

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 8 - MODELING AND CONTROL OF FLEXIBLE ROBOTS

Ashitava Ghosal¹

¹Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian Institute of Science Bangalore 560 012, India Email: asitava@mecheng.iisc.ernet.in

NPTEL, 2010

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CONTENTS

LECTURE 1

Flexible Manipulators

3 Lecture 2*

- Kinematic Modeling of Flexible Link Manipulators
- 4 Lecture 3*
 - Dynamic Modeling of Flexible Link Manipulators
 - Control of Flexible Link Manipulators
- 5 LECTURE 4
 - Experiments with a Planar Two Link Flexible System
- 6 Module 8 Additional Material
 - Problems, References and Suggested Reading

OUTLINE

CONTENTS

DECTURE 1• Flexible Manipulators

- 3 LECTURE 2*
 - Kinematic Modeling of Flexible Link Manipulators

4 LECTURE 3*

- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators

5 LECTURE 4

- Experiments with a Planar Two Link Flexible System
- 6 Module 8 Additional Material
 - Problems, References and Suggested Reading

INTRODUCTION Overview

• Introduction to flexible manipulators and mechanisms.

- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
 - Euler-Bernoulli model of a beam.
 - Modeling a rotating flexible link.
 - Modeling a translating flexible link.
- Summary

INTRODUCTION Overview

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
 - Euler-Bernoulli model of a beam.
 - Modeling a rotating flexible link.
 - Modeling a translating flexible link.
- Summary

INTRODUCTION OVERVIEW

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
 - Euler-Bernoulli model of a beam.
 - Modeling a rotating flexible link.
 - Modeling a translating flexible link.
- Summary

INTRODUCTION OVERVIEW

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
 - Euler-Bernoulli model of a beam.
 - Modeling a rotating flexible link.
 - Modeling a translating flexible link.
- Summary

INTRODUCTION OVERVIEW

- Introduction to flexible manipulators and mechanisms.
- Characteristic of a rigid link.
- Characteristic's of a flexible joint.
- Characteristic of a flexible link.
 - Euler-Bernoulli model of a beam.
 - Modeling a rotating flexible link.
 - Modeling a translating flexible link.
- Summary

INTRODUCTION

 $\bullet\,$ Industrial robots: Required high accuracy and repeatability $\to\,$ Heavy, high stiffness and slow.

Figure 1: PUMA 700 Series Industrial Robot

- PUMA 700 series industrial robot (PUMA 761) – Arm weight 580 Kg, Static payload 10 kg^a.
- Repeatability \pm 0.2 mm.
- Maximum straight line speed 1.0 m/sec.

^aDocumentation on PUMA 700 series robots available here

• Robots in aero-space applications \rightarrow Light-weight and flexible.

Figure 2: Space Shuttle manipulator system

Figure 3: Solar panels being deployed

- Extreme flexibility in space-shuttle manipulator system \rightarrow Can be operated safely only in a gravity free environment!!
- Solar panels light weight and very large!!

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

itial folded configuration

Deployment under progress

- Two flexible Aluminum beams, initially folded, and floating on air bearings.
- Actuated by two springs at the joints and locking mechanism at joints.
- Final configuration single cantilever beam.
- See details in Nagaraj et al.(1997) & Nagaraj et al. (2003).

Figure 4: Experimental set-up for solar panel deployment studies

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 7/117

SOLAR PANEL DEPLOYMENT STUDIES

Figure 5: Rotation at joint 1

Figure 6: Rotation at joint 2

- Joint 2 lock a little after 3 seconds.
- \bullet After joint 2 locks, motion of joint 1 is vibratory \rightarrow Tip motion is also vibratory!

ASHITAVA GHOSAL (IISC)

• Light-weight, high speed robots can no longer be modeled as 'rigid'.

- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following & vibrations must also be *suppressed* in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
 - Design 'model based' control schemes to damp out vibrations.
 - Reduce expensive experimentations.
 - For trimmer designs!

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following & vibrations must also be *suppressed* in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
 - Design 'model based' control schemes to damp out vibrations.
 - Reduce expensive experimentations.
 - For trimmer designs!

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following & vibrations must also be *suppressed* in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
 - Design 'model based' control schemes to damp out vibrations.
 - Reduce expensive experimentations.
 - For trimmer designs!

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following & vibrations must also be *suppressed* in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
 - Design 'model based' control schemes to damp out vibrations.
 - Reduce expensive experimentations.
 - For trimmer designs!

- Light-weight, high speed robots can no longer be modeled as 'rigid'.
- During motion of flexible robots, vibrations are induced in links.
- During locking at joints (in deployable mechanisms) vibrations are set up.
- Control: trajectory following & vibrations must also be *suppressed* in flexible manipulators for tasks such as pick-n-place.
- Accurate modeling of flexibility in links and joints is useful and important to
 - Design 'model based' control schemes to damp out vibrations.
 - Reduce expensive experimentations.
 - For *trimmer* designs!

100

CHARACTERISTIC OF A RIGID LINK

Figure 7: A rigid link with its block diagram representation

 $\bullet\,$ Simple dynamics $\rightarrow\,$ equation of motion, without friction, is

$$J\ddot{ heta}_l = au$$

• One-to-one relationship between τ and θ_l

ASHITAVA GHOSAL (IISC)

Figure 8: A link of a robot with a flexible joint

- Flexible joint modeled as *torsional spring* with a spring constant K_s.
- Motion in a plane no out of plane motion!
- Rotation at motor θ_m .
- Rotation of link θ_l .
- Motor torque au.

• Equation of motion - Two linear coupled ODE's

$$J_m\ddot{\theta_m} + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta}_l + K_s(\theta_l - \theta_m) = 0$$

 $J_l = l_1 + m_1 r_1^2$ is the load inertia.

- τ controls two outputs θ_m and θ_l .
- More complicated than rigid-link case.

Figure 9: A block diagram of the flexible-joint link

NPTEL, 2010

- Test for controllability of $heta_m$ and $heta_l$ by au
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_l^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are *nonlinear*!

$$J_m \ddot{\theta}_m + K_s(\theta_m - \theta_l) = \tau, \quad J_l \ddot{\theta}_l + K_s(\theta_l - \theta_m) + m_1 g r_1 \sin \theta_l = 0$$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Test for controllability of θ_m and θ_l by au
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_l^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are *nonlinear*!

 $J_m\ddot{\theta_m} + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta_l} + K_s(\theta_l - \theta_m) + m_1gr_1\sin\theta_l = 0$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Test for controllability of θ_m and θ_l by au
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_t^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are *nonlinear*!

 $J_m\ddot{\theta_m} + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta_l} + K_s(\theta_l - \theta_m) + m_1gr_1\sin\theta_l = 0$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

- Test for controllability of θ_m and θ_l by τ
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_l^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are *nonlinear*!

 $J_m\ddot{\theta}_m + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta}_l + K_s(\theta_l - \theta_m) + m_1gr_1\sin\theta_l = 0$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Test for controllability of θ_m and θ_l by τ
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_l^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are nonlinear!

$$J_m\ddot{\theta_m} + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta_l} + K_s(\theta_l - \theta_m) + m_1gr_1\sin\theta_l = 0$$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

ASHITAVA GHOSAL (IISC)

- Test for controllability of θ_m and θ_l by au
- For state variables $\mathbf{X} = (\theta_m, \theta_l, \dot{\theta_m}, \dot{\theta_l})^T$, [F] and [G] matrices in $\dot{\mathbf{X}} = [F]\mathbf{X} + [G]u$ are

$$[F] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_s/J_m & K_s/J_m & 0 & 0 \\ K_s/J_l & -K_s/J_l & 0 & 0 \end{pmatrix}, \quad [G] = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \\ 0 \end{pmatrix}$$

- Obtain controllability matrix $[Q_c] = [[G] | [F][G] | [F]^2[G] | [F]^3[G]]$ • det $[Q_c] = -K_s^2/(J_m^4 J_l^2) \neq 0 \rightarrow$ Controllable with τ .
- In presence of gravity, equations of motion are nonlinear!

$$J_m\ddot{\theta}_m + K_s(\theta_m - \theta_l) = \tau, \quad J_l\ddot{\theta}_l + K_s(\theta_l - \theta_m) + m_1gr_1\sin\theta_l = 0$$

• Model-based controller derived using Lie algebra (Marino and Spong(1986)) for this non-linear system.

ASHITAVA GHOSAL (IISC)

• To start with - flexible links undergoing *only* bending vibrations.

- Flexible link modeled as slender flexible beam.
- Main assumptions:
 - ${\scriptstyle \bullet}$ Small deformations \rightarrow Linear elasticity theory is applicable.
 - Each flexible link is a homogeneous, isotropic and elastic material.
 - Linear stress-strain relationship.
 - Euler-Bernoulli hypothesis for slender beams Plain sections remain plane etc.
 - Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom contrast with rigid or flexible joint!!

- To start with flexible links undergoing *only* bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
 - ${\ensuremath{\,\circ\,}}$ Small deformations \rightarrow Linear elasticity theory is applicable.
 - Each flexible link is a homogeneous, isotropic and elastic material.
 - Linear stress-strain relationship.
 - Euler-Bernoulli hypothesis for slender beams Plain sections remain plane etc.
 - Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom contrast with rigid or flexible joint!!

- To start with flexible links undergoing *only* bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
 - $\bullet\,$ Small deformations \to Linear elasticity theory is applicable.
 - Each flexible link is a homogeneous, isotropic and elastic material.
 - Linear stress-strain relationship.
 - Euler-Bernoulli hypothesis for slender beams Plain sections remain plane etc.
 - Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom contrast with rigid or flexible joint!!

- To start with flexible links undergoing *only* bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
 - $\bullet\,$ Small deformations \to Linear elasticity theory is applicable.
 - Each flexible link is a homogeneous, isotropic and elastic material.
 - Linear stress-strain relationship.
 - Euler-Bernoulli hypothesis for slender beams Plain sections remain plane etc.
 - Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom contrast with rigid or flexible joint!!

- To start with flexible links undergoing *only* bending vibrations.
- Flexible link modeled as slender flexible beam.
- Main assumptions:
 - $\bullet\,$ Small deformations \to Linear elasticity theory is applicable.
 - Each flexible link is a homogeneous, isotropic and elastic material.
 - Linear stress-strain relationship.
 - Euler-Bernoulli hypothesis for slender beams Plain sections remain plane etc.
 - Longitudinal deformation is negligible and no torsion due to transverse loads.
- Transverse vibration of a flexible beam \rightarrow Partial differential equation.
- Infinite degrees of freedom contrast with rigid or flexible joint!!

EULER-BERNOULLI BEAM MODEL

Figure 10: A beam in flexure

• PDE describing the transverse free bending vibration of a beam

$$\frac{\partial^2}{\partial s^2} \left(EI(s) \frac{\partial^2 u(s,t)}{\partial s^2} \right) + \rho A(s) \frac{\partial^2 u(s,t)}{\partial t^2} = 0$$

• *EI*(*s*): flexural rigidity & *ρA*(*s*): mass per unit length.

- PDE second order in $t \rightarrow$ Need two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

- PDE second order in $t \to \text{Need}$ two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

- PDE second order in $t \rightarrow$ Need two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

- PDE second order in $t \rightarrow$ Need two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

EULER-BERNOULLI BEAM MODEL

- PDE second order in $t \rightarrow$ Need two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in $s \rightarrow$ four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

EULER-BERNOULLI BEAM MODEL

- PDE second order in $t \rightarrow$ Need two initial conditions, $u(s,t)|_{t=0}$ and $\frac{\partial u(s,t)}{\partial t}|_{t=0}$. Since the PDE
- Since PDE is fourth order in s
 ightarrow four boundary conditions required.
- Geometric boundary conditions deflection u(s,t) or slope $\frac{\partial u(s,t)}{\partial s}$ at the boundaries.
- Natural boundary conditions moment $\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ or shear force $\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)$ at the boundaries.
- Boundary conditions at s = 0 depends on *type of joint*.
- Two common types of joints Rotary (R) and Prismatic (P) joint.

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Rotating Flexible Link

 M_p, J_p

u(s,t)

• Rotation of joint $\theta(t)$.

- $\hat{x} \bullet u(s,t)$ deflection at s and time t in addition to rotation $\theta(t)$.
 - Motor torque $\tau(t)$.
 - Payload of mass M_p and inertia J_p .
 - Two possible boundary conditions at s = 0 - clamped or pinned.

Revolute Joint

 $\hat{\mathbf{Y}}_0$

{0}

 $\tau(t)$

 $\hat{\mathbf{X}}_{0}$

ROTATING FLEXIBLE LINK

- Clamped boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1}, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at s = 0 is zero

$$[u(s,t)]_{s=0} = 0, \quad \left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0$$

- Pinned boundary conditions
 - X̂₁ axis of {1} is chosen such that it passes through the centre of mass of the flexible link at all times → Slope at s = 0 need not be zero.

$$[u(s,t)]_{s=0} = 0, \quad \left[EI(s) \frac{\partial^2 u(s,t)}{\partial s^2} \right]_{s=0} = J_s \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=0}$$

 J_a is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_a >>$ flexible beam inertia (greater than 10) \rightarrow *Clamped* boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROTATING FLEXIBLE LINK

- Clamped boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1}, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at s = 0 is zero

$$[u(s,t)]_{s=0} = 0, \quad \left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0$$

- Pinned boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1} is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at s = 0 need not be zero.

$$[u(s,t)]_{s=0} = 0, \quad \left[EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=0} = J_a \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s}\right)\right]_{s=0}$$

J_a is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_a >>$ flexible beam inertia (greater than 10) \rightarrow *Clamped* boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROTATING FLEXIBLE LINK

- Clamped boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1}, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at s = 0 is zero

$$[u(s,t)]_{s=0} = 0, \quad \left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0$$

- Pinned boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1} is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at s = 0 need not be zero.

$$[u(s,t)]_{s=0} = 0, \quad \left[EI(s) \frac{\partial^2 u(s,t)}{\partial s^2} \right]_{s=0} = J_a \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=0}$$

 J_a is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_a >>$ flexible beam inertia (greater than 10) \rightarrow *Clamped* boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROTATING FLEXIBLE LINK

- Clamped boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1}, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at s = 0 is zero

$$[u(s,t)]_{s=0} = 0, \quad \left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0$$

- Pinned boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1} is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at s = 0 need not be zero.

$$[u(s,t)]_{s=0} = 0, \quad \left[EI(s) \frac{\partial^2 u(s,t)}{\partial s^2} \right]_{s=0} = J_a \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=0}$$

 J_a is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_a >>$ flexible beam inertia (greater than 10) \rightarrow *Clamped* boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

ASHITAVA GHOSAL (IISC)

ROTATING FLEXIBLE LINK

- Clamped boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1}, rotating with the link, is chosen tangent to the link at the origin \rightarrow Deflection and slope at s = 0 is zero

$$[u(s,t)]_{s=0} = 0, \quad \left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0$$

- Pinned boundary conditions
 - $\hat{\mathbf{X}}_1$ axis of {1} is chosen such that it passes through the centre of mass of the flexible link at all times \rightarrow Slope at s = 0 need not be zero.

$$[u(s,t)]_{s=0} = 0, \quad \left[EI(s) \frac{\partial^2 u(s,t)}{\partial s^2} \right]_{s=0} = J_a \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=0}$$

 J_a is the total inertia as seen by joint actuator.

- Neither clamped nor pinned exactly not a built in cantilever and motor control torque provide non-zero stiffness!
- If $J_a >>$ flexible beam inertia (greater than 10) \rightarrow *Clamped* boundary conditions more reasonable (Cetinkunt and Yu, 1991).
- We use clamped conditions at motor end.

ASHITAVA GHOSAL (IISC)

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Rotating Flexible Link

- Boundary conditions at s = l free or mass.
- Free boundary conditions at s = l

$$\left[EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l} = 0, \quad \left[\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)\right]_{s=l} = 0$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use *mass* boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$\begin{bmatrix} EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \end{bmatrix}_{s=l} = -J_p \begin{bmatrix} \frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s}\right) \end{bmatrix}_{s=l}$$
$$\begin{bmatrix} \frac{\partial}{\partial s} \left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right) \end{bmatrix}_{s=l} = M_p \begin{bmatrix} \frac{\partial^2 u(s,t)}{\partial t^2} \end{bmatrix}_{s=l}$$

where M_p and J_p are the mass and rotary inertia of the payload located at s = l.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

100

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Rotating Flexible Link

- Boundary conditions at s = l free or mass.
- Free boundary conditions at s = l

$$\left[EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l} = 0, \quad \left[\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)\right]_{s=l} = 0$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use *mass* boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$\begin{bmatrix} EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \end{bmatrix}_{s=l} = -J_p \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=l}$$
$$\begin{bmatrix} \frac{\partial}{\partial s} \left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \right) \end{bmatrix}_{s=l} = M_p \left[\frac{\partial^2 u(s,t)}{\partial t^2} \right]_{s=l}$$

where M_p and J_p are the mass and rotary inertia of the payload located at s = l.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Rotating Flexible Link

- Boundary conditions at s = l free or mass.
- Free boundary conditions at s = l

$$\left[EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l} = 0, \quad \left[\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)\right]_{s=l} = 0$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use *mass* boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$\begin{bmatrix} EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \end{bmatrix}_{s=I} = -J_p \begin{bmatrix} \frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s}\right) \end{bmatrix}_{s=I}$$
$$\begin{bmatrix} \frac{\partial}{\partial s} \left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right) \end{bmatrix}_{s=I} = M_p \begin{bmatrix} \frac{\partial^2 u(s,t)}{\partial t^2} \end{bmatrix}_{s=I}$$

where M_p and J_p are the mass and rotary inertia of the payload located at s = l.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Rotating Flexible Link

- Boundary conditions at s = l free or mass.
- Free boundary conditions at s = l

$$\left[EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l} = 0, \quad \left[\frac{\partial}{\partial s}\left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2}\right)\right]_{s=l} = 0$$

- Multi-link flexible manipulators or single link with payload \rightarrow More accurate to use *mass* boundary conditions.
- Mass boundary conditions require moment and shear force balance.

$$\begin{bmatrix} EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \end{bmatrix}_{s=l} = -J_p \left[\frac{\partial^2}{\partial t^2} \left(\frac{\partial u(s,t)}{\partial s} \right) \right]_{s=l}$$
$$\begin{bmatrix} \frac{\partial}{\partial s} \left(EI(s)\frac{\partial^2 u(s,t)}{\partial s^2} \right) \end{bmatrix}_{s=l} = M_p \left[\frac{\partial^2 u(s,t)}{\partial t^2} \right]_{s=l}$$

where M_p and J_p are the mass and rotary inertia of the payload located at s = l.

