 (both
chosen equal to 2 in simulations).
Displacement and slope at first element is set to zero.
At θ1 = π/2, the first joint locks.
After locking, system becomes a vibrating cantilever.
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MODELING OF STAGE 3

Figure 26: Vibrating flexible cantilever

FEM with clamped-mass
boundary conditions.
Equations of motion

[Mc ]q̈f +[Kc ]qf = 0

[Mc ] and [Kc ] are the mass and
stiffness matrix and qf are the
flexible variables for the
cantilever.
θ̇1+ = 0.

Velocity after locking q̇f + = q̇f −+∆q̇f −, and ∆q̇f − is obtained from

(
Mrf 11 .. Mrf 14 −1

[Mff ] 0T

)(
∆q̇f −
H2

)
= θ̇1−


Mrr11

Mrf 11

..
Mrf 14


H2 is the impulse acting at joint 1.
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. . . . . .

NUMERICAL SIMULATION
PARAMETERS USED FOR SIMULATION

Parameters of link 1 (from hardware)
Length = 1.006423 m
X-section = 1.78076 10−4 m2

Thickness = 4.4519 10−3 m
Flexural Rigidity EI = 20.5879 N−m2

Link mass = 0.52334 Kg
Spring stiffness = 0.0789 N m/rad

Parameters of link 2 (from hardware)
Length = 0.9945 m
X-section = 1.77748 10−4 m2

Thickness = 4.437 10−3 m
Flexural Rigidity EI = 20.3819 N−m2

Link mass = 0.42958 Kg
Spring stiffness = 0.0789 N m/rad
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NUMERICAL SIMULATION
RIGID BODY SIMULATION

Rigid body model

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Time (s)

F
irs

t j
oi

nt
 r

ot
at

io
n 

(d
eg

)

Figure 27: Motion of joint 1

Rigid body model
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Figure 28: Motion of joint 2

Time to first lock – 2.898 sec
Time to second lock – 4.38 sec
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NUMERICAL SIMULATION
FLEXIBLE LINK SIMULATION - JOINT MOTION

Numerical Simulation
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Figure 29: Motion of joint 1

Numerical Simulation
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Figure 30: Motion of joint 2

Time to first lock – 2.923 sec
Time to second lock – 5.78 sec
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NUMERICAL SIMULATION
FLEXIBLE LINK SIMULATION – STRAINS

Numerical Simulation
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Figure 31: Strain at a location near base of
link 1

Numerical Simulation
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Figure 32: Strain at location near base of link
2

Maximum strain (Stage 1): link 1 and link 2 < 50µ-strains.
Maximum strain (Stage 2): link 1 ≈ 150 & link 2 ≈ 400 µ-strains.
Maximum strain (Stage 3): link 1 ≈ 700 & link 2 ≈ 400 µ-strains.
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. . . . . .

EXPERIMENTAL SET-UP

Figure 33: Experimental set-up for planar 2R motion studies

Flexible Aluminum beams floating on air bearings on a horizontal glass
table and actuated by two springs.
Locking mechanism to lock after deployment.
Instrumented to measure rotation and strain.
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. . . . . .

EXPERIMENTAL SET-UP
FIRST-JOINT ASSEMBLY

Figure 34: First joint assembly at initial
configuration Figure 35: First joint assembly at locked

configuration

Rocker arm moves on cam and pressed by a spring.
At θ1 = π/2, the joint 1 is locked.
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. . . . . .

EXPERIMENTAL SET-UP
INSTRUMENTATION

Figure 36: Instrumentation to measure rotation and strain

Potentiometer measures joint rotation.
Strain gages used to measure strains near the base of the links.
All readings stored on a PC.
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. . . . . .

EXPERIMENTAL HARDWARE

 
    Initial folded configuration  
 

 
   Deployment under progress 
 

 

Potentiometer to measure joint 
rotation 

Strain 
gauges 

Spring for actuation 

Air bearing 

Figure 37: Experimental set-up for planar 2R motion studies
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EXPERIMENTAL RESULTS
JOINT ROTATION

Experimental data
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Figure 38: Rotation at joint 1 in Stage 1 and
Stage 2
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Figure 39: Rotation at joint 2

Time to first lock – 3.07 sec
Time to second lock – 6.13 sec
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EXPERIMENTAL RESULTS
STRAIN IN LINK 1 AND 2
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Figure 40: Strain measurement in link 1
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Figure 41: Strain measurement in link 2

Maximum strain (Stage 1): link 1 and link 2 < 50 µ-strains
Maximum strain (Stage 2): link 1 ≈ 150 and link 2 ≈ 600 µ-strains.
Maximum strain (Stage 3): link 1 ≈ 500 and link 2 ≈ 300 µ-strains.
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. . . . . .

COMPARISON OF EXPERIMENTAL AND NUMERICAL

SIMULATION

Figure 42: Comparison of joint rotations

Time for first locking – 2.92 sec(computed) Vs. 3.07 sec(measured).
Time for second locking – 5.87 sec(computed) Vs. 6.13
sec(measured).
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COMPARISON OF EXPERIMENTAL AND NUMERICAL

SIMULATION

Figure 43: Comparison of strains near base of links

Simulation ≈ 700 µ-strains Vs. experimental ≈ 500 µ-strains .
Simulation ≈ 400 µ-strain Vs. experimental ≈ 600 µ-strains.
Frequency after first lock: 1.95 Hz – good agreement with simulation.
Two frequencies after second lock: 0.39 Hz and 2.73 Hz (simulation)
Vs. 0.49 Hz and 2.93 Hz (experiments).
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. . . . . .

SUMMARY

Modeling of 2 link flexible system mimicking deployment of a two
element solar panel under zero gravity environment.
Three stage motion – Stage 1: two link flexible, Stage 2: One link
flexible system and Stage 3: Vibrating cantilever.
Numerical simulation results based on finite element modeling of
flexible multi-link manipulators.
Modeling of locking to determine initial conditions in different stages
of motion.
Experimental hardware and results.
Experimental results match reasonably well – time for locking is
underestimated due to un-modeled friction.
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