Rotating Flexible Link – Non-dimensional form

- Non-dimensional variables: $\tilde{u}(s,t) = u(s,t)/I$, $\eta = s/I$, $\tau = t/(I/U_g)$, with $U_g \triangleq \frac{1}{I} \sqrt{\frac{EI}{\rho A}}$
- U_g has units of speed & I/U_g has units of time.
- $EI \rightarrow \infty$ (rigid)- $I/U_g \rightarrow 0$ & EI is small (flexible) I/U_g is large!
- PDE and boundary conditions in terms of non-dimensional variables

$$rac{\partial^4 \widetilde{u}(\eta, au)}{\partial \eta^4} + rac{\partial^2 \widetilde{u}(\eta, au)}{\partial au^2} = 0, \hspace{1cm} 0 < \eta < 1$$

$$\begin{split} [\widetilde{u}(\eta,\tau)]_{\eta=0} &= 0, \quad \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=1} = -\frac{J_p}{\rho A I^3} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=1} \\ & \left[\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \quad \left[\frac{\partial^3 \widetilde{u}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=1} = \frac{M_p}{\rho A I} \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=1} \end{split}$$

ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- Non-dimensional variables: $\tilde{u}(s,t) = u(s,t)/l$, $\eta = s/l$, $\tau = t/(l/U_g)$, with $U_g \triangleq \frac{1}{l} \sqrt{\frac{El}{\rho A}}$
- U_g has units of speed & I/U_g has units of time.
- $EI \rightarrow \infty$ (rigid)- $I/U_g \rightarrow 0$ & EI is small (flexible) I/U_g is large!
- PDE and boundary conditions in terms of non-dimensional variables

$$rac{\partial^4 \widetilde{u}(\eta, au)}{\partial \eta^4} + rac{\partial^2 \widetilde{u}(\eta, au)}{\partial au^2} = 0, \hspace{1cm} 0 < \eta < 1$$

$$\begin{split} [\widetilde{u}(\eta,\tau)]_{\eta=0} &= 0, \quad \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=1} = -\frac{J_p}{\rho A I^3} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=1} \\ & \left[\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \quad \left[\frac{\partial^3 \widetilde{u}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=1} = \frac{M_p}{\rho A I} \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=1} \end{split}$$

Rotating Flexible Link – Non-dimensional form

- Non-dimensional variables: $\tilde{u}(s,t) = u(s,t)/I$, $\eta = s/I$, $\tau = t/(I/U_g)$, with $U_g \triangleq \frac{1}{I} \sqrt{\frac{EI}{\rho A}}$
- U_g has units of speed & I/U_g has units of time.
- $EI \rightarrow \infty$ (rigid)- $I/U_g \rightarrow 0$ & EI is small (flexible) I/U_g is large!
- PDE and boundary conditions in terms of non-dimensional variables

$$rac{\partial^4 \widetilde{u}(\eta, au)}{\partial \eta^4} + rac{\partial^2 \widetilde{u}(\eta, au)}{\partial au^2} = 0, \qquad \qquad 0 < \eta < 1$$

$$\begin{split} [\widetilde{u}(\eta,\tau)]_{\eta=0} &= 0, \quad \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=1} = -\frac{J_p}{\rho A^{/3}} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=1} \\ & \left[\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \quad \left[\frac{\partial^3 \widetilde{u}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=1} = \frac{M_p}{\rho A^{/3}} \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=1} \end{split}$$

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- Non-dimensional variables: $\tilde{u}(s,t) = u(s,t)/I$, $\eta = s/I$, $\tau = t/(I/U_g)$, with $U_g \triangleq \frac{1}{I} \sqrt{\frac{EI}{\rho A}}$
- U_g has units of speed & I/U_g has units of time.
- $EI \rightarrow \infty$ (rigid)- $I/U_g \rightarrow 0$ & EI is small (flexible) I/U_g is large!
- PDE and boundary conditions in terms of non-dimensional variables

$$rac{\partial^4 \widetilde{u}(\eta, au)}{\partial \eta^4} + rac{\partial^2 \widetilde{u}(\eta, au)}{\partial au^2} = 0, \hspace{1cm} 0 < \eta < 1$$

$$\begin{split} \widetilde{\mu}(\eta,\tau)]_{\eta=0} &= 0, \quad \left[\frac{\partial^2 \widetilde{\mu}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=1} = -\frac{J_p}{\rho A J^3} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{\mu}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=1} \\ & \left[\frac{\partial \widetilde{\mu}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \quad \left[\frac{\partial^3 \widetilde{\mu}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=1} = \frac{M_p}{\rho A J} \left[\frac{\partial^2 \widetilde{\mu}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=1} \end{split}$$

ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- In non-dimensional form easier to decide on boundary conditions at s = l.
 - Use free end-conditions if J_ρ and M_ρ << rotary inertia (ρAl³) and mass (ρAl) of the flexible link.
 - If J_p and M_p comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links *after* the flexible link j can be modeled as an effective M_{Pj} and J_{Pj} acting at $s = l \rightarrow M$ ore appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of *separation of variables.*
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

 $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathsf{q}_f(\tau)$

 $\psi(\eta)$ are called *mode shape functions* and $\mathbf{q}_f(t)$ are the flexible generalised coordinates.

ASHITAVA GHOSAL (IISC)

ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- In non-dimensional form easier to decide on boundary conditions at s = l.
 - Use free end-conditions if J_p and M_p << rotary inertia (pAl³) and mass (pAl) of the flexible link.
 - If J_p and M_p comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links *after* the flexible link j can be modeled as an effective M_{p_j} and J_{p_j} acting at $s = l \rightarrow M$ ore appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of *separation of variables*.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

 $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathsf{q}_f(\tau)$

 $\psi(\eta)$ are called *mode shape functions* and $\mathbf{q}_f(t)$ are the flexible generalised coordinates.

ASHITAVA GHOSAL (IISC)

ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- In non-dimensional form easier to decide on boundary conditions at s = I.
 - Use free end-conditions if J_p and M_p << rotary inertia (pAl³) and mass (pAl) of the flexible link.
 - If J_p and M_p comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links *after* the flexible link j can be modeled as an effective M_{p_j} and J_{p_j} acting at $s = I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of *separation of variables*.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

 $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathsf{q}_f(\tau)$

 $\psi(\eta)$ are called *mode shape functions* and $\mathbf{q}_f(t)$ are the flexible generalised coordinates.

ASHITAVA GHOSAL (IISC)

ROTATING FLEXIBLE LINK – NON-DIMENSIONAL FORM

- In non-dimensional form easier to decide on boundary conditions at s = l.
 - Use free end-conditions if J_p and M_p << rotary inertia (pAl³) and mass (pAl) of the flexible link.
 - If J_p and M_p comparable to link quantities \rightarrow Use mass end-conditions.
- In multi-link flexible manipulators, links *after* the flexible link j can be modeled as an effective M_{p_j} and J_{p_j} acting at $s = I \rightarrow$ More appropriate to use mass end-condition.
- PDE with boundary conditions can be solved by the method of *separation of variables*.
- $\widetilde{u}(\eta, \tau)$ is separable in space (η) and time (τ)

$$\widetilde{u}(\eta, au) = \psi(\eta) \mathbf{q}_f(au)$$

 $\psi(\eta)$ are called *mode shape functions* and $\mathbf{q}_f(t)$ are the flexible generalised coordinates.

ASHITAVA GHOSAL (IISC)

ROTATING FLEXIBLE LINK – SOLUTION OF PDE

• Substitute $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$ in PDE and rearrange

$$\frac{1}{\mathbf{q}_f(\tau)}\frac{d^2\mathbf{q}_f(\tau)}{d\tau^2} = -\frac{1}{\psi(\eta)}\frac{d^4\psi(\eta)}{d\eta^4}$$

ullet Both terms are equal to a real constant, $-\omega^2,$ and

$$rac{d^2 \mathbf{q}_f(au)}{d au^2} + \omega^2 \mathbf{q}_f(au) = 0, \quad rac{d^4 \psi(\eta)}{d\eta^4} - \omega^2 \psi(\eta) = 0, \quad 0 < \eta < 1$$

Boundary conditions

$$[\psi(\eta)]_{\eta=0} = 0, \ \left[\frac{d^2\psi(\eta)}{d\eta^2}\right]_{\eta=1} = \frac{J_p\omega^2}{\rho Al^3} \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=1}$$
$$\left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=0} = 0, \ \left[\frac{d^3\psi(\eta)}{d\eta^3}\right]_{\eta=1} = -\frac{M_p\omega^2}{\rho Al} [\psi(\eta)]_{\eta=1}$$

Infinite number of eigenvalues ω² - ω_i are system *natural frequencies*.
For each ω_i, an eigenfunction or *natural mode* ψ_i(η).

ROTATING FLEXIBLE LINK – SOLUTION OF PDE

• Substitute $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$ in PDE and rearrange

$$\frac{1}{\mathbf{q}_f(\tau)}\frac{d^2\mathbf{q}_f(\tau)}{d\tau^2} = -\frac{1}{\psi(\eta)}\frac{d^4\psi(\eta)}{d\eta^4}$$

 $\bullet\,$ Both terms are equal to a real constant, $-\omega^2,$ and

$$rac{d^2 \mathbf{q}_f(au)}{d au^2} + \omega^2 \mathbf{q}_f(au) = 0, \quad rac{d^4 \psi(\eta)}{d\eta^4} - \omega^2 \psi(\eta) = 0, \quad 0 < \eta < 1$$

Boundary conditions

$$\begin{split} \left[\psi(\eta)\right]_{\eta=0} &= 0, \ \left[\frac{d^2\psi(\eta)}{d\eta^2}\right]_{\eta=1} = \frac{J_p\omega^2}{\rho Al^3} \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=1} \\ \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=0} &= 0, \ \left[\frac{d^3\psi(\eta)}{d\eta^3}\right]_{\eta=1} = -\frac{M_p\omega^2}{\rho Al} [\psi(\eta)]_{\eta=1} \end{split}$$

Infinite number of eigenvalues ω² - ω_i are system *natural frequencies*.
For each ω_i, an eigenfunction or *natural mode* ψ_i(η).

ROTATING FLEXIBLE LINK – SOLUTION OF PDE

• Substitute $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$ in PDE and rearrange

$$\frac{1}{\mathbf{q}_f(\tau)}\frac{d^2\mathbf{q}_f(\tau)}{d\tau^2} = -\frac{1}{\psi(\eta)}\frac{d^4\psi(\eta)}{d\eta^4}$$

 $\bullet\,$ Both terms are equal to a real constant, $-\omega^2,$ and

$$rac{d^2 \mathbf{q}_f(au)}{d au^2} + \omega^2 \mathbf{q}_f(au) = 0, \quad rac{d^4 \psi(\eta)}{d\eta^4} - \omega^2 \psi(\eta) = 0, \quad 0 < \eta < 1$$

Boundary conditions

$$\begin{split} [\psi(\eta)]_{\eta=0} &= 0, \ \left[\frac{d^2\psi(\eta)}{d\eta^2}\right]_{\eta=1} = \frac{J_p\omega^2}{\rho Al^3} \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=1} \\ \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=0} &= 0, \ \left[\frac{d^3\psi(\eta)}{d\eta^3}\right]_{\eta=1} = -\frac{M_p\omega^2}{\rho Al} [\psi(\eta)]_{\eta=1} \end{split}$$

Infinite number of eigenvalues ω² - ω_i are system natural frequencies.
For each ω_i, an eigenfunction or natural mode ψ_i(η).

ROTATING FLEXIBLE LINK – SOLUTION OF PDE

• Substitute $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$ in PDE and rearrange

$$\frac{1}{\mathbf{q}_f(\tau)}\frac{d^2\mathbf{q}_f(\tau)}{d\tau^2} = -\frac{1}{\psi(\eta)}\frac{d^4\psi(\eta)}{d\eta^4}$$

 $\bullet\,$ Both terms are equal to a real constant, $-\omega^2,$ and

$$rac{d^2 \mathbf{q}_f(au)}{d au^2} + \omega^2 \mathbf{q}_f(au) = 0, \quad rac{d^4 \psi(\eta)}{d\eta^4} - \omega^2 \psi(\eta) = 0, \quad 0 < \eta < 1$$

Boundary conditions

$$\begin{split} \left[\psi(\eta)\right]_{\eta=0} &= 0, \ \left[\frac{d^2\psi(\eta)}{d\eta^2}\right]_{\eta=1} = \frac{J_p\omega^2}{\rho AI^3} \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=1} \\ \left[\frac{d\psi(\eta)}{d\eta}\right]_{\eta=0} &= 0, \ \left[\frac{d^3\psi(\eta)}{d\eta^3}\right]_{\eta=1} = -\frac{M_p\omega^2}{\rho AI} [\psi(\eta)]_{\eta=1} \end{split}$$

Infinite number of eigenvalues ω² - ω_i are system natural frequencies.
For each ω_i, an eigenfunction or natural mode ψ_i(η).

Prismatic Joint

Figure 12: A flexible link with a prismatic joint

- Vibration in the horizontal plane spanned by \hat{X}_0 and \hat{Z}_0 .
- Prismatic joint axis along $\hat{\mathbf{Z}}_0$, Total length of link l_0 .
- I(t) vibrating length outside the rigid joint hub at time t.
- The beam inside the hub, $(l_0 l(t))$, is assumed not to be vibrating.
- The axial velocity U(t) is assumed to be independent of s.

• Free bending vibration of a translating beam with Euler-Bernoulli assumptions

$$\frac{\partial^2}{\partial s^2} \left(E I \frac{\partial^2 u(s,t)}{\partial s^2} \right) + \rho A \left(\frac{\partial^2 u(s,t)}{\partial t^2} + 2U \frac{\partial^2 u(s,t)}{\partial s \partial t} + U^2 \frac{\partial^2 u(s,t)}{\partial s^2} + \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s} \right) = 0$$

where 0 < s < l(t).

• Clamped-mass boundary conditions are

$$u(s,t)]_{s=0} = 0, \ El\left[\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l(t)} = -J_p\left[\frac{\partial^2}{\partial t^2}\left(\frac{\partial u(s,t)}{\partial s}\right)\right]_{s=l(t)}$$
$$\left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0, \ El\left[\frac{\partial^3 u(s,t)}{\partial s^3}\right]_{s=l(t)} = M_p\left[\frac{\partial^2 u(s,t)}{\partial t^2}\right]_{s=l(t)}$$

• Free bending vibration of a translating beam with Euler-Bernoulli assumptions

$$\frac{\partial^2}{\partial s^2} \left(EI \frac{\partial^2 u(s,t)}{\partial s^2} \right) + \rho A \left(\frac{\partial^2 u(s,t)}{\partial t^2} + 2U \frac{\partial^2 u(s,t)}{\partial s \partial t} + U^2 \frac{\partial^2 u(s,t)}{\partial s^2} + \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s} \right) = 0$$

where 0 < s < l(t).

• Clamped-mass boundary conditions are

$$u(s,t)]_{s=0} = 0, \ EI\left[\frac{\partial^2 u(s,t)}{\partial s^2}\right]_{s=l(t)} = -J_p\left[\frac{\partial^2}{\partial t^2}\left(\frac{\partial u(s,t)}{\partial s}\right)\right]_{s=l(t)}$$
$$\left[\frac{\partial u(s,t)}{\partial s}\right]_{s=0} = 0, \ EI\left[\frac{\partial^3 u(s,t)}{\partial s^3}\right]_{s=l(t)} = M_p\left[\frac{\partial^2 u(s,t)}{\partial t^2}\right]_{s=l(t)}$$

TRANSLATING FLEXIBLE LINK (CONTD.)

- Length of beam, *l*(*t*), is a function of time *moving boundary value* problem.
- Presence of *convective* terms $2\rho AU \frac{\partial^2 u(s,t)}{\partial s \partial t}$, $\rho AU^2 \frac{\partial^2 u(s,t)}{\partial s^2}$, and $\rho A \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^2 \frac{\partial^2 u(s,t)}{\partial s^2}$ will alter the the 'stiffness' of the system.
- For large *U*, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing *U* (Stylianou and Tabarrok, 1994).
- $\bullet\,$ Much more complicated that rotating link \to General analytical solution not known!

TRANSLATING FLEXIBLE LINK (CONTD.)

• Length of beam, l(t), is a function of time – moving boundary value problem.

• Presence of *convective* terms $2\rho AU \frac{\partial^2 u(s,t)}{\partial s \partial t}$, $\rho AU^2 \frac{\partial^2 u(s,t)}{\partial s^2}$, and $\rho A \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.

- The centripetal term $\rho A U^2 \frac{\partial^2 u(s,t)}{\partial s^2}$ will alter the the 'stiffness' of the system.
- For large *U*, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing *U* (Stylianou and Tabarrok, 1994).
- $\bullet\,$ Much more complicated that rotating link \to General analytical solution not known!

TRANSLATING FLEXIBLE LINK (CONTD.)

- Length of beam, *l*(*t*), is a function of time *moving boundary value* problem.
- Presence of *convective* terms $2\rho AU \frac{\partial^2 u(s,t)}{\partial s \partial t}$, $\rho AU^2 \frac{\partial^2 u(s,t)}{\partial s^2}$, and $\rho A \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^2 \frac{\partial^2 u(s,t)}{\partial s^2}$ will alter the the 'stiffness' of the system.
- For large *U*, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing *U* (Stylianou and Tabarrok, 1994).
- $\bullet\,$ Much more complicated that rotating link \to General analytical solution not known!

TRANSLATING FLEXIBLE LINK (CONTD.)

- Length of beam, l(t), is a function of time moving boundary value problem.
- Presence of *convective* terms $2\rho AU \frac{\partial^2 u(s,t)}{\partial s \partial t}$, $\rho AU^2 \frac{\partial^2 u(s,t)}{\partial s^2}$, and $\rho A \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^2 \frac{\partial^2 u(s,t)}{\partial s^2}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994).
- \bullet Much more complicated that rotating link \rightarrow General analytical solution not known!

TRANSLATING FLEXIBLE LINK (CONTD.)

- Length of beam, l(t), is a function of time moving boundary value problem.
- Presence of *convective* terms $2\rho AU \frac{\partial^2 u(s,t)}{\partial s \partial t}$, $\rho AU^2 \frac{\partial^2 u(s,t)}{\partial s^2}$, and $\rho A \frac{dU}{dt} \frac{\partial u(s,t)}{\partial s}$ due to the coupling of axial rigid-body and transverse vibratory motions.
- The centripetal term $\rho A U^2 \frac{\partial^2 u(s,t)}{\partial s^2}$ will alter the the 'stiffness' of the system.
- For large U, the centripetal force may overcome the flexural restoring force and the system's oscillatory frequencies would decrease with increasing U (Stylianou and Tabarrok, 1994).
- $\bullet\,$ Much more complicated that rotating link \to General analytical solution not known!

• Using
$$\widetilde{u}(s,t) = u(s,t)/l_0$$
, $\eta = s/l_0$, $\tau = t/(l_0/U_g)$, and $U_g \triangleq \frac{1}{l_0} \sqrt{\frac{EI}{\rho A}}$
PDE is¹,

$$\frac{\partial^{4}\widetilde{u}(\eta,\tau)}{\partial\eta^{4}} + \frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\tau^{2}} + 2\left(\frac{U}{U_{g}}\right)\frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\eta\partial\tau} + \left(\frac{U}{U_{g}}\right)^{2}\frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\eta^{2}} + \left(\frac{d}{d\tau}\left(\frac{U}{U_{g}}\right)\right)\frac{\partial\widetilde{u}(\eta,\tau)}{\partial\eta} = 0$$

Boundary conditions

$$\begin{split} [\widetilde{u}(\eta,\tau)]_{\eta=0} &= 0, \ \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=\frac{l(t)}{l_0}} = -\frac{J_p}{\rho Al^3} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=\frac{l(t)}{l_0}} \\ & \left[\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \ \left[\frac{\partial^3 \widetilde{u}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=\frac{l(t)}{l_0}} = \frac{M_p}{\rho Al} \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=\frac{l(t)}{l_0}} \end{split}$$

• Using
$$\widetilde{u}(s,t) = u(s,t)/l_0$$
, $\eta = s/l_0$, $\tau = t/(l_0/U_g)$, and $U_g \triangleq \frac{1}{l_0} \sqrt{\frac{El}{\rho A}}$
PDE is¹,

$$\frac{\partial^{4}\widetilde{u}(\eta,\tau)}{\partial\eta^{4}} + \frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\tau^{2}} + 2\left(\frac{U}{U_{g}}\right)\frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\eta\partial\tau} + \left(\frac{U}{U_{g}}\right)^{2}\frac{\partial^{2}\widetilde{u}(\eta,\tau)}{\partial\eta^{2}} + \left(\frac{d}{d\tau}\left(\frac{U}{U_{g}}\right)\right)\frac{\partial\widetilde{u}(\eta,\tau)}{\partial\eta} = 0$$

• Boundary conditions

$$\begin{split} \widetilde{u}(\eta,\tau)]_{\eta=0} &= 0, \ \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \eta^2}\right]_{\eta=\frac{l(t)}{l_0}} = -\frac{J_p}{\rho Al^3} \left[\frac{\partial^2}{\partial \tau^2} \left(\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right)\right]_{\eta=\frac{l(t)}{l_0}} \\ & \left[\frac{\partial \widetilde{u}(\eta,\tau)}{\partial \eta}\right]_{\eta=0} = 0, \ \left[\frac{\partial^3 \widetilde{u}(\eta,\tau)}{\partial \eta^3}\right]_{\eta=\frac{l(t)}{l_0}} = \frac{M_p}{\rho Al} \left[\frac{\partial^2 \widetilde{u}(\eta,\tau)}{\partial \tau^2}\right]_{\eta=\frac{l(t)}{l_0}} \end{split}$$

• Using $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$, PDE can be written as

$$\begin{split} \psi(\eta) \frac{d^2 \mathbf{q}_f(\tau)}{d\tau^2} + 2 \frac{U}{U_g} \frac{d\psi(\eta)}{d\eta} \frac{d\mathbf{q}_f(\tau)}{d\tau} \\ &= -\left(\frac{d^4 \psi(\eta)}{d\eta^4} + \left(\frac{U}{U_g}\right)^2 \frac{d^2 \psi(\eta)}{d\eta^2} + \frac{d}{d\tau} \left(\frac{U}{U_g}\right) \frac{d\psi(\eta)}{d\eta}\right) \mathbf{q}_f(\tau) \end{split}$$

- Above equation not separable in η and $\tau !!$
- If $U \ll U_g$ and constant $\left(\frac{d}{d\tau}\left(\frac{U}{U_g}\right) = 0\right)$, the convective terms can be dropped and one can *approximately* use separation of variables.
- Mode shape functions $\psi_i(\eta)$ and the natural frequencies ω_i time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 See Lecture 2).

• Using $\widetilde{u}(\eta, \tau) = \psi(\eta) \mathbf{q}_f(\tau)$, PDE can be written as

$$\begin{split} \psi(\eta) \frac{d^2 \mathbf{q}_f(\tau)}{d\tau^2} + 2 \frac{U}{U_g} \frac{d\psi(\eta)}{d\eta} \frac{d\mathbf{q}_f(\tau)}{d\tau} \\ &= -\left(\frac{d^4 \psi(\eta)}{d\eta^4} + \left(\frac{U}{U_g}\right)^2 \frac{d^2 \psi(\eta)}{d\eta^2} + \frac{d}{d\tau} \left(\frac{U}{U_g}\right) \frac{d\psi(\eta)}{d\eta}\right) \mathbf{q}_f(\tau) \end{split}$$

- Above equation not separable in η and $\tau !!$
- If $U \ll U_g$ and constant $\left(\frac{d}{d\tau}\left(\frac{U}{U_g}\right) = 0\right)$, the convective terms can be dropped and one can *approximately* use separation of variables.
- Mode shape functions $\psi_i(\eta)$ and the natural frequencies ω_i time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 See Lecture 2).

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Translating Flexible Link (Contd.)

• Using $\widetilde{u}(\eta, au) = \psi(\eta) \mathbf{q}_f(au)$, PDE can be written as

$$\begin{split} \psi(\eta) \frac{d^2 \mathbf{q}_f(\tau)}{d\tau^2} + 2 \frac{U}{U_g} \frac{d\psi(\eta)}{d\eta} \frac{d\mathbf{q}_f(\tau)}{d\tau} \\ &= -\left(\frac{d^4 \psi(\eta)}{d\eta^4} + \left(\frac{U}{U_g}\right)^2 \frac{d^2 \psi(\eta)}{d\eta^2} + \frac{d}{d\tau} \left(\frac{U}{U_g}\right) \frac{d\psi(\eta)}{d\eta}\right) \mathbf{q}_f(\tau) \end{split}$$

- Above equation not separable in η and $\tau !!$
- If $U \ll U_g$ and constant $\left(\frac{d}{d\tau}\left(\frac{U}{U_g}\right) = 0\right)$, the convective terms can be dropped and one can *approximately* use separation of variables.
- Mode shape functions $\psi_i(\eta)$ and the natural frequencies ω_i time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 See Lecture 2).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 27 / 117

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Translating Flexible Link (Contd.)

• Using $\widetilde{u}(\eta, au) = \psi(\eta) \mathbf{q}_f(au)$, PDE can be written as

$$\begin{split} \psi(\eta) \frac{d^2 \mathbf{q}_f(\tau)}{d\tau^2} + 2 \frac{U}{U_g} \frac{d\psi(\eta)}{d\eta} \frac{d\mathbf{q}_f(\tau)}{d\tau} \\ &= -\left(\frac{d^4 \psi(\eta)}{d\eta^4} + \left(\frac{U}{U_g}\right)^2 \frac{d^2 \psi(\eta)}{d\eta^2} + \frac{d}{d\tau} \left(\frac{U}{U_g}\right) \frac{d\psi(\eta)}{d\eta}\right) \mathbf{q}_f(\tau) \end{split}$$

- Above equation not separable in η and $\tau !!$
- If $U \ll U_g$ and constant $\left(\frac{d}{d\tau}\left(\frac{U}{U_g}\right) = 0\right)$, the convective terms can be dropped and one can *approximately* use separation of variables.
- Mode shape functions $\psi_i(\eta)$ and the natural frequencies ω_i time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 See Lecture 2).

NPTEL, 2010 27 / 117

CHARACTERISTIC OF A FLEXIBLE LINK (CONTD.) Translating Flexible Link (Contd.)

• Using $\widetilde{u}(\eta, au) = \psi(\eta) \mathbf{q}_f(au)$, PDE can be written as

$$\begin{split} \psi(\eta) \frac{d^2 \mathbf{q}_f(\tau)}{d\tau^2} + 2 \frac{U}{U_g} \frac{d\psi(\eta)}{d\eta} \frac{d\mathbf{q}_f(\tau)}{d\tau} \\ &= -\left(\frac{d^4 \psi(\eta)}{d\eta^4} + \left(\frac{U}{U_g}\right)^2 \frac{d^2 \psi(\eta)}{d\eta^2} + \frac{d}{d\tau} \left(\frac{U}{U_g}\right) \frac{d\psi(\eta)}{d\eta}\right) \mathbf{q}_f(\tau) \end{split}$$

- Above equation not separable in η and $\tau!!$
- If $U \ll U_g$ and constant $\left(\frac{d}{d\tau}\left(\frac{U}{U_g}\right) = 0\right)$, the convective terms can be dropped and one can *approximately* use separation of variables.
- Mode shape functions $\psi_i(\eta)$ and the natural frequencies ω_i time dependent.
- Time varying boundary conditions solved using an ODE (Theodore and Ghosal, 1995 See Lecture 2).

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- $\bullet~{\rm Rigid~link} \to {\rm Simple~ODE~model}$ & one-to-one relationship between joint torque and link rotation.
- Flexible joint
 - Modeled as torsional spring.
 - $\bullet\,$ Coupled ODE model $\rightarrow\,$ one input and two outputs.
 - Motor torque can control both rotation of joint and link.
- Flexible link
 - Partial differential equation for bending vibration \rightarrow infinite dimensional system.
 - Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
 - Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

NPTEL, 2010 28 / 117

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model & one-to-one relationship between joint torque and link rotation.
- Flexible joint
 - Modeled as torsional spring.
 - ${\scriptstyle \bullet}$ Coupled ODE model ${\rightarrow}$ one input and two outputs.
 - Motor torque can control both rotation of joint and link.
- Flexible link
 - Partial differential equation for bending vibration \rightarrow infinite dimensional system.
 - \bullet Boundary conditions depend on rotary (R) or prismatic (P) joint \to Clamped-mass boundary conditions more reasonable.
 - Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

NPTEL, 2010 28 / 117

・ロト ・ 同ト ・ ヨト ・ ヨ

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model & one-to-one relationship between joint torque and link rotation.
- Flexible joint
 - Modeled as torsional spring.
 - $\bullet~\mbox{Coupled}~\mbox{ODE}~\mbox{model}\to\mbox{one}~\mbox{input}$ and two outputs.
 - Motor torque can control both rotation of joint and link.
- Flexible link
 - Partial differential equation for bending vibration \rightarrow infinite dimensional system.
 - Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
 - Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

NPTEL, 2010 28 / 117

・ロト ・ 同ト ・ ヨト ・ 日

- Flexibility of links and joints important for aero-space, high-speed application and for "trimmer" design of all manipulators.
- Rigid link \rightarrow Simple ODE model & one-to-one relationship between joint torque and link rotation.
- Flexible joint
 - Modeled as torsional spring.
 - $\bullet~\mbox{Coupled}~\mbox{ODE}~\mbox{model}\to\mbox{one}~\mbox{input}$ and two outputs.
 - Motor torque can control both rotation of joint and link.
- Flexible link
 - Partial differential equation for bending vibration \rightarrow infinite dimensional system.
 - Boundary conditions depend on rotary (R) or prismatic (P) joint \rightarrow Clamped-mass boundary conditions more reasonable.
 - Separation of variables can be used for rotary joints and under simplifying assumptions for prismatic joint.

NPTEL, 2010 28 / 117

OUTLINE

CONTENTS

- 2 Lecture 1
 - Flexible Manipulators
- 3 Lecture 2*
 - Kinematic Modeling of Flexible Link Manipulators

4 Lecture 3*

- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators

D LECTURE 4

- Experiments with a Planar Two Link Flexible System
- 6 Module 8 Additional Material
 - Problems, References and Suggested Reading

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
 - Assumed modes method (AMM).
 - Frequency equation as ODE for translating link.
 - Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
 - Assumed modes method (AMM).
 - Frequency equation as ODE for translating link.
 - Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
 - Assumed modes method (AMM).
 - Frequency equation as ODE for translating link.
 - Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

- Extension of Denavit-Hartenberg convention to flexible link manipulators.
- Discretisation of PDE for finite dimensional model.
 - Assumed modes method (AMM).
 - Frequency equation as ODE for translating link.
 - Finite element method (FEM).
- Position vector of a point on a flexible link and its velocity.
- Comparison of AMM and FEM.

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing *only* transverse bending vibration axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see <u>Module 2</u>, Lecture 2)
 - Assign coordinate system {*j*} to link *j* with {0} as the fixed link and {*n*} as the last link.
 - The coordinate axes $(\hat{\mathbf{X}}_j, \hat{\mathbf{Y}}_j, \hat{\mathbf{Z}}_j)$ are assigned to link j and the origin O_j is on the joint axis j.
 - Axis $\hat{\mathbf{Z}}_j$ is along the axis of joint *j*.
- Define a coordinate system {j_{*}} in such a way that when the link j 1 is in its *undeformed* configuration, the {j} and {j_{*}} are *coincident* (see figure next page).

NPTEL, 2010 31 / 117

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing *only* transverse bending vibration axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see <u>Module 2</u>, Lecture 2)
 - Assign coordinate system {*j*} to link *j* with {0} as the fixed link and {*n*} as the last link.
 - The coordinate axes $(\hat{\mathbf{X}}_j, \hat{\mathbf{Y}}_j, \hat{\mathbf{Z}}_j)$ are assigned to link j and the origin O_j is on the joint axis j.
 - Axis $\hat{\mathbf{Z}}_j$ is along the axis of joint j.
- Define a coordinate system {j_{*}} in such a way that when the link j 1 is in its *undeformed* configuration, the {j} and {j_{*}} are *coincident* (see figure next page).

NPTEL, 2010 31 / 117

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing *only* transverse bending vibration axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see <u>Module 2</u>, Lecture 2)
 - Assign coordinate system {*j*} to link *j* with {0} as the fixed link and {*n*} as the last link.
 - The coordinate axes $(\hat{\mathbf{X}}_j, \hat{\mathbf{Y}}_j, \hat{\mathbf{Z}}_j)$ are assigned to link j and the origin O_j is on the joint axis j.
 - Axis $\hat{\mathbf{Z}}_j$ is along the axis of joint j.
- Define a coordinate system {j_{*}} in such a way that when the link j 1 is in its *undeformed* configuration, the {j} and {j_{*}} are *coincident* (see figure next page).

NPTEL, 2010 31 / 117

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing *only* transverse bending vibration axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see <u>Module 2</u>, Lecture 2)
 - Assign coordinate system $\{j\}$ to link j with $\{0\}$ as the fixed link and $\{n\}$ as the last link.
 - The coordinate axes $(\hat{\mathbf{X}}_j, \hat{\mathbf{Y}}_j, \hat{\mathbf{Z}}_j)$ are assigned to link j and the origin O_j is on the joint axis j.
 - Axis $\hat{\mathbf{Z}}_j$ is along the axis of joint *j*.
- Define a coordinate system {*j*_∗} in such a way that when the link *j*−1 is in its *undeformed* configuration, the {*j*} and {*j*_∗} are *coincident* (see figure next page).

・日本 ・日本 ・日本

- Multi-link manipulator with flexible links connected by rotary (R) or prismatic (P) joints.
- Links undergoing *only* transverse bending vibration axial and torsional deformation not considered.
- Links satisfy Euler-Bernoulli beam assumptions.
- Similar to Denavit-Hartenberg convention for rigid links (see <u>Module 2</u>, Lecture 2)
 - Assign coordinate system $\{j\}$ to link j with $\{0\}$ as the fixed link and $\{n\}$ as the last link.
 - The coordinate axes $(\hat{\mathbf{X}}_j, \hat{\mathbf{Y}}_j, \hat{\mathbf{Z}}_j)$ are assigned to link j and the origin O_j is on the joint axis j.
 - Axis $\hat{\mathbf{Z}}_j$ is along the axis of joint *j*.
- Define a coordinate system $\{j_*\}$ in such a way that when the link j-1 is in its *undeformed* configuration, the $\{j\}$ and $\{j_*\}$ are *coincident* (see figure next page).

Figure 13: Assignment of frames for the flexible links

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 32 / 117

э

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) 4×4 Transformation Matrix

The 4 × 4 homogeneous transformation matrix relating {j_∗} to {j − 1} same as for a rigid manipulator (see <u>Module 2</u>, Lecture 2)

$${}^{j-1}_{j_*}[T_r] = \begin{pmatrix} c_{\theta_j} & -s_{\theta_j} & 0 & a_{j-1} \\ s_{\theta_j} c_{\alpha_{j-1}} & c_{\theta_j} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_j \\ s_{\theta_j} s_{\alpha_{j-1}} & c_{\theta_j} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & d_j \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 α_{j-1} , a_{j-1} , d_j , and θ_j are the D-H parameters which describe $\{j_*\}$ with respect to $\{j-1\}$.

- q_{j_r} is the joint variable either θ_j or d_j .
- n×1 vector q_r denote rigid joint variables and the flexibility in the link j will be denoted by q_{fi}.

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) 4×4 Transformation Matrix

The 4 × 4 homogeneous transformation matrix relating {j_∗} to {j − 1} same as for a rigid manipulator (see <u>Module 2</u>, Lecture 2)

$${}^{j-1}_{j_*}[T_r] = \begin{pmatrix} c_{\theta_j} & -s_{\theta_j} & 0 & a_{j-1} \\ s_{\theta_j} c_{\alpha_{j-1}} & c_{\theta_j} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_j \\ s_{\theta_j} s_{\alpha_{j-1}} & c_{\theta_j} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & d_j \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 α_{j-1} , a_{j-1} , d_j , and θ_j are the D-H parameters which describe $\{j_*\}$ with respect to $\{j-1\}$.

- q_{j_r} is the joint variable either θ_j or d_j .
- n×1 vector q_r denote rigid joint variables and the flexibility in the link j will be denoted by q_{fi}.

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) 4×4 Transformation Matrix

The 4 × 4 homogeneous transformation matrix relating {j_∗} to {j − 1} same as for a rigid manipulator (see <u>Module 2</u>, Lecture 2)

$${}^{j-1}_{j_*}[T_r] = \begin{pmatrix} c_{\theta_j} & -s_{\theta_j} & 0 & a_{j-1} \\ s_{\theta_j} c_{\alpha_{j-1}} & c_{\theta_j} c_{\alpha_{j-1}} & -s_{\alpha_{j-1}} & -s_{\alpha_{j-1}} d_j \\ s_{\theta_j} s_{\alpha_{j-1}} & c_{\theta_j} s_{\alpha_{j-1}} & c_{\alpha_{j-1}} & d_j \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 α_{j-1} , a_{j-1} , d_j , and θ_j are the D-H parameters which describe $\{j_*\}$ with respect to $\{j-1\}$.

- q_{j_r} is the joint variable either θ_j or d_j .
- n×1 vector q_r denote rigid joint variables and the flexibility in the link j will be denoted by q_{fi}.

NPTEL, 2010 33 / 117

 4×4 Transformation Matrix (Contd.)

- $\bullet\,$ Any 3D spatial transformation \to three rotations and three translations.
- $\{j_*\}$ can be taken to $\{j\}$ by

$$\begin{aligned} & \operatorname{Rot}(\hat{Z}, \phi_{z_{j-1}}) \operatorname{Trans}(\hat{Z}, \delta_{z_{j-1}}) \operatorname{Rot}(\hat{Y}, \phi_{y_{j-1}}) \operatorname{Trans}(\hat{Y}, \delta_{y_{j-1}}) \\ & \operatorname{Rot}(\hat{X}, \phi_{x_{j-1}}) \operatorname{Trans}(\hat{X}, \delta_{x_{j-1}}) \end{aligned}$$

• Assuming small elastic deformation, sequence becomes (Book 1984)

$$j_{*}[T_{e}] = \begin{pmatrix} 1 & -\phi_{z_{j-1}} & \phi_{y_{j-1}} & \delta_{x_{j-1}} \\ \phi_{z_{j-1}} & 1 & -\phi_{x_{j-1}} & \delta_{y_{j-1}} \\ -\phi_{y_{j-1}} & \phi_{x_{j-1}} & 1 & \delta_{z_{j-1}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note: If link j-1 is rigid, $\frac{j_*}{i}[T]$ is a 4×4 identity matrix.

• 4 × 4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is

 4×4 Transformation Matrix (Contd.)

- $\bullet\,$ Any 3D spatial transformation \to three rotations and three translations.
- $\{j_*\}$ can be taken to $\{j\}$ by

$$\begin{array}{l} \operatorname{Rot}(\hat{Z},\phi_{z_{j-1}})\operatorname{Trans}(\hat{Z},\delta_{z_{j-1}})\operatorname{Rot}(\hat{Y},\phi_{y_{j-1}})\operatorname{Trans}(\hat{Y},\delta_{y_{j-1}})\\ \operatorname{Rot}(\hat{X},\phi_{x_{j-1}})\operatorname{Trans}(\hat{X},\delta_{x_{j-1}}) \end{array}$$

• Assuming small elastic deformation, sequence becomes (Book 1984)

Note: If link j-1 is rigid, $\frac{j_*}{i}[T]$ is a 4×4 identity matrix.

• 4 \times 4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is

$${}^{j-1}_{j}[T] = {}^{j-1}_{j_*}[T_r]_{j}^{j_*}[T_e]$$

 4×4 Transformation Matrix (Contd.)

- $\bullet\,$ Any 3D spatial transformation \to three rotations and three translations.
- $\{j_*\}$ can be taken to $\{j\}$ by

$$\begin{array}{l} \operatorname{Rot}(\hat{Z},\phi_{z_{j-1}})\operatorname{Trans}(\hat{Z},\delta_{z_{j-1}})\operatorname{Rot}(\hat{Y},\phi_{y_{j-1}})\operatorname{Trans}(\hat{Y},\delta_{y_{j-1}})\\ \operatorname{Rot}(\hat{X},\phi_{x_{j-1}})\operatorname{Trans}(\hat{X},\delta_{x_{j-1}}) \end{array}$$

• Assuming small elastic deformation, sequence becomes (Book 1984)

$${}^{j_*}_{j}[\mathcal{T}_e] = \begin{pmatrix} 1 & -\phi_{z_{j-1}} & \phi_{y_{j-1}} & \delta_{x_{j-1}} \\ \phi_{z_{j-1}} & 1 & -\phi_{x_{j-1}} & \delta_{y_{j-1}} \\ -\phi_{y_{j-1}} & \phi_{x_{j-1}} & 1 & \delta_{z_{j-1}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note: If link j-1 is rigid, $\frac{j_*}{i}[T]$ is a 4×4 identity matrix.

• 4 × 4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is ${j-1 \brack j}_{j} = {j-1 \brack j_{*}} [\mathcal{T}_{r}]_{j}^{j_{*}} [\mathcal{T}_{e}]$

 4×4 Transformation Matrix (Contd.)

- $\bullet\,$ Any 3D spatial transformation \to three rotations and three translations.
- $\{j_*\}$ can be taken to $\{j\}$ by

$$\begin{array}{l} \operatorname{Rot}(\hat{Z},\phi_{z_{j-1}})\operatorname{Trans}(\hat{Z},\delta_{z_{j-1}})\operatorname{Rot}(\hat{Y},\phi_{y_{j-1}})\operatorname{Trans}(\hat{Y},\delta_{y_{j-1}})\\ \operatorname{Rot}(\hat{X},\phi_{x_{j-1}})\operatorname{Trans}(\hat{X},\delta_{x_{j-1}}) \end{array}$$

• Assuming small elastic deformation, sequence becomes (Book 1984)

$${}^{j_*}_{j}[\mathcal{T}_e] = \begin{pmatrix} 1 & -\phi_{z_{j-1}} & \phi_{y_{j-1}} & \delta_{x_{j-1}} \\ \phi_{z_{j-1}} & 1 & -\phi_{x_{j-1}} & \delta_{y_{j-1}} \\ -\phi_{y_{j-1}} & \phi_{x_{j-1}} & 1 & \delta_{z_{j-1}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note: If link j-1 is rigid, $\frac{j_*}{j}[T]$ is a 4×4 identity matrix.

• 4 × 4 homogeneous transformation matrix relating $\{j\}$ to $\{j-1\}$ is $\int_{j}^{j-1} [T] = \int_{j_*}^{j-1} [T_r]_j^{j_*} [T_e]$

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) LINK TRANSFORMATION MATRIX

• ${}_{j}^{0}[T]$ can be obtained by usual matrix multiplication

${}^{0}_{j}[T] = {}^{0}_{1*}[T_{r}]^{1*}_{1}[T_{e}]^{1}_{2*}[T_{r}]^{2*}_{2}[T_{e}] \cdots {}^{j-1}_{j*}[T_{r}]^{j*}_{j}[T_{e}]$

- ${}_{j}^{0}[T]$, as in the rigid case, contains position vector ${}^{0}O_{j}$ and the rotation matrix ${}_{i}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link *after* the origin and *along the neutral axis*

$${}^{0}\mathbf{p}_{j} = {}^{0}\mathbf{O}_{j} + {}^{0}_{j}[R]\mathbf{r}_{j}$$

• Need to find vector \mathbf{r}_i !!

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) LINK TRANSFORMATION MATRIX

• ${}_{j}^{0}[T]$ can be obtained by usual matrix multiplication

 ${}_{j}^{0}[T] = {}_{1*}^{0}[T_{r}]_{1}^{1*}[T_{e}]_{2*}^{1}[T_{r}]_{2}^{2*}[T_{e}] \cdots {}_{j_{*}}^{j-1}[T_{r}]_{j}^{j*}[T_{e}]$

- ${}_{j}^{0}[T]$, as in the rigid case, contains position vector ${}^{0}\mathbf{O}_{j}$ and the rotation matrix ${}_{i}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

$${}^{0}\mathbf{p}_{j} = {}^{0}\mathbf{O}_{j} + {}^{0}_{j}[R]\mathbf{r}_{j}$$

• Need to find vector \mathbf{r}_i !!

• ${}_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$${}_{j}^{0}[T] = {}_{1*}^{0}[T_{r}]_{1}^{1*}[T_{e}]_{2*}^{1}[T_{r}]_{2}^{2*}[T_{e}] \cdots {}_{j_{*}}^{j-1}[T_{r}]_{j}^{j_{*}}[T_{e}]$$

- ${}_{j}^{0}[T]$, as in the rigid case, contains position vector ${}^{0}\mathbf{O}_{j}$ and the rotation matrix ${}_{i}^{0}[R]$.
- As in the rigid case, information is up to the *start* of the link.
- For a point on the link after the origin and along the neutral axis

$${}^{\mathsf{O}}\mathbf{p}_j = {}^{\mathsf{O}}\mathbf{O}_j + {}^{\mathsf{O}}_j[R]\mathbf{r}_j$$

• Need to find vector \mathbf{r}_i !!

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.) LINK TRANSFORMATION MATRIX

• ${}_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$${}_{j}^{0}[T] = {}_{1*}^{0}[T_{r}]_{1}^{1*}[T_{e}]_{2*}^{1}[T_{r}]_{2}^{2*}[T_{e}] \cdots {}_{j*}^{j-1}[T_{r}]_{j}^{j*}[T_{e}]$$

- ${}_{j}^{0}[T]$, as in the rigid case, contains position vector ${}^{0}\mathbf{O}_{j}$ and the rotation matrix ${}_{i}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

$${}^{0}\mathbf{p}_{j} = {}^{0}\mathbf{O}_{j} + {}^{0}_{j}[R]\mathbf{r}_{j}$$

• Need to find vector **r**_j!!

• ${}_{j}^{0}[T]$ can be obtained by usual matrix multiplication

$${}_{j}^{0}[T] = {}_{1*}^{0}[T_{r}]_{1}^{1*}[T_{e}]_{2*}^{1}[T_{r}]_{2}^{2*}[T_{e}] \cdots {}_{j*}^{j-1}[T_{r}]_{j}^{j*}[T_{e}]$$

- ${}_{j}^{0}[T]$, as in the rigid case, contains position vector ${}^{0}\mathbf{O}_{j}$ and the rotation matrix ${}_{i}^{0}[R]$.
- As in the rigid case, information is up to the start of the link.
- For a point on the link after the origin and along the neutral axis

$${}^{0}\mathbf{p}_{j} = {}^{0}\mathbf{O}_{j} + {}^{0}_{j}[R]\mathbf{r}_{j}$$

• Need to find vector $\mathbf{r}_j!!$

NPTEL, 2010 35 / 117

LINK TRANSFORMATION MATRIX

- Link *j* can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$.
- Only *transverse* deformations → Only 2 out *u*, *v* and *w* are variable!
 For a rotary joint u_j(s,t) = s and v_j(s,t), w_j(s,t) represent the Y and Z transverse deformations
 - For a prismatic joint, $w_j(s,t) = s$ and $u_j(s,t)$ and $v_j(s,t)$ represent the X and Y transverse deformations.
- Local position vector \mathbf{r}_j is

$$\mathbf{r}_{j} = \begin{cases} \begin{pmatrix} s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{j}(s,t) \\ w_{j}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \begin{pmatrix} 0 \\ 0 \\ s \end{pmatrix} + \begin{pmatrix} u_{j}(s,t) \\ v_{j}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismation} \end{cases}$$

LINK TRANSFORMATION MATRIX

- Link *j* can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$.
- Only *transverse* deformations → Only 2 out *u*, *v* and *w* are variable!
 For a rotary joint u_j(s,t) = s and v_j(s,t), w_j(s,t) represent the Y and
 - Z transverse deformations.
 - For a prismatic joint, $w_j(s,t) = s$ and $u_j(s,t)$ and $v_j(s,t)$ represent the X and Y transverse deformations.
- Local position vector \mathbf{r}_j is

$$\mathbf{r}_{j} = \begin{cases} \begin{pmatrix} s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{j}(s,t) \\ w_{j}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \begin{pmatrix} 0 \\ 0 \\ s \end{pmatrix} + \begin{pmatrix} u_{j}(s,t) \\ v_{j}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismation} \end{cases}$$

NPTEL, 2010 36 / 117

100

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)

LINK TRANSFORMATION MATRIX

- Link *j* can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$.
- Only *transverse* deformations → Only 2 out u, v and w are variable!
 For a rotary joint u_i(s,t) = s and v_i(s,t), w_i(s,t) represent the Y and
 - For a rotary joint $u_j(s,t) = s$ and $v_j(s,t)$, $w_j(s,t)$ represent the Y an Z transverse deformations.
 - For a prismatic joint, $w_j(s,t) = s$ and $u_j(s,t)$ and $v_j(s,t)$ represent the X and Y transverse deformations.

Local position vector r_j is

$$\mathbf{r}_{j} = \begin{cases} \begin{pmatrix} s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{j}(s,t) \\ w_{j}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \begin{pmatrix} 0 \\ 0 \\ s \end{pmatrix} + \begin{pmatrix} u_{j}(s,t) \\ v_{j}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

NPTEL, 2010 36 / 117

100

D-H CONVENTION FOR FLEXIBLE LINKS (CONTD.)

LINK TRANSFORMATION MATRIX

- Link *j* can deflect in 3D space.
- Denote deformation along the X, Y and Z axes by $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$.
- Only *transverse* deformations → Only 2 out u, v and w are variable!
 For a rotary joint u_i(s,t) = s and v_i(s,t), w_i(s,t) represent the Y and
 - Z transverse deformations.
 - For a prismatic joint, $w_j(s,t) = s$ and $u_j(s,t)$ and $v_j(s,t)$ represent the X and Y transverse deformations.
- Local position vector \mathbf{r}_j is

$$\mathbf{r}_{j} = \begin{cases} \begin{pmatrix} s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{j}(s,t) \\ w_{j}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \begin{pmatrix} 0 \\ 0 \\ s \end{pmatrix} + \begin{pmatrix} u_{j}(s,t) \\ v_{j}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

VELOCITY OF A POINT ON A FLEXIBLE LINK

• The velocity of the material point ${}^{0}\mathbf{p}_{j}$ on link j in $\{0\}$

$${}^{0}\mathbf{V}_{p} \stackrel{\Delta}{=} \frac{d}{dt} ({}^{0}\mathbf{p}_{j}) = \frac{d}{dt} ({}^{0}\mathbf{O}_{j}) + \frac{d}{dt} ({}^{0}_{j}[R])\mathbf{r}_{j} + {}^{0}_{j}[R] \frac{d}{dt} (\mathbf{r}_{j})$$

•
$$\frac{d}{dt}(\mathbf{r}_j)$$
 is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \dot{v}_{j}(s,t) \\ \dot{w}_{j}(s,t) \end{pmatrix} & \text{R joint} \\ \begin{pmatrix} 0 \\ 0 \\ U_{j}(t) \end{pmatrix} + \begin{pmatrix} \dot{u}_{j}(s,t) + \frac{\partial u_{j}(s,t)}{\partial s} U_{j}(t) \\ \dot{v}_{j}(s,t) + \frac{\partial v_{j}(s,t)}{\partial s} U_{j}(t) \\ 0 \end{pmatrix} & \text{P joint} \end{cases}$$

 $U_j(t) \triangleq \dot{s}$ is the translational velocity of the prismatic jointed link j.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 37 / 117

VELOCITY OF A POINT ON A FLEXIBLE LINK

• The velocity of the material point ${}^{0}\mathbf{p}_{j}$ on link j in $\{0\}$

$${}^{0}\mathbf{V}_{p} \stackrel{\Delta}{=} \frac{d}{dt} ({}^{0}\mathbf{p}_{j}) = \frac{d}{dt} ({}^{0}\mathbf{O}_{j}) + \frac{d}{dt} ({}^{0}_{j}[R])\mathbf{r}_{j} + {}^{0}_{j}[R] \frac{d}{dt} (\mathbf{r}_{j})$$

•
$$\frac{d}{dt}(\mathbf{r}_j)$$
 is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \dot{v}_{j}(s,t) \\ \dot{w}_{j}(s,t) \end{pmatrix} & \text{R joint} \\ \begin{pmatrix} 0 \\ 0 \\ U_{j}(t) \end{pmatrix} + \begin{pmatrix} \dot{u}_{j}(s,t) + \frac{\partial u_{j}(s,t)}{\partial s} U_{j}(t) \\ \dot{v}_{j}(s,t) + \frac{\partial v_{j}(s,t)}{\partial s} U_{j}(t) \\ 0 \end{pmatrix} & \text{P joint} \end{cases}$$

 $U_j(t) \stackrel{\Delta}{=} \dot{s}$ is the translational velocity of the prismatic jointed link *j*.

NPTEL, 2010 37 / 117

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

- Elastic displacements $u_j(s,t)$, $v_j(s,t)$ and $w_j(s,t)$ are governed by PDE's and boundary conditions.
- PDE's are similar to the free transverse bending vibration equation discussed earlier.
- Infinite dimensional system infinite number of natural frequencies and mode shapes.
- PDE's need to be discretised for analysis, simulation and development of controllers.
- Two approaches Assumed Modes Method and Finite Element Method.
- After discretisation, expression for $\frac{j_*}{i}[T_e]$ can be obtained.

DISCRETISATION OF PDE

Assumed Modes Method

• Elastic displacements, $(u_j, v_j, and w_j)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$X_j(\eta,t) = \sum_{i=1}^{N_j} \psi_i^{X_j}(\eta) \xi_i^{X_j}(t), \quad X ext{ is } u, v, ext{ or } w$$

- $\eta = s/l_j$ and N_j is the number of modes chosen.
- For a revolute joint, link length l_j is constant and for a prismatic joint, l_j and the mode shape functions are time dependent.
- The mode shape functions $\psi_i(\eta)$ are typically chosen as

 $\psi_i(\eta) = C_{1_i} \cos(\beta_i \eta) + C_{2_i} \sin(\beta_i \eta) + C_{3_i} \cosh(\beta_i \eta) + C_{4_i} \sinh(\beta_i \eta)$

 $\beta_i^{4} \stackrel{\Delta}{=} \frac{\rho_j A_j l_j^4}{E_j l_j} \omega_i^2$ and ω_i is the *i*th natural angular frequency of the eigenvalue problem for link *j*.

DISCRETISATION OF PDE

Assumed Modes Method

• Elastic displacements, $(u_j, v_j, and w_j)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$X_j(\eta,t) = \sum_{i=1}^{N_j} \psi_i^{X_j}(\eta) \xi_i^{X_j}(t), \quad X ext{ is } u, v, ext{ or } w$$

 $\eta = s/l_j$ and N_j is the number of modes chosen.

- For a revolute joint, link length l_j is constant and for a prismatic joint, l_j and the mode shape functions are time dependent.
- The mode shape functions $\psi_i(\eta)$ are typically chosen as

 $\psi_i(\eta) = C_{1_i} \cos(\beta_i \eta) + C_{2_i} \sin(\beta_i \eta) + C_{3_i} \cosh(\beta_i \eta) + C_{4_i} \sinh(\beta_i \eta)$

 $\beta_i^4 \triangleq \frac{\rho_j A_j l_j^4}{E_j l_j} \omega_i^2$ and ω_i is the *i*th natural angular frequency of the eigenvalue problem for link *j*.

DISCRETISATION OF PDE

Assumed Modes Method

• Elastic displacements, $(u_j, v_j, and w_j)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$X_j(\eta,t) = \sum_{i=1}^{N_j} \psi_i^{X_j}(\eta) \xi_i^{X_j}(t), \quad X ext{ is } u, v, ext{ or } w$$

 $\eta = s/l_j$ and N_j is the number of modes chosen.

- For a revolute joint, link length l_j is constant and for a prismatic joint, l_j and the mode shape functions are time dependent.
- The mode shape functions $\psi_i(\eta)$ are typically chosen as

 $\psi_i(\eta) = C_{1_i} \cos(\beta_i \eta) + C_{2_i} \sin(\beta_i \eta) + C_{3_i} \cosh(\beta_i \eta) + C_{4_i} \sinh(\beta_i \eta)$

 $\beta_i^4 \stackrel{\Delta}{=} \frac{\rho_j A_j l_j^4}{E_j l_j} \omega_i^2$ and ω_i is the *i*th natural angular frequency of the eigenvalue problem for link *j*.

DISCRETISATION OF PDE

ASSUMED MODES METHOD

• Elastic displacements, $(u_j, v_j, and w_j)$ are written in terms of modal shape functions and time-dependent mode amplitudes.

$$X_j(\eta,t) = \sum_{i=1}^{N_j} \psi_i^{X_j}(\eta) \xi_i^{X_j}(t), \quad X ext{ is } u, v, ext{ or } w$$

 $\eta = s/l_j$ and N_j is the number of modes chosen.

- For a revolute joint, link length l_j is constant and for a prismatic joint, l_j and the mode shape functions are time dependent.
- The mode shape functions $\psi_i(\eta)$ are typically chosen as

$$\psi_i(\eta) = C_{1_i} \cos(\beta_i \eta) + C_{2_i} \sin(\beta_i \eta) + C_{3_i} \cosh(\beta_i \eta) + C_{4_i} \sinh(\beta_i \eta)$$

 $\beta_i^4 \stackrel{\Delta}{=} \frac{\rho_j A_j l_j^4}{E_j l_j} \omega_i^2$ and ω_i is the *i*th natural angular frequency of the eigenvalue problem for link *j*.

DISCRETISATION OF PDE

Assumed Modes Method (Contd.)

• For clamped conditions at $\eta = 0$ end:

$$[\psi_i(\eta)]_{\eta=0} = 0, \quad \left[\frac{d\psi_i(\eta)}{d\eta}\right]_{\eta=0} = 0$$

• For mass conditions at $\eta = 1$ end:

$$\begin{bmatrix} \frac{d^{2}\psi_{i}(\eta)}{d\eta^{2}} \end{bmatrix}_{\eta=1} = \frac{J_{\rho_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}l_{j}^{3}} \begin{bmatrix} \frac{d\psi_{i}(\eta)}{d\eta} \end{bmatrix}_{\eta=1} + \frac{M_{D\rho_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}l_{j}^{2}} [\psi_{i}(\eta)]_{\eta=1} \\ \begin{bmatrix} \frac{d^{3}\psi_{i}(\eta)}{d\eta^{3}} \end{bmatrix}_{\eta=1} = -\frac{M_{\rho_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}l_{j}} [\psi_{i}(\eta)]_{\eta=1} - \frac{M_{D\rho_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}l_{j}^{2}} \begin{bmatrix} \frac{d\psi_{i}(\eta)}{d\eta} \end{bmatrix}_{\eta=1}$$

• ρ_i, A_i are density and cross-section area.

- M_{p_i} , J_{p_i} reflects all masses and inertia beyond link *j*.
- $M_{D_{P_j}}$ accounts for the contributions of masses non-collocated at the end of link *j*.

ASSUMED MODES METHOD (CONTD.)

• For clamped conditions at $\eta = 0$ end:

$$\left[\psi_i(\eta)\right]_{\eta=0} = 0, \quad \left[\frac{d\psi_i(\eta)}{d\eta}\right]_{\eta=0} = 0$$

• For mass conditions at $\eta = 1$ end:

$$\begin{bmatrix} \frac{d^{2}\psi_{i}(\eta)}{d\eta^{2}} \end{bmatrix}_{\eta=1} = \frac{J_{p_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}I_{j}^{3}} \begin{bmatrix} \frac{d\psi_{i}(\eta)}{d\eta} \end{bmatrix}_{\eta=1} + \frac{M_{Dp_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}I_{j}^{2}} [\psi_{i}(\eta)]_{\eta=1} \\ \begin{bmatrix} \frac{d^{3}\psi_{i}(\eta)}{d\eta^{3}} \end{bmatrix}_{\eta=1} = -\frac{M_{p_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}I_{j}} [\psi_{i}(\eta)]_{\eta=1} - \frac{M_{Dp_{j}}\beta_{i}^{4}}{\rho_{j}A_{j}I_{j}^{2}} \begin{bmatrix} \frac{d\psi_{i}(\eta)}{d\eta} \end{bmatrix}_{\eta=1}$$

- ρ_j, A_j are density and cross-section area.
- M_{p_i} , J_{p_i} reflects all masses and inertia beyond link *j*.
- M_{Dp_j} accounts for the contributions of masses non-collocated at the end of link *j*.

NPTEL, 2010 40 / 117

Assumed Modes Method (Contd.)

- The clamped conditions at the link base yield $C_{3_i} = -C_{1_i}$ and $C_{4_i} = -C_{2_i}$
- The mass conditions at the $\eta=1$ yield

$$[\mathbf{F}](\beta_i) \left(\begin{array}{c} C_{1_i} \\ C_{2_i} \end{array}\right) = \mathbf{0}$$

 $\bullet\,$ For non-trivial solution when ${\rm det}(F)=0$ \rightarrow Simplify to

 $(1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i)$ $- J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i)$ $- D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$

where
$$M_j = \frac{M_{\rho_j}}{\rho_j A_j l_j}$$
, $J_j = \frac{J_{\rho_j}}{\rho_j A_j l_j^3}$, and $D_j = \frac{M_{D\rho_j}}{\rho_j A_j l_j^2}$.

- Infinite number of solutions \rightarrow Truncated to N_j roots.
- Both *C*₁, and *C*₂, cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

ASSUMED MODES METHOD (CONTD.)

- The clamped conditions at the link base yield $C_{3_i} = -C_{1_i}$ and $C_{4_i} = -C_{2_i}$
- The mass conditions at the $\eta=1$ yield

$$[\mathsf{F}](\beta_i) \left(\begin{array}{c} C_{1_i} \\ C_{2_i} \end{array}\right) = \mathbf{0}$$

 $\bullet\,$ For non-trivial solution when ${\rm det}(F)=0$ \rightarrow Simplify to

 $(1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i)$

 $-J_{j}\beta_{i}^{3}(\cosh\beta_{i}\sin\beta_{i}+\sinh\beta_{i}\cos\beta_{i})+M_{j}J_{j}\beta_{i}^{4}(1-\cosh\beta_{i}\cos\beta_{i})\\-D_{i}^{2}\beta_{i}^{4}(1-\cosh\beta_{i}\cos\beta_{i})-2D_{j}\beta_{i}^{2}\sinh\beta_{i}\sin\beta_{i}=0$

where
$$M_j = \frac{M_{\rho_j}}{\rho_j A_j l_j}$$
, $J_j = \frac{J_{\rho_j}}{\rho_j A_j l_j^3}$, and $D_j = \frac{M_{D\rho_j}}{\rho_j A_j l_j^2}$.

- Infinite number of solutions \rightarrow Truncated to N_j roots.
- Both *C*₁, and *C*₂, cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

NPTEL, 2010 41 / 117

ASSUMED MODES METHOD (CONTD.)

- The clamped conditions at the link base yield $C_{3_i} = -C_{1_i}$ and $C_{4_i} = -C_{2_i}$
- The mass conditions at the $\eta=1$ yield

$$[\mathsf{F}](\beta_i) \left(\begin{array}{c} C_{1_i} \\ C_{2_i} \end{array}\right) = \mathbf{0}$$

 $\bullet\,$ For non-trivial solution when ${\rm det}(F)=0$ \rightarrow Simplify to

$$(1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

where
$$M_j = \frac{M_{p_j}}{\rho_j A_j l_j}$$
, $J_j = \frac{J_{p_j}}{\rho_j A_j l_j^3}$, and $D_j = \frac{M_{Dp_j}}{\rho_j A_j l_j^2}$.

- Infinite number of solutions \rightarrow Truncated to N_j roots.
- Both *C*₁, and *C*₂, cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

ASSUMED MODES METHOD (CONTD.)

- The clamped conditions at the link base yield $C_{3_i} = -C_{1_i}$ and $C_{4_i} = -C_{2_i}$
- The mass conditions at the $\eta=1$ yield

$$[\mathsf{F}](\beta_i) \left(\begin{array}{c} C_{1_i} \\ C_{2_i} \end{array}\right) = \mathbf{0}$$

 $\bullet\,$ For non-trivial solution when ${\rm det}(F)=0$ \rightarrow Simplify to

$$(1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

where
$$M_j = \frac{M_{p_j}}{\rho_j A_j l_j}$$
, $J_j = \frac{J_{p_j}}{\rho_j A_j l_j^3}$, and $D_j = \frac{M_{Dp_j}}{\rho_j A_j l_j^2}$.

- Infinite number of solutions \rightarrow Truncated to N_j roots.
- Both C_{1i} and C_{2i} cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

ASSUMED MODES METHOD (CONTD.)

- The clamped conditions at the link base yield $C_{3_i} = -C_{1_i}$ and $C_{4_i} = -C_{2_i}$
- The mass conditions at the $\eta=1$ yield

$$[\mathsf{F}](\beta_i) \left(\begin{array}{c} C_{1_i} \\ C_{2_i} \end{array}\right) = \mathbf{0}$$

 $\bullet\,$ For non-trivial solution when ${\rm det}(F)=0$ \rightarrow Simplify to

$$(1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

where
$$M_j = \frac{M_{\rho_j}}{\rho_j A_j l_j}$$
, $J_j = \frac{J_{\rho_j}}{\rho_j A_j l_j^3}$, and $D_j = \frac{M_{D\rho_j}}{\rho_j A_j l_j^2}$.

- Infinite number of solutions \rightarrow Truncated to N_j roots.
- Both C_{1_i} and C_{2_i} cannot be determined uniquely and hence mode shapes can be obtained upto a scale factor.

ASHITAVA GHOSAL (IISC)

• For clamped-mass boundary condition

 $\psi_i(\eta) = C_{2_i} \left[\cos(\beta_i \eta) - \cosh(\beta_i \eta) + v_i \left(\sin(\beta_i \eta) - \sinh(\beta_i \eta) \right) \right]$

where

$$v_i = \frac{\sin\beta_i - \sinh\beta_i + M_j\beta_i(\cos\beta_i - \cosh\beta_i) - D_j\beta_i^2(\sin\beta_i + \sinh\beta_i)}{\cos\beta_i + \cosh\beta_i - M_j\beta_i(\sin\beta_i - \sinh\beta_i) - D_j\beta_i^2(\cos\beta_i - \cosh\beta_i)}$$

- Above can be solved for *one link* with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, M_{Dp_j} and J_{p_i} are functions of time t!
- Modes shapes and frequency are time dependent!!

• For clamped-mass boundary condition

 $\psi_i(\eta) = C_{2_i} \left[\cos(\beta_i \eta) - \cosh(\beta_i \eta) + v_i \left(\sin(\beta_i \eta) - \sinh(\beta_i \eta) \right) \right]$

where

$$v_i = \frac{\sin\beta_i - \sinh\beta_i + M_j\beta_i(\cos\beta_i - \cosh\beta_i) - D_j\beta_i^2(\sin\beta_i + \sinh\beta_i)}{\cos\beta_i + \cosh\beta_i - M_j\beta_i(\sin\beta_i - \sinh\beta_i) - D_j\beta_i^2(\cos\beta_i - \cosh\beta_i)}$$

• Above can be solved for one link with rotary joint!

- For a prismatic joint and a multi-link flexible manipulator, M_{Dp_j} and J_{p_i} are functions of time t!
- Modes shapes and frequency are time dependent!!

• For clamped-mass boundary condition

 $\psi_i(\eta) = C_{2_i} \left[\cos(\beta_i \eta) - \cosh(\beta_i \eta) + v_i \left(\sin(\beta_i \eta) - \sinh(\beta_i \eta) \right) \right]$

where

$$v_i = \frac{\sin\beta_i - \sinh\beta_i + M_j\beta_i(\cos\beta_i - \cosh\beta_i) - D_j\beta_i^2(\sin\beta_i + \sinh\beta_i)}{\cos\beta_i + \cosh\beta_i - M_j\beta_i(\sin\beta_i - \sinh\beta_i) - D_j\beta_i^2(\cos\beta_i - \cosh\beta_i)}$$

- Above can be solved for *one link* with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, M_{Dp_j} and J_{p_i} are functions of time t!
- Modes shapes and frequency are time dependent!!

• For clamped-mass boundary condition

 $\psi_i(\eta) = C_{2_i} \left[\cos(\beta_i \eta) - \cosh(\beta_i \eta) + v_i \left(\sin(\beta_i \eta) - \sinh(\beta_i \eta) \right) \right]$

where

$$v_i = \frac{\sin\beta_i - \sinh\beta_i + M_j\beta_i(\cos\beta_i - \cosh\beta_i) - D_j\beta_i^2(\sin\beta_i + \sinh\beta_i)}{\cos\beta_i + \cosh\beta_i - M_j\beta_i(\sin\beta_i - \sinh\beta_i) - D_j\beta_i^2(\cos\beta_i - \cosh\beta_i)}$$

- Above can be solved for one link with rotary joint!
- For a prismatic joint and a multi-link flexible manipulator, M_{Dp_j} and J_{p_i} are functions of time t!
- Modes shapes and frequency are time dependent!!

• Time dependent frequency equation

$$f(\beta_i, M_j, J_j, D_j) = (1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

• Above can be written as a ODE

$$\frac{d\beta_i}{dt} = \frac{-\left(\frac{\partial f}{\partial M_j}\frac{dM_j}{dt} + \frac{\partial f}{\partial J_j}\frac{dJ_j}{dt} + \frac{\partial f}{\partial D_j}\frac{dD_j}{dt}\right)}{\left(\frac{\partial f}{\partial \beta_i}\right)}$$

where the derivatives can be obtained from the frequency equation.

• Solve for β_i once at t = 0 and numerically integrate ODE with equations of motion \rightarrow No need to update β_i with configuration.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 43 / 117

• Time dependent frequency equation

$$f(\beta_i, M_j, J_j, D_j) = (1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

• Above can be written as a ODE

$$\frac{d\beta_i}{dt} = \frac{-\left(\frac{\partial f}{\partial M_j}\frac{dM_j}{dt} + \frac{\partial f}{\partial J_j}\frac{dJ_j}{dt} + \frac{\partial f}{\partial D_j}\frac{dD_j}{dt}\right)}{\left(\frac{\partial f}{\partial \beta_i}\right)}$$

where the derivatives can be obtained from the frequency equation.

• Solve for β_i once at t = 0 and numerically integrate ODE with equations of motion \rightarrow No need to update β_i with configuration.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 43 / 117

• Time dependent frequency equation

$$f(\beta_i, M_j, J_j, D_j) = (1 + \cosh \beta_i \cos \beta_i) - M_j \beta_i (\cosh \beta_i \sin \beta_i - \sinh \beta_i \cos \beta_i) - J_j \beta_i^3 (\cosh \beta_i \sin \beta_i + \sinh \beta_i \cos \beta_i) + M_j J_j \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - D_j^2 \beta_i^4 (1 - \cosh \beta_i \cos \beta_i) - 2D_j \beta_i^2 \sinh \beta_i \sin \beta_i = 0$$

• Above can be written as a ODE

$$\frac{d\beta_i}{dt} = \frac{-\left(\frac{\partial f}{\partial M_j}\frac{dM_j}{dt} + \frac{\partial f}{\partial J_j}\frac{dJ_j}{dt} + \frac{\partial f}{\partial D_j}\frac{dD_j}{dt}\right)}{\left(\frac{\partial f}{\partial \beta_i}\right)}$$

where the derivatives can be obtained from the frequency equation.

• Solve for β_i once at t = 0 and numerically integrate ODE with equations of motion \rightarrow No need to update β_i with configuration.

ASSUMED MODES METHOD (CONTD.)

- After discretisation the 4×4 matrix $\frac{j_*}{i}[T_e]$ can be obtained.
- If joint j-1 is revolute

• If joint j-1 is prismatic

$$j_{i}[T_{e}] = \sum_{i=1}^{N_{j-1}} \begin{pmatrix} 1 & 0 & \frac{\partial \psi_{i}^{\mu}}{\partial \eta}(1)\xi_{i}^{\mu}(t) & \psi_{i}^{\mu}(1)\xi_{i}^{\mu}(t) \\ 0 & 1 & -\frac{\partial \psi_{i}^{\nu}}{\partial \eta}(1)\xi_{i}^{\nu}(t) & \psi_{i}^{\nu}(1)\xi_{i}^{\nu}(t) \\ -\frac{\partial \psi_{i}^{\mu}}{\partial \eta}(1)\xi_{i}^{\mu}(t) & \frac{\partial \psi_{i}^{\nu}}{\partial \eta}(1)\xi_{i}^{\nu}(t) & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ASSUMED MODES METHOD (CONTD.)

- After discretisation the 4×4 matrix $\frac{j_*}{i}[T_e]$ can be obtained.
- If joint j-1 is revolute

$${}^{j_{*}}_{j}[T_{e}] = \sum_{i=1}^{N_{j-1}} \begin{pmatrix} 1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & \frac{\partial \psi_{i}^{w}}{\partial \eta}(1)\xi_{i}^{w}(t) & 0 \\ \frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & 1 & 0 & \psi_{i}^{v}(1)\xi_{i}^{v}(t) \\ -\frac{\partial \psi_{i}^{w}}{\partial \eta}(1)\xi_{i}^{w}(t) & 0 & 1 & \psi_{i}^{w}(1)\xi_{i}^{w}(t) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• If joint j-1 is prismatic

$${}^{j_{*}}_{j}[T_{e}] = \sum_{i=1}^{N_{j-1}} \begin{pmatrix} 1 & 0 & \frac{\partial \psi_{i}^{u}}{\partial \eta}(1)\xi_{i}^{u}(t) & \psi_{i}^{u}(1)\xi_{i}^{u}(t) \\ 0 & 1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & \psi_{i}^{v}(1)\xi_{i}^{v}(t) \\ -\frac{\partial \psi_{i}^{u}}{\partial \eta}(1)\xi_{i}^{u}(t) & \frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ASSUMED MODES METHOD (CONTD.)

- After discretisation the 4×4 matrix $\frac{j_*}{i}[T_e]$ can be obtained.
- If joint j-1 is revolute

$${}^{j_{*}}_{j}[T_{e}] = \sum_{i=1}^{N_{j-1}} \begin{pmatrix} 1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & \frac{\partial \psi_{i}^{w}}{\partial \eta}(1)\xi_{i}^{w}(t) & 0 \\ \frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & 1 & 0 & \psi_{i}^{v}(1)\xi_{i}^{v}(t) \\ -\frac{\partial \psi_{i}^{w}}{\partial \eta}(1)\xi_{i}^{w}(t) & 0 & 1 & \psi_{i}^{w}(1)\xi_{i}^{w}(t) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• If joint j-1 is prismatic

$$j_{i}[T_{e}] = \sum_{i=1}^{N_{j-1}} \begin{pmatrix} 1 & 0 & \frac{\partial \psi_{i}^{u}}{\partial \eta}(1)\xi_{i}^{u}(t) & \psi_{i}^{u}(1)\xi_{i}^{u}(t) \\ 0 & 1 & -\frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & \psi_{i}^{v}(1)\xi_{i}^{v}(t) \\ -\frac{\partial \psi_{i}^{u}}{\partial \eta}(1)\xi_{i}^{u}(t) & \frac{\partial \psi_{i}^{v}}{\partial \eta}(1)\xi_{i}^{v}(t) & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ASSUMED MODES METHOD (CONTD.)

• Derivative of **r**_j is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d\xi_{i}^{v}(t)}{dt} \\ \sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d\xi_{i}^{w}(t)}{dt} \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} \sum_{i=1}^{N_{j}} \left[\psi_{i}^{u}(\eta) \frac{d\xi_{i}^{u}(t)}{dt} - \frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ \sum_{i=1}^{N_{j}} \left[\psi_{i}^{v}(\eta) \frac{d\xi_{i}^{v}(t)}{dt} - \frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ U_{j}(t) \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

• In ${}^{0}_{i}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{i}}$.

- Flexible variables $(\mathbf{q}_{f_1}, \mathbf{q}_{f_2}, \cdots, \mathbf{q}_{f_{i-1}})$, each \mathbf{q}_{f_k} has $2 \times N_k$ variables.
- From \mathbf{r}_i , additional $2 \times N_i$ flexible variables.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 45 / 117

ASSUMED MODES METHOD (CONTD.)

• Derivative of **r**_j is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \sum_{i=1}^{N_{j}} \psi_{i}^{v}(\eta) \frac{d\xi_{i}^{v}(t)}{dt} \\ \sum_{i=1}^{N_{j}} \psi_{i}^{w}(\eta) \frac{d\xi_{i}^{w}(t)}{dt} \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} \sum_{i=1}^{N_{j}} \left[\psi_{i}^{u}(\eta) \frac{d\xi_{i}^{u}(t)}{dt} - \frac{\partial \psi_{i}^{u}(\eta)}{\partial \eta} \xi_{i}^{u}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ \sum_{i=1}^{N_{j}} \left[\psi_{i}^{v}(\eta) \frac{d\xi_{i}^{v}(t)}{dt} - \frac{\partial \psi_{i}^{v}(\eta)}{\partial \eta} \xi_{i}^{v}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ U_{j}(t) \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

- In ${}^{0}_{i}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables $(\mathbf{q}_{f_1}, \mathbf{q}_{f_2}, \cdots, \mathbf{q}_{f_{i-1}})$, each \mathbf{q}_{f_k} has $2 \times N_k$ variables.
- From \mathbf{r}_i , additional $2 \times N_i$ flexible variables.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 45 / 117

ASSUMED MODES METHOD (CONTD.)

• Derivative of **r**_j is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \sum_{i=1}^{N_{j}} \psi_{i}^{\mathrm{v}}(\eta) \frac{d\xi_{i}^{\mathrm{v}}(t)}{dt} \\ \sum_{i=1}^{N_{j}} \psi_{i}^{\mathrm{w}}(\eta) \frac{d\xi_{i}^{\mathrm{w}}(t)}{dt} \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} \sum_{i=1}^{N_{j}} \left[\psi_{i}^{\mathrm{u}}(\eta) \frac{d\xi_{i}^{\mathrm{u}}(t)}{dt} - \frac{\partial \psi_{i}^{\mathrm{u}}(\eta)}{\partial \eta} \xi_{i}^{\mathrm{u}}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ \sum_{i=1}^{N_{j}} \left[\psi_{i}^{\mathrm{v}}(\eta) \frac{d\xi_{i}^{\mathrm{v}}(t)}{dt} - \frac{\partial \psi_{i}^{\mathrm{v}}(\eta)}{\partial \eta} \xi_{i}^{\mathrm{v}}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ U_{j}(t) \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

- In ${}^{0}_{i}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables (q_{f1}, q_{f2}, ..., q_{fj-1}), each q_{fk} has 2 × N_k variables.
 From r_i, additional 2 × N_i flexible variables.

NPTEL, 2010 45 / 117

ASSUMED MODES METHOD (CONTD.)

• Derivative of **r**_j is given by

$$\dot{\mathbf{r}}_{j} = \begin{cases} \begin{pmatrix} 0 \\ \sum_{i=1}^{N_{j}} \psi_{i}^{\mathrm{v}}(\eta) \frac{d\xi_{i}^{\mathrm{v}}(t)}{dt} \\ \sum_{i=1}^{N_{j}} \psi_{i}^{\mathrm{w}}(\eta) \frac{d\xi_{i}^{\mathrm{w}}(t)}{dt} \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} \sum_{i=1}^{N_{j}} \left[\psi_{i}^{\mathrm{u}}(\eta) \frac{d\xi_{i}^{\mathrm{u}}(t)}{dt} - \frac{\partial \psi_{i}^{\mathrm{u}}(\eta)}{\partial \eta} \xi_{i}^{\mathrm{u}}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ \sum_{i=1}^{N_{j}} \left[\psi_{i}^{\mathrm{v}}(\eta) \frac{d\xi_{i}^{\mathrm{v}}(t)}{dt} - \frac{\partial \psi_{i}^{\mathrm{v}}(\eta)}{\partial \eta} \xi_{i}^{\mathrm{v}}(t) \frac{\eta U_{j}(t)}{l_{j}(t)} \right] \\ U_{j}(t) \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

- In ${}^{0}_{j}[T]$, there are j rigid-joint variables $\mathbf{q}_{r_{j}}$.
- Flexible variables $(\mathbf{q}_{f_1}, \mathbf{q}_{f_2}, \cdots, \mathbf{q}_{f_{j-1}})$, each \mathbf{q}_{f_k} has $2 \times N_k$ variables.
- From \mathbf{r}_j , additional $2 \times N_j$ flexible variables.

• Finite element method is popular in many applications involving deformation in solids and fluid flows.

- In flexible manipulators each link is 'broken' into finite number of elements.
- Displacements are made *continuous* inside an element and *compatible* across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from *nodal displacements* and by an *interpolation function*.

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators each link is 'broken' into finite number of elements.
- Displacements are made *continuous* inside an element and *compatible* across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from *nodal displacements* and by an *interpolation function*.

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators each link is 'broken' into finite number of elements.
- Displacements are made *continuous* inside an element and *compatible* across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from *nodal displacements* and by an *interpolation function*.

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators each link is 'broken' into finite number of elements.
- Displacements are made *continuous* inside an element and *compatible* across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from *nodal displacements* and by an *interpolation function*.

- Finite element method is popular in many applications involving deformation in solids and fluid flows.
- In flexible manipulators each link is 'broken' into finite number of elements.
- Displacements are made *continuous* inside an element and *compatible* across elements.
- Internal force balance at points, called 'nodes', in an element.
- Displacement at any point inside an element is obtained from *nodal displacements* and by an *interpolation function*.
FINITE ELEMENT METHOD (CONTD.)

Figure 14: A finite element discretisation of a link j with beam element i and its nodal displacement variables.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 47/117

DISCRETISATION OF PDE

FINITE ELEMENT METHOD (CONTD.)

• Figure 14 shows PQ, an element i on link j, with nodes i and i+1.

• Position vector **r**_{ji} of any point along the neutral axis of the *i*th element, expressed in the undeformed link coordinate system is given by

$$\mathbf{r}_{ji} = \begin{cases} \begin{pmatrix} (i-1)l_{ji}+s\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\v_{ji}(s,t)\\w_{ji}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} 0\\0\\(i-1)l_{ji}+s \end{pmatrix} + \begin{pmatrix} u_{ji}(s,t)\\v_{ji}(s,t)\\0 \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

 I_{ji} is the length of element *i*.

• *l_{ji}* is constant for revolute jointed link and variable for prismatic jointed link!

FINITE ELEMENT METHOD (CONTD.)

- Figure 14 shows PQ, an element i on link j, with nodes i and i+1.
- Position vector \mathbf{r}_{ji} of any point along the neutral axis of the *i*th element, expressed in the undeformed link coordinate system is given by

$$\mathbf{r}_{ji} = \begin{cases} \begin{pmatrix} (i-1)l_{ji} + s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{ji}(s,t) \\ w_{ji}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} 0 \\ 0 \\ (i-1)l_{ji} + s \end{pmatrix} + \begin{pmatrix} u_{ji}(s,t) \\ v_{ji}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

- I_{ji} is the length of element *i*.
- *l_{ji}* is constant for revolute jointed link and variable for prismatic jointed link!

FINITE ELEMENT METHOD (CONTD.)

- Figure 14 shows PQ, an element i on link j, with nodes i and i+1.
- Position vector \mathbf{r}_{ji} of any point along the neutral axis of the *i*th element, expressed in the undeformed link coordinate system is given by

$$\mathbf{r}_{ji} = \begin{cases} \begin{pmatrix} (i-1)l_{ji} + s \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{ji}(s,t) \\ w_{ji}(s,t) \end{pmatrix} & \text{if joint } j \text{ is revolute} \\ \\ \begin{pmatrix} 0 \\ 0 \\ (i-1)l_{ji} + s \end{pmatrix} + \begin{pmatrix} u_{ji}(s,t) \\ v_{ji}(s,t) \\ 0 \end{pmatrix} & \text{if joint } j \text{ is prismatic} \end{cases}$$

 I_{ji} is the length of element *i*.

• *l_{ji}* is constant for revolute jointed link and variable for prismatic jointed link!

FINITE ELEMENT METHOD (CONTD.)

• Elastic displacements if joint *j* is revolute,

$$v_{ji}(s,t) = \varphi_i^{v_j}(s)^T \mathbf{q}_{f_{ji}}^{v_j}(t), \quad w_{ji}(s,t) = \varphi_i^{w_j}(s)^T \mathbf{q}_{f_{ji}}^{w_j}(t)$$

with $\mathbf{q}_{f_{ji}}^{v_j}(t)$ denoting the vector $(\delta_i^{v_j}(t), \phi_i^{w_j}(t), \delta_{i+1}^{v_j}(t), \phi_{i+1}^{w_j}(t))^T$ and $\mathbf{q}_{f_{ji}}^{w_j}(t)$ denoting the vector $(\delta_i^{w_j}(t), \phi_i^{v_j}(t), \delta_{i+1}^{w_j}(t), \phi_{i+1}^{v_j}(t))^T$. • Elastic displacements if joint j is prismatic

$$u_{ji}(s,t) = \varphi_{i}^{u_{j}}(s)^{T} \mathsf{q}_{f_{ii}}^{u_{j}}(t), \quad v_{ji}(s,t) = \varphi_{i}^{v_{j}}(s)^{T} \mathsf{q}_{f_{ii}}^{v_{j}}(t)$$

with $\mathbf{q}_{f_{ji}}^{u_j}(t)$ denoting the vector $\left(\delta_i^{u_j}(t), \phi_i^{v_j}(t), \delta_{i+1}^{u_j}(t), \phi_{i+1}^{v_j}(t)\right)^T$ and $\mathbf{q}_{f_{ii}}^{v_j}(t)$ denoting the vector $\left(\delta_i^{v_j}(t), \phi_i^{u_j}(t), \delta_{i+1}^{v_j}(t), \phi_{i+1}^{u_j}(t)\right)^T$.

FINITE ELEMENT METHOD (CONTD.)

• Elastic displacements if joint *j* is revolute,

$$v_{ji}(s,t) = \varphi_i^{v_j}(s)^T \mathbf{q}_{f_{ji}}^{v_j}(t), \quad w_{ji}(s,t) = \varphi_i^{w_j}(s)^T \mathbf{q}_{f_{ji}}^{w_j}(t)$$

- with $\mathbf{q}_{f_{ji}}^{v_j}(t)$ denoting the vector $(\delta_i^{v_j}(t), \phi_i^{w_j}(t), \delta_{i+1}^{v_j}(t), \phi_{i+1}^{w_j}(t))^T$ and $\mathbf{q}_{f_{ji}}^{w_j}(t)$ denoting the vector $(\delta_i^{w_j}(t), \phi_i^{v_j}(t), \delta_{i+1}^{w_j}(t), \phi_{i+1}^{v_j}(t))^T$.
- Elastic displacements if joint *j* is prismatic

$$u_{ji}(s,t) = \varphi_i^{u_j}(s)^T q_{f_{ji}}^{u_j}(t), \quad v_{ji}(s,t) = \varphi_i^{v_j}(s)^T q_{f_{ji}}^{v_j}(t)$$

with $\mathbf{q}_{f_{ji}}^{u_j}(t)$ denoting the vector $\left(\delta_i^{u_j}(t), \phi_i^{v_j}(t), \delta_{i+1}^{u_j}(t), \phi_{i+1}^{v_j}(t)\right)^T$ and $\mathbf{q}_{f_{ji}}^{v_j}(t)$ denoting the vector $\left(\delta_i^{v_j}(t), \phi_i^{u_j}(t), \delta_{i+1}^{v_j}(t), \phi_{i+1}^{u_j}(t)\right)^T$.

DISCRETISATION OF PDE FINITE ELEMENT METHOD (CONTD.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible ightarrow choose simple cubic polynomials

I_{ji} is constant for revolute jointed link and variable for prismatic jointed link → More difficult to model prismatic jointed link.

DISCRETISATION OF PDE

FINITE ELEMENT METHOD (CONTD.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible \rightarrow choose simple cubic polynomials

$$\varphi_i^{u_j}(s) = \varphi_i^{v_j}(s) = \varphi_i^{w_j}(s) = \begin{pmatrix} 1 - 3\left(\frac{s}{l_{ji}}\right)^2 + 2\left(\frac{s}{l_{ji}}\right)^3 \\ s\left(\frac{s}{l_{ji}} - 1\right)^2 \\ \left(\frac{s}{l_{ji}}\right)^2 \left(3 - 2\frac{s}{l_{ji}}\right) \\ \frac{s^2}{l_{ji}}\left(\frac{s}{l_{ji}} - 1\right) \end{pmatrix}$$

I_{ji} is constant for revolute jointed link and variable for prismatic jointed link → More difficult to model prismatic jointed link.

DISCRETISATION OF PDE

FINITE ELEMENT METHOD (CONTD.)

- Interpolation functions are assumed same for u, v and w.
- Various choices possible \rightarrow choose simple cubic polynomials

$$\varphi_i^{u_j}(s) = \varphi_i^{v_j}(s) = \varphi_i^{w_j}(s) = \begin{pmatrix} 1 - 3\left(\frac{s}{l_{ji}}\right)^2 + 2\left(\frac{s}{l_{ji}}\right)^3 \\ s\left(\frac{s}{l_{ji}} - 1\right)^2 \\ \left(\frac{s}{l_{ji}}\right)^2 \left(3 - 2\frac{s}{l_{ji}}\right) \\ \frac{s^2}{l_{ji}}\left(\frac{s}{l_{ji}} - 1\right) \end{pmatrix}$$

I_{ji} is constant for revolute jointed link and variable for prismatic jointed link → More difficult to model prismatic jointed link.

DISCRETISATION OF PDE FINITE ELEMENT METHOD (CONTD.)

• 4×4 homogeneous transformation matrix $j_i^{j_*}[\mathcal{T}_e]$ in the finite element model reduces to

$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & -\phi_{N+1}^{w} & \phi_{N+1}^{v} & 0 \\ \phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{w} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is revolute}$$
$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & 0 & \phi_{N+1}^{v} & \delta_{N+1}^{u} \\ 0 & 1 & -\phi_{N+1}^{u} & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & \phi_{N+1}^{u} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is prismatic}$$

- For clamped boundary conditions at element $1 o \delta_{j1} = \phi_{j1} = 0$.
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

FINITE ELEMENT METHOD (CONTD.)

• 4 × 4 homogeneous transformation matrix $j_i^{j_*}[\mathcal{T}_e]$ in the finite element model reduces to

$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & -\phi_{N+1}^{w} & \phi_{N+1}^{v} & 0 \\ \phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{w} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is revolute}$$

$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & 0 & \phi_{N+1}^{v} & \delta_{N+1}^{u} \\ 0 & 1 & -\phi_{N+1}^{v} & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & \phi_{N+1}^{u} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is prismatic}$$

- For clamped boundary conditions at element $1 o \delta_{j1} = \phi_{j1} = 0.$
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

DISCRETISATION OF PDE FINITE ELEMENT METHOD (CONTD.)

• 4 × 4 homogeneous transformation matrix $j_i^{j_*}[\mathcal{T}_e]$ in the finite element model reduces to

$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & -\phi_{N+1}^{w} & \phi_{N+1}^{v} & 0 \\ \phi_{N+1}^{w} & 1 & 0 & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & 0 & 1 & \delta_{N+1}^{w} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is revolute}$$

$${}^{j_{e}}_{j}[T_{e}] = \begin{pmatrix} 1 & 0 & \phi_{N+1}^{v} & \delta_{N+1}^{u} \\ 0 & 1 & -\phi_{N+1}^{u} & \delta_{N+1}^{v} \\ -\phi_{N+1}^{v} & \phi_{N+1}^{u} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ Joint } j-1 \text{ is prismatic}$$

- For clamped boundary conditions at element $1
 ightarrow \delta_{j1} = \phi_{j1} = 0.$
- To enforce natural boundary conditions proper energy expressions for additional masses and inertia should be used.

FINITE ELEMENT METHOD (CONTD.)

• Velocity of any point on the neutral axis of the *i*th element in the *j*th link in the local undeformed coordinate system

$$\dot{\mathbf{r}}_{ji} = \begin{cases} \begin{pmatrix} 0 \\ \sum_{k=1}^{4} \varphi_{ik}^{v}(s,l_{ji}) \frac{dq_{f_{jik}}^{v}(t)}{dt} \\ \sum_{k=1}^{4} \varphi_{ik}^{w}(s,l_{ji}) \frac{dq_{f_{jik}}^{v}(t)}{dt} \end{pmatrix} & \text{joint } j \text{ is } \mathbf{R} \\ \begin{pmatrix} \sum_{k=1}^{4} \left[\varphi_{ik}^{u}(s,l_{ji}) \frac{dq_{f_{jik}}^{u}(t)}{dt} + \frac{\partial \varphi_{ik}^{u}(s,l_{ji})}{\partial l_{ji}(t)} q_{f_{jik}}^{u}(t) \frac{U_{j}(t)}{N_{j}} \\ \sum_{k=1}^{4} \left[\varphi_{ik}^{v}(s,l_{ji}) \frac{dq_{f_{jik}}^{v}(t)}{dt} + \frac{\partial \varphi_{ik}^{v}(s,l_{ji})}{\partial l_{ji}(t)} q_{f_{jik}}^{v}(t) \frac{U_{j}(t)}{N_{j}} \\ \frac{iU_{j}(t)}{N_{j}} \end{pmatrix} & \text{joint } j \text{ is } \mathbf{P} \end{cases} \end{cases} \end{cases}$$

NPTEL, 2010 52 / 117

DISCRETISATION OF PDE

COMPARISON OF AMM AND FEM

- Number of modes Vs. Number of elements
 - AMM: k modes k natural frequencies, FEM: k elements 2k natural frequencies.

Mode	Nu	Exact		
No.	1	2	3	Values
1	2.0963 <i>e</i> +2	2.0873 <i>e</i> +2	2.0864 <i>e</i> +2	2.0864 <i>e</i> +2
2	2.0654 <i>e</i> +3	1.3186e + 3	1.3118e + 3	1.3075e + 3
3		4.4597 <i>e</i> +3	3.7067 <i>e</i> +3	3.6611 <i>e</i> +3
4		1.2944e + 4	8.3473 <i>e</i> +3	7.1742 <i>e</i> +3
5			1.5709e + 4	1.1860e + 4
6			3.1318e + 4	1.7716e + 4

Table 1: Natural frequencies(Hz) of a clamped-free beam, m = 0.33 kg, l = 1.0m, Inertia of joint 3.2 kg/m² and $El = 1165.5N/m^2$

- Only first k frequencies from FEM are close → k modes are equivalent to k elements.
- Typically 2 or three modes(elements) are enough to model dynamics.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 53 / 117

DISCRETISATION OF PDE

COMPARISON OF AMM AND FEM

- Number of modes Vs. Number of elements
 - AMM: k modes k natural frequencies, FEM: k elements 2k natural frequencies.

Mode	Nu	Exact		
No.	1	2	3	Values
1	2.0963e + 2	2.0873 <i>e</i> +2	2.0864 <i>e</i> +2	2.0864 <i>e</i> +2
2	2.0654 <i>e</i> +3	1.3186e + 3	1.3118e + 3	1.3075e + 3
3		4.4597 <i>e</i> +3	3.7067 <i>e</i> +3	3.6611 <i>e</i> +3
4		1.2944e + 4	8.3473 <i>e</i> +3	7.1742 <i>e</i> +3
5			1.5709e + 4	1.1860e + 4
6			3.1318e + 4	1.7716e + 4

Table 1: Natural frequencies(Hz) of a clamped-free beam, m = 0.33 kg, l = 1.0m, Inertia of joint 3.2 kg/m² and $El = 1165.5N/m^2$

- Only first k frequencies from FEM are close → k modes are equivalent to k elements.
- Typically 2 or three modes(elements) are enough to model dynamics.

ASHITAVA GHOSAL (IISC)

DISCRETISATION OF PDE

COMPARISON OF AMM AND FEM

- Number of modes Vs. Number of elements
 - AMM: k modes k natural frequencies, FEM: k elements 2k natural frequencies.

Mode	Nu	Exact		
No.	1	2	3	Values
1	2.0963e + 2	2.0873 <i>e</i> +2	2.0864 <i>e</i> +2	2.0864 <i>e</i> +2
2	2.0654 <i>e</i> +3	1.3186e + 3	1.3118e + 3	1.3075e + 3
3		4.4597 <i>e</i> +3	3.7067 <i>e</i> +3	3.6611 <i>e</i> +3
4		1.2944e + 4	8.3473 <i>e</i> +3	7.1742 <i>e</i> +3
5			1.5709e + 4	1.1860e + 4
6			3.1318e + 4	1.7716e + 4

Table 1: Natural frequencies(Hz) of a clamped-free beam, m = 0.33 kg, l = 1.0m, Inertia of joint 3.2 kg/m^2 and $El = 1165.5N/m^2$

- Only first k frequencies from FEM are close → k modes are equivalent to k elements.
- Typically 2 or three modes(elements) are enough to model dynamics.

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

COMPARISON OF AMM AND FEM

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

NPTEL, 2010 54 / 117

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

- AMM mode shapes are defined over *entire* beam with trigonometric functions → Diagonal mass and stiffness matrices.
- FEM interpolation function are *local* and are polynomials → Banded mass and stiffness matrices.
- FEM imposes more constraints (due to use of polynomials) \rightarrow Overestimates natural frequencies more than AMM.
- Overestimation of natural frequencies leads to "locking" and difficulties in using model-based control.
- Local interpolations functions easier to use for complex geometries.
- 3D and other kinds of elements available in large body of research on FEM can be used.

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j*}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix $\sum_{i=1}^{j-1} [T_i] = \sum_{i=1}^{j-1} [T_r]_i^{j_e} [T_e]$.
- Position vector and velocity of a point on the flexible link for rotary
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

NPTEL, 2010 55/117

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j*}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix $\sum_{i=1}^{j-1} [T_i] = \sum_{i=1}^{j-1} [T_r]_i^{j_e} [T_e]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j_k}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix $\sum_{i=1}^{j-1} [T_i] = \sum_{i=1}^{j-1} [T_r]_i^{j_e} [T_e]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- FEM approach to discretise PDE.

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j_k}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix $\sum_{i=1}^{j-1} [T_i] = \sum_{i=1}^{j-1} [T_r]_i^{j_e} [T_e]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE. •

NPTEL, 2010 55/117

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j*}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix $\sum_{i=1}^{j-1} [T_i] = \sum_{i=1}^{j-1} [T_r]_i^{j_e} [T_e]$.
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.

- Extension of Denavit-Hartenberg convention to flexible links.

 - Rigid 4 × 4 transformation matrix ^{j-1}_{j*}[T_r]
 Small deformation and linear elasticity → Elastic 4 × 4 transformation matrix $\frac{j_*}{i}[T_e]$.
 - Complete 4 × 4 transformation matrix ^{j-1}_i[T] = ^{j-1}_i[T_r]^j_i[T_e].
- Position vector and velocity of a point on the flexible link for rotary jointed and prismatic jointed link.
- Assumed modes method to discretise PDE.
- Frequency equation as an ODE.
- FEM approach to discretise PDE.
- Comparison of AMM and FEM approaches.

NPTEL, 2010 55/117

OUTLINE

CONTENTS

- 2 Lecture 1
 - Flexible Manipulators
- 3 LECTURE 2*
 - Kinematic Modeling of Flexible Link Manipulators
- 4 LECTURE 3*
 - Dynamic Modeling of Flexible Link Manipulators
 - Control of Flexible Link Manipulators

D LECTURE 4

- Experiments with a Planar Two Link Flexible System
- 6 Module 8 Additional Material
 - Problems, References and Suggested Reading

INTRODUCTION OVERVIEW

• Dynamic equations of motion for flexible link manipulators.

- Controllability of flexible-link manipulators.
- Control of joint motion & tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

INTRODUCTION Overview

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion & tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion & tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion & tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

- Dynamic equations of motion for flexible link manipulators.
- Controllability of flexible-link manipulators.
- Control of joint motion & tip vibration in flexible link manipulator.
- Robustness issues in model-based control schemes.
- Numerical simulation of a multi-link flexible manipulator.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see <u>Module 6</u>, Lecture 1).
- Lagrangian equations of motion
 - For joint variable q_{rj}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{r_j}}\right) - \frac{\partial KE}{\partial q_{r_j}} + \frac{\partial PE}{\partial q_{r_j}} = \tau_j$$

• For flexible variable q_{fji}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{f_{ji}}}\right) - \frac{\partial KE}{\partial q_{f_{ji}}} + \frac{\partial PE}{\partial q_{f_{ji}}} = 0$$

• *KE* is total kinetic energy & *PE* is total potential energy due to *elastic deformation* and *gravity*.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 58 / 117

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see Module 6, Lecture 1).
- Lagrangian equations of motion
 - For joint variable *q_{rj}*:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{rj}}\right) - \frac{\partial KE}{\partial q_{rj}} + \frac{\partial PE}{\partial q_{rj}} = \tau_j$$

• For flexible variable q_{fji}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{fji}}\right) - \frac{\partial KE}{\partial q_{fji}} + \frac{\partial PE}{\partial q_{fji}} = 0$$

• *KE* is total kinetic energy & *PE* is total potential energy due to *elastic deformation* and *gravity*.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 58 / 117

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see <u>Module 6</u>, Lecture 1).
- Lagrangian equations of motion
 - For joint variable q_{rj}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{r_j}}\right) - \frac{\partial KE}{\partial q_{r_j}} + \frac{\partial PE}{\partial q_{r_j}} = \tau_j$$

• For flexible variable q_{fji}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{f_{ji}}}\right) - \frac{\partial KE}{\partial q_{f_{ji}}} + \frac{\partial PE}{\partial q_{f_{ji}}} = 0$$

• *KE* is total kinetic energy & *PE* is total potential energy due to *elastic deformation* and *gravity*.

ASHITAVA GHOSAL (IISC)

- Symbolic equations of motion using MAPLE or Mathematica.
- Lagrangian formulation (see <u>Module 6</u>, Lecture 1).
- Lagrangian equations of motion
 - For joint variable *q*_{*r*_j}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{r_j}}\right) - \frac{\partial KE}{\partial q_{r_j}} + \frac{\partial PE}{\partial q_{r_j}} = \tau_j$$

• For flexible variable q_{fji}:

$$\frac{d}{dt}\left(\frac{\partial KE}{\partial \dot{q}_{f_{ji}}}\right) - \frac{\partial KE}{\partial q_{f_{ji}}} + \frac{\partial PE}{\partial q_{f_{ji}}} = 0$$

• *KE* is total kinetic energy & *PE* is total potential energy due to *elastic deformation* and *gravity*.

ASHITAVA GHOSAL (IISC)

KINETIC ENERGY

• Total kinetic energy: $KE = \sum_{j=1}^{n} (KE_{joint_j} + KE_{link_j}) + KE_{payload}$

• Kinetic energy of joint in terms of mass, inertia and derivative of position vector

$$\mathcal{K}E_{joint_j} = \frac{1}{2}{}^0 \Omega_j^T {}^0 [I_{joint}]_j {}^0 \Omega_j + \frac{1}{2} m_{joint_j} \left(\frac{d {}^0 \mathbf{O}_j}{dt}\right)^T \left(\frac{d {}^0 \mathbf{O}_j}{dt}\right)$$

• Kinetic energy of flexible link *j* in terms of density, cross-sectional area and number of elements

$$\mathcal{K}E_{link_{j}} = \begin{cases} \frac{1}{2} \int_{0}^{l_{j}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right) ds, & \text{for AMM} \\ \\ \frac{1}{2} \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right) ds, & \text{for FEM} \end{cases}$$

KINETIC ENERGY

- Total kinetic energy: $KE = \sum_{j=1}^{n} (KE_{joint_j} + KE_{link_j}) + KE_{payload}$
- Kinetic energy of joint in terms of mass, inertia and derivative of position vector

$$\mathcal{K}\mathcal{E}_{joint_{j}} = \frac{1}{2}{}^{0}\Omega_{j}{}^{T}{}^{0}[I_{joint}]_{j}{}^{0}\Omega_{j} + \frac{1}{2}m_{joint_{j}}\left(\frac{d^{0}\mathbf{O}_{j}}{dt}\right)^{T}\left(\frac{d^{0}\mathbf{O}_{j}}{dt}\right)$$

• Kinetic energy of flexible link *j* in terms of density, cross-sectional area and number of elements

$$\mathcal{K}E_{link_{j}} = \begin{cases} \frac{1}{2} \int_{0}^{l_{j}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right) ds, & \text{for AMM} \\ \\ \frac{1}{2} \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right) ds, & \text{for FEM} \end{cases}$$

KINETIC ENERGY

- Total kinetic energy: $KE = \sum_{j=1}^{n} (KE_{joint_j} + KE_{link_j}) + KE_{payload}$
- Kinetic energy of joint in terms of mass, inertia and derivative of position vector

$$\mathcal{K}\mathcal{E}_{joint_{j}} = \frac{1}{2}{}^{0}\Omega_{j}{}^{T}{}^{0}[I_{joint}]_{j}{}^{0}\Omega_{j} + \frac{1}{2}m_{joint_{j}}\left(\frac{d^{0}\mathbf{O}_{j}}{dt}\right)^{T}\left(\frac{d^{0}\mathbf{O}_{j}}{dt}\right)$$

• Kinetic energy of flexible link *j* in terms of density, cross-sectional area and number of elements

$$\mathcal{K}E_{link_{j}} = \begin{cases} \frac{1}{2} \int_{0}^{l_{j}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{j}}{dt}\right) ds, & \text{for AMM} \\ \\ \frac{1}{2} \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \rho_{j} A_{j} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right)^{T} \left(\frac{d^{0} \mathbf{p}_{ji}}{dt}\right) ds, & \text{for FEM} \end{cases}$$

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS KINETIC ENERGY (CONTD.)

• If link *j* is rigid, kinetic energy, in terms of position of centre of mass

$$\mathcal{K} \mathcal{E}_{link_j} = \frac{1}{2} m_j \left(\frac{d^0 \mathbf{p}_{c_j}}{dt} \right)^T \left(\frac{d^0 \mathbf{p}_{c_j}}{dt} \right)$$

• Kinetic energy of payload

$$KE_{payload} = \frac{1}{2}m_p \left(\frac{d^0 \mathbf{p}_{Tool}}{dt}\right)^T \left(\frac{d^0 \mathbf{p}_{Tool}}{dt}\right) + \frac{1}{2}{}^0 \Omega_{Tool}{}^T {}^0 [J_p]^0 \Omega_{Tool}$$

 ${}^{0}\mathbf{p}_{Tool}$ is the position vector of the centre of mass of the payload, m_p is mass of the payload, ${}^{0}[J_p]$ and ${}^{0}\cdot_{Tool}$ are the moment of inertia matrix of the payload and the angular velocity vector of the payload, respectively.

EQUATIONS OF MOTION OF MULTI-LINK FLEXIBLE MANIPULATORS KINETIC ENERGY (CONTD.)

• If link *j* is rigid, kinetic energy, in terms of position of centre of mass

$$\mathcal{K} \mathcal{E}_{link_j} = \frac{1}{2} m_j \left(\frac{d^0 \mathbf{p}_{c_j}}{dt} \right)^T \left(\frac{d^0 \mathbf{p}_{c_j}}{dt} \right)$$

• Kinetic energy of payload

$$\mathcal{K} \mathcal{E}_{payload} = \frac{1}{2} m_p \left(\frac{d^0 \mathbf{p}_{Tool}}{dt} \right)^T \left(\frac{d^0 \mathbf{p}_{Tool}}{dt} \right) + \frac{1}{2} \Omega_{Tool}^T {}^0 [J_p]^0 \Omega_{Tool}$$

 ${}^{0}\mathbf{p}_{Tool}$ is the position vector of the centre of mass of the payload, m_p is mass of the payload, ${}^{0}[J_p]$ and ${}^{0}\cdot_{Tool}$ are the moment of inertia matrix of the payload and the angular velocity vector of the payload, respectively.

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{pavload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T \ 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{T \, 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{T \, 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j l_{jy}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j l_{jz}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{pavload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T \ 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{\top 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{\top 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j l_{jy}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j l_{jz}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{payload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T \, 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{T \ 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{T \ 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j l_{jy}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j l_{jz}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{payload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T \, 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{T \ 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{T \ 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation

• For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j l_{jy}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j l_{jz}}{2l_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{payload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{T \, 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{T \, 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j I_{jy}}{2I_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j I_{jz}}{2I_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

• For finite element model:

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

POTENTIAL ENERGY

- Total potential energy: $PE = \sum_{i=1}^{n} (PE_{f_i} + PE_{g_i}) + PE_{g_{payload}}$
- Payload: $PE_{g_{payload}} = m_p \mathbf{g}^{T \, 0} \mathbf{p}_{Tool}$
- Gravity: $PE_{g_j} = m_{joint_j} \mathbf{g}^{T \, 0} \mathbf{O}_j + \int_0^{l_j} \rho_j A_j \mathbf{g}^{T \, 0} \mathbf{p}_j ds$
- Strain energy, assuming linear elasticity and neglecting axial and torsional deformation
- For assumed modes model:

$$PE_{f_j} = \int_0^1 \left(\frac{E_j I_{jy}}{2I_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{v_j}(\eta)}{\partial \eta^2} \xi_i^{v_j}(t) \right]^2 + \frac{E_j I_{jz}}{2I_j^3} \left[\sum_{i=1}^{N_j} \frac{\partial^2 \psi_i^{w_j}(\eta)}{\partial \eta^2} \xi_i^{w_j}(t) \right]^2 \right) d\eta$$

$$PE_{f_{j}} = \sum_{i=1}^{N_{j}} \int_{0}^{l_{ji}} \left(\frac{E_{j}l_{jy}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{v_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{v_{j}}(t) \right]^{2} + \frac{E_{j}l_{jz}}{2} \left[\sum_{k=1}^{4} \frac{\partial^{2} \varphi_{ik}^{w_{j}}(s)}{\partial s^{2}} q_{f_{jik}}^{w_{j}}(t) \right]^{2} \right) ds$$

- Kinetic and potential energy \rightarrow Lagrangian formulation \rightarrow equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_r \\ \ddot{\mathsf{q}}_f \end{pmatrix} + \begin{pmatrix} \mathsf{C}_r(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_f(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_r(\mathsf{q}) \\ \mathsf{G}_f(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & [\mathsf{K}] \end{pmatrix} \begin{pmatrix} \mathsf{q}_r \\ \mathsf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \leq n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, N = 4∑^{n_f}_{j=1} N_j in 3D and N = 2∑^{n_f}_{j=1} N_j for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

- $\bullet\,$ Kinetic and potential energy $\to\,$ Lagrangian formulation $\to\,$ equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_{r}(\mathsf{q}) \\ \mathsf{G}_{f}(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \leq n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, N = 4∑^{n_f}_{j=1} N_j in 3D and N = 2∑^{n_f}_{i=1} N_j for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

- $\bullet\,$ Kinetic and potential energy $\to\,$ Lagrangian formulation $\to\,$ equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_{r}(\mathsf{q}) \\ \mathsf{G}_{f}(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \mathsf{\tau} \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \leq n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, N = 4∑^{n_f}_{j=1} N_j in 3D and N = 2∑^{n_f}_{i=1} N_j for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

ASHITAVA GHOSAL (IISC)

- $\bullet\,$ Kinetic and potential energy $\to\,$ Lagrangian formulation $\to\,$ equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_{r}(\mathsf{q}) \\ \mathsf{G}_{f}(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \le n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, $N = 4\sum_{j=1}^{n_f} N_j$ in 3D and $N = 2\sum_{j=1}^{n_f} N_j$ for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- $\bullet\,$ Kinetic and potential energy $\to\,$ Lagrangian formulation $\to\,$ equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_{r}(\mathsf{q}) \\ \mathsf{G}_{f}(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \mathsf{\tau} \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \le n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, $N = 4\sum_{j=1}^{n_f} N_j$ in 3D and $N = 2\sum_{j=1}^{n_f} N_j$ for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

- $\bullet\,$ Kinetic and potential energy $\to\,$ Lagrangian formulation $\to\,$ equations of motion.
- Equations of motion in a compact form

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \mathsf{G}_{r}(\mathsf{q}) \\ \mathsf{G}_{f}(\mathsf{q}) \end{pmatrix} \\ + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

- Variables **q**: joint variables $\mathbf{q}_r \in \mathfrak{R}^n$ and flexible variables $\mathbf{q}_f \in \mathfrak{R}^N$.
- For AMM with $n_f \le n$ flexible links and N_j modes for each flexible link, $N = 2\sum_{j=1}^{n_f} N_j$ in 3D and $N = \sum_{j=1}^{n_f} N_j$ for plane.
- For FEM with N_j elements for each flexible link, $N = 4\sum_{j=1}^{n_f} N_j$ in 3D and $N = 2\sum_{j=1}^{n_f} N_j$ for plane.
- In FEM, in the *first* element in each link, $\delta_{j1} = \phi_{j1} = 0$ to represent clamped boundary conditions.

- \bullet Generalised mass matrix $[\mathsf{M}(q)]$ contain
 - *n* × *n* symmetric, positive definite sub-matrix [**M**_{*rr*}] related to the rigid joint variables.
 - $N \times N$ symmetric, positive definite sub-matrix $[\mathbf{M}_{\rm ff}]$ related to the flexible variables.
 - *N* × *n* sub-matrix [**M**_{*rf*}] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- N × N symmetric, positive definite matrix [K] is called the flexural stiffness matrix and arises from the strain energy of the flexible links – [M_{ff}] and [K] are used in FEM to compute natural frequencies.
- Only joint torques are acting ightarrow au is an n imes 1 vector.

- \bullet Generalised mass matrix $[\mathsf{M}(q)]$ contain
 - *n* × *n* symmetric, positive definite sub-matrix [**M**_{*rr*}] related to the rigid joint variables.
 - $N \times N$ symmetric, positive definite sub-matrix $[\mathbf{M}_{\rm ff}]$ related to the flexible variables.
 - *N* × *n* sub-matrix [**M**_{*rf*}] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- N × N symmetric, positive definite matrix [K] is called the flexural stiffness matrix and arises from the strain energy of the flexible links – [M_{ff}] and [K] are used in FEM to compute natural frequencies.
- Only joint torques are acting ightarrow au is an n imes 1 vector.

- \bullet Generalised mass matrix $[\mathsf{M}(q)]$ contain
 - *n* × *n* symmetric, positive definite sub-matrix [**M**_{*rr*}] related to the rigid joint variables.
 - $N \times N$ symmetric, positive definite sub-matrix $[\mathbf{M}_{\rm ff}]$ related to the flexible variables.
 - *N* × *n* sub-matrix [**M**_{*rf*}] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix [K] is called the flexural stiffness matrix and arises from the strain energy of the flexible links $[M_{ff}]$ and [K] are used in FEM to compute natural frequencies.
- Only joint torques are acting ightarrow au is an n imes 1 vector.

- \bullet Generalised mass matrix $[\mathsf{M}(q)]$ contain
 - *n* × *n* symmetric, positive definite sub-matrix [**M**_{*rr*}] related to the rigid joint variables.
 - $N \times N$ symmetric, positive definite sub-matrix $[\mathbf{M}_{\rm ff}]$ related to the flexible variables.
 - *N* × *n* sub-matrix [**M**_{*rf*}] representing coupling between the rigid joint and the elastic displacement variables.
- The Coriolis/centripetal terms and the gravity terms can also be partitioned.
- $N \times N$ symmetric, positive definite matrix [K] is called the flexural stiffness matrix and arises from the strain energy of the flexible links $[M_{ff}]$ and [K] are used in FEM to compute natural frequencies.
- Only joint torques are acting ightarrow au is an n imes 1 vector.

OUTLINE

CONTENTS

- 2 Lecture 1
 - Flexible Manipulators
- 3 LECTURE 2*
 - Kinematic Modeling of Flexible Link Manipulators
- 4 LECTURE 3*
 - Dynamic Modeling of Flexible Link Manipulators
 - Control of Flexible Link Manipulators

LECTURE 4

- Experiments with a Planar Two Link Flexible System
- 6 Module 8 Additional Material
 - Problems, References and Suggested Reading

CONTROL OF FLEXIBLE-LINK MANIPULATORS Overview

• Control of a single link flexible manipulator - controllability.

- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CONTROL OF FLEXIBLE-LINK MANIPULATORS OVERVIEW

- Control of a single link flexible manipulator controllability.
- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

CONTROL OF FLEXIBLE-LINK MANIPULATORS Overview

- Control of a single link flexible manipulator controllability.
- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Control of a single link flexible manipulator controllability.
- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

ASHITAVA GHOSAL (IISC)

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

- Control of a single link flexible manipulator controllability.
- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

ASHITAVA GHOSAL (IISC)

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

- Control of a single link flexible manipulator controllability.
- Two control tasks: trajectory following & tip vibration control.
- Active control using joint actuator² only.
- Two stage control strategy Model-based control strategy for trajectory following and end-position vibration control at the end of trajectory following.
- Stability and robustness analysis.
- Numerical simulation results.

²One can use passive vibration damping and, more recently, active vibration control using piezo-actuators have been used.

BLOCK DIAGRAM OF A SINGLE LINK FLEXIBLE MANIPULATOR

Figure 15: Block diagram of a single flexible-link manipulator

• Recall: Rigid manipulator τ directly influenced θ_m and in flexible joint manipulator τ related to θ_m and θ_l .

- Flexible manipulator: τ directly influence θ_1 and indirectly \mathbf{q}_f !
- Not clear if tip vibration (q_f) can be controlled by τ !
- Coupling between rigid and flexible variables!!
 - $\ddot{\theta}_1$ can excite flexible dynamics through $[M_{rf}]$
 - Resulting $\ddot{\mathbf{q}}_f$ can in turn influence rigid dynamics through $[\mathbf{M}_{rf}]^T$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

- Recall: Rigid manipulator τ directly influenced θ_m and in flexible joint manipulator τ related to θ_m and θ_l .
- Flexible manipulator: τ directly influence θ_1 and indirectly \mathbf{q}_f !
- Not clear if tip vibration (q_f) can be controlled by τ !
- Coupling between rigid and flexible variables!!
 - $\ddot{\theta}_1$ can excite flexible dynamics through $[M_{rf}]$
 - Resulting $\ddot{\mathbf{q}}_f$ can in turn influence rigid dynamics through $[\mathbf{M}_{rf}]^T$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

- Recall: Rigid manipulator τ directly influenced θ_m and in flexible joint manipulator τ related to θ_m and θ_l .
- Flexible manipulator: τ directly influence θ_1 and indirectly \mathbf{q}_f !
- Not clear if tip vibration (\mathbf{q}_f) can be controlled by τ !
- Coupling between rigid and flexible variables!!
 - $\ddot{\theta}_1$ can excite flexible dynamics through $[M_{rf}]$
 - Resulting $\ddot{\mathbf{q}}_f$ can in turn influence rigid dynamics through $[\mathbf{M}_{rf}]^T$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

- Recall: Rigid manipulator τ directly influenced θ_m and in flexible joint manipulator τ related to θ_m and θ_l .
- Flexible manipulator: τ directly influence θ_1 and indirectly \mathbf{q}_f !
- Not clear if tip vibration (\mathbf{q}_f) can be controlled by τ !
- Coupling between rigid and flexible variables!!
 - $\ddot{\theta}_1$ can excite flexible dynamics through $[\mathbf{M}_{rf}]$
 - Resulting $\ddot{\mathbf{q}}_f$ can in turn influence rigid dynamics through $[\mathbf{M}_{rf}]^T$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.

- Recall: Rigid manipulator τ directly influenced θ_m and in flexible joint manipulator τ related to θ_m and θ_l .
- Flexible manipulator: τ directly influence θ_1 and indirectly \mathbf{q}_f !
- Not clear if tip vibration (\mathbf{q}_f) can be controlled by τ !
- Coupling between rigid and flexible variables!!
 - $\ddot{\theta}_1$ can excite flexible dynamics through $[\mathbf{M}_{rf}]$
 - Resulting $\ddot{\mathbf{q}}_f$ can in turn influence rigid dynamics through $[\mathbf{M}_{rf}]^T$.
- In a multi-link flexible manipulator, there will be additional coupling due to the centripetal/Coriolis terms.
• Rewrite equations of motion as

$$\begin{aligned} \ddot{\mathbf{q}}_r &= [\mathbf{H}_{rr}]\tau - [\mathbf{H}_{rr}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{rf}]^T(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \\ \ddot{\mathbf{q}}_f &= [\mathbf{H}_{rf}]\tau - [\mathbf{H}_{rf}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{ff}](\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \end{aligned}$$

where

$$\begin{bmatrix} \mathbf{H}_{rr} \end{bmatrix} = ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}])^{-1} \\ \begin{bmatrix} \mathbf{H}_{rf} \end{bmatrix}^{T} = -[\mathbf{H}_{rr}] [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} \\ \begin{bmatrix} \mathbf{H}_{ff} \end{bmatrix} = ([\mathbf{M}_{ff}] - [\mathbf{M}_{rf}] [\mathbf{M}_{rr}]^{-1} [\mathbf{M}_{rf}]^{T})^{-1}$$

- If a row of [H_{rf}] is 0 → corresponding *q̃_f* cannot be directly controlled by *τ* − inaccessibility condition.
- q_{f_i} induces a moment about the joint axis \rightarrow *controllable*.
- Joint axis lies in plane of deflection components \rightarrow cannot be controlled.
- *q_{fi}* influenced *indirectly* by *non-zero* [H_{ff}](C_f + G_f + [K]q_f) → Can be controlled even if the row of [H_{rf}] is 0!

ASHITAVA GHOSAL (IISC)

• Rewrite equations of motion as

$$\begin{aligned} \ddot{\mathbf{q}}_r &= [\mathbf{H}_{rr}]\tau - [\mathbf{H}_{rr}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{rf}]^T(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \\ \ddot{\mathbf{q}}_f &= [\mathbf{H}_{rf}]\tau - [\mathbf{H}_{rf}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{ff}](\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \end{aligned}$$

where

$$\begin{bmatrix} \mathbf{H}_{rr} \end{bmatrix} = ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}])^{-1} \\ \begin{bmatrix} \mathbf{H}_{rf} \end{bmatrix}^{T} = -[\mathbf{H}_{rr}] [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} \\ \begin{bmatrix} \mathbf{H}_{ff} \end{bmatrix} = ([\mathbf{M}_{ff}] - [\mathbf{M}_{rf}] [\mathbf{M}_{rr}]^{-1} [\mathbf{M}_{rf}]^{T})^{-1}$$

- If a row of $[H_{rf}]$ is $0 \rightarrow$ corresponding \ddot{q}_f cannot be directly controlled by τ inaccessibility condition.
- q_{f_i} induces a moment about the joint axis \rightarrow *controllable*.
- Joint axis lies in plane of deflection components \rightarrow *cannot be controlled*.
- *q_{f_i}* influenced *indirectly* by *non-zero* [H_{ff}](C_f + G_f + [K]q_f) → Can be controlled even if the row of [H_{rf}] is 0!

ASHITAVA GHOSAL (IISC)

• Rewrite equations of motion as

$$\begin{aligned} \ddot{\mathbf{q}}_r &= [\mathbf{H}_{rr}]\tau - [\mathbf{H}_{rr}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{rf}]^T(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \\ \ddot{\mathbf{q}}_f &= [\mathbf{H}_{rf}]\tau - [\mathbf{H}_{rf}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{ff}](\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \end{aligned}$$

where

$$\begin{bmatrix} \mathbf{H}_{rr} \end{bmatrix} = ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}])^{-1} \\ \begin{bmatrix} \mathbf{H}_{rf} \end{bmatrix}^{T} = -[\mathbf{H}_{rr}] [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} \\ \begin{bmatrix} \mathbf{H}_{ff} \end{bmatrix} = ([\mathbf{M}_{ff}] - [\mathbf{M}_{rf}] [\mathbf{M}_{rr}]^{-1} [\mathbf{M}_{rf}]^{T})^{-1}$$

- If a row of $[H_{rf}]$ is $0 \rightarrow$ corresponding \ddot{q}_f cannot be directly controlled by τ inaccessibility condition.
- q_{f_i} induces a moment about the joint axis \rightarrow *controllable*.
- Joint axis lies in plane of deflection components \rightarrow *cannot be controlled*.
- *q_{fi}* influenced *indirectly* by *non-zero* [H_{ff}](C_f + G_f + [K]q_f) → Can be controlled even if the row of [H_{rf}] is 0!

ASHITAVA GHOSAL (IISC)

• Rewrite equations of motion as

$$\begin{aligned} \ddot{\mathbf{q}}_r &= [\mathbf{H}_{rr}]\tau - [\mathbf{H}_{rr}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{rf}]^T(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \\ \ddot{\mathbf{q}}_f &= [\mathbf{H}_{rf}]\tau - [\mathbf{H}_{rf}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{ff}](\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \end{aligned}$$

where

$$\begin{bmatrix} \mathbf{H}_{rr} \end{bmatrix} = ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}])^{-1} \\ \begin{bmatrix} \mathbf{H}_{rf} \end{bmatrix}^{T} = -[\mathbf{H}_{rr}] [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} \\ \begin{bmatrix} \mathbf{H}_{ff} \end{bmatrix} = ([\mathbf{M}_{ff}] - [\mathbf{M}_{rf}] [\mathbf{M}_{rr}]^{-1} [\mathbf{M}_{rf}]^{T})^{-1}$$

- If a row of $[H_{rf}]$ is $0 \rightarrow$ corresponding \ddot{q}_f cannot be directly controlled by τ inaccessibility condition.
- q_{f_i} induces a moment about the joint axis \rightarrow *controllable*.
- Joint axis lies in plane of deflection components \rightarrow *cannot be controlled.*
- *q_{fi}* influenced *indirectly* by *non-zero* [H_{ff}](C_f + G_f + [K]q_f) → Can be controlled even if the row of [H_{rf}] is 0!

ASHITAVA GHOSAL (IISC)

• Rewrite equations of motion as

$$\begin{aligned} \ddot{\mathbf{q}}_r &= [\mathbf{H}_{rr}]\tau - [\mathbf{H}_{rr}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{rf}]^T(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \\ \ddot{\mathbf{q}}_f &= [\mathbf{H}_{rf}]\tau - [\mathbf{H}_{rf}](\mathbf{C}_r + \mathbf{G}_r) - [\mathbf{H}_{ff}](\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}]\mathbf{q}_f) \end{aligned}$$

where

$$\begin{bmatrix} \mathbf{H}_{rr} \end{bmatrix} = ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}])^{-1} \\ \begin{bmatrix} \mathbf{H}_{rf} \end{bmatrix}^{T} = -[\mathbf{H}_{rr}] [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} \\ \begin{bmatrix} \mathbf{H}_{ff} \end{bmatrix} = ([\mathbf{M}_{ff}] - [\mathbf{M}_{rf}] [\mathbf{M}_{rr}]^{-1} [\mathbf{M}_{rf}]^{T})^{-1}$$

- If a row of $[H_{rf}]$ is $0 \rightarrow$ corresponding \ddot{q}_f cannot be directly controlled by τ inaccessibility condition.
- q_{f_i} induces a moment about the joint axis \rightarrow *controllable*.
- Joint axis lies in plane of deflection components \rightarrow *cannot be controlled.*
- *q_{fi}* influenced *indirectly* by *non-zero* [H_{ff}](C_f + G_f + [K]q_f) → Can be controlled even if the row of [H_{rf}] is 0!

ASHITAVA GHOSAL (IISC)

- Rewrite equations of motion as
 - $[\mathsf{M}_{rr}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{rf}]^T \ddot{\mathsf{q}}_f + \mathsf{C}_r(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_r(\mathsf{q}) = \tau$
 - $[\mathsf{M}_{rf}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{ff}]\ddot{\mathsf{q}}_f + \mathsf{C}_f(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_f(\mathsf{q}) + [\mathsf{K}]\mathsf{q}_f = 0$
- Solve for $\ddot{\mathbf{q}}_f$ as

$$\ddot{\mathbf{q}}_f = -[\mathsf{M}_{ff}]^{-1}([\mathsf{M}_{rf}]\ddot{\mathbf{q}}_r + \mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathbf{q}_f)$$

and substitute in first equation to get

$$([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^{\mathsf{T}} [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}]) \ddot{\mathsf{q}}_r + (\mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^{\mathsf{T}} [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f)) = \tau$$

• Similar to rigid manipulators, choose $\tau_{\mathbf{q}_r} = [\alpha] \tau'_{\mathbf{q}_r} + \beta$ where $\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} - \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{-1} \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}$ $\beta = \mathsf{C}_r + \mathsf{G}_r - \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f)$

• Rewrite equations of motion as

$$[\mathsf{M}_{rr}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{rf}]^{\mathsf{T}}\ddot{\mathsf{q}}_f + \mathsf{C}_r(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_r(\mathsf{q}) = \tau$$

$$[\mathsf{M}_{rf}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{ff}]\ddot{\mathsf{q}}_f + \mathsf{C}_f(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_f(\mathsf{q}) + [\mathsf{K}]\mathsf{q}_f = \mathbf{0}$$

• Solve for $\ddot{\mathbf{q}}_f$ as

$$\ddot{q}_{f} = -[M_{ff}]^{-1}([M_{rf}]\ddot{q}_{r} + C_{f} + G_{f} + [K]q_{f})$$

and substitute in first equation to get

$$\begin{aligned} &([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}]) \ddot{\mathsf{q}}_r + \\ &(\mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f)) = \tau \end{aligned}$$

• Similar to rigid manipulators, choose $\tau_{\mathbf{q}_r} = [\alpha] \tau'_{\mathbf{q}_r} + \beta$ where $\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} - \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{-1} \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}$ $\beta = \mathsf{C}_r + \mathsf{G}_r - \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix}^{-1} (\mathsf{C}_f + \mathsf{G}_f + \llbracket\mathsf{K}] \mathsf{q}_f)$

• Rewrite equations of motion as

$$[\mathsf{M}_{rr}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{rf}]^{\mathsf{T}}\ddot{\mathsf{q}}_f + \mathsf{C}_r(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_r(\mathsf{q}) = \tau$$

$$[\mathsf{M}_{rf}]\ddot{\mathsf{q}}_r + [\mathsf{M}_{ff}]\ddot{\mathsf{q}}_f + \mathsf{C}_f(\mathsf{q},\dot{\mathsf{q}}) + \mathsf{G}_f(\mathsf{q}) + [\mathsf{K}]\mathsf{q}_f = \mathbf{0}$$

• Solve for $\ddot{\mathbf{q}}_f$ as

$$\ddot{\mathbf{q}}_{f} = -[\mathbf{M}_{ff}]^{-1}([\mathbf{M}_{rf}]\ddot{\mathbf{q}}_{r} + \mathbf{C}_{f} + \mathbf{G}_{f} + [\mathbf{K}]\mathbf{q}_{f})$$

and substitute in first equation to get

$$([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}]) \ddot{\mathsf{q}}_r + (\mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathsf{q}_f)) = \tau$$

• Similar to rigid manipulators, choose $au_{\mathbf{q}_r} = [lpha] au'_{\mathbf{q}_r} + eta$ where

$$\begin{aligned} [\alpha] &= [\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \\ \beta &= \mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f) \end{aligned}$$

MODEL-BASED CONTROL FOR TRAJECTORY FOLLOWING

• Similar to rigid manipulators, substitute $[\alpha]$ and β to get an *unit inertia* plant with new input $\tau'_{\mathbf{q}_r}$

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_r$$

• Choose $\tau'_{\mathbf{q}_r}$ as

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_{r_d}(t) + [K_p]_{\mathbf{q}_r} \mathbf{e}(t) + [K_v]_{\mathbf{q}_r} \dot{\mathbf{e}}(t)$$

• For $\mathbf{e}(t) = \mathbf{q}_{r_d} - \mathbf{q}_r$ and $\mathbf{q}_{r_d}(t)$ as the desired joint trajectory, the error equation becomes

$$\ddot{\mathbf{e}}_r(t) + [\mathcal{K}_p]_{\mathbf{q}_r} \mathbf{e}_r(t) + [\mathcal{K}_v]_{\mathbf{q}_r} \dot{\mathbf{e}}_r(t) = \mathbf{0}$$

• For appropriate controller gains $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$, $\mathbf{e}_r(t)$, $\dot{\mathbf{e}}_r(t) \to 0$ asymptotically and desired trajectory can be followed.

• Similar to rigid manipulators, substitute [α] and β to get an *unit inertia* plant with new input $\tau'_{\mathbf{q}_r}$

$${\tau'}_{\mathbf{q}_r} = \ddot{\mathbf{q}}_r$$

• Choose $\tau'_{\mathbf{q}_r}$ as

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathbf{q}_r} \mathbf{e}(t) + [\mathcal{K}_{\nu}]_{\mathbf{q}_r} \dot{\mathbf{e}}(t)$$

• For $\mathbf{e}(t) = \mathbf{q}_{r_d} - \mathbf{q}_r$ and $\mathbf{q}_{r_d}(t)$ as the desired joint trajectory, the error equation becomes

$$\ddot{\mathbf{e}}_r(t) + [K_p]_{\mathbf{q}_r} \mathbf{e}_r(t) + [K_v]_{\mathbf{q}_r} \dot{\mathbf{e}}_r(t) = \mathbf{0}$$

• For appropriate controller gains $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$, $\mathbf{e}_r(t)$, $\dot{\mathbf{e}}_r(t) \to 0$ asymptotically and desired trajectory can be followed.

• Similar to rigid manipulators, substitute $[\alpha]$ and β to get an *unit inertia* plant with new input $\tau'_{\mathbf{q}_r}$

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_r$$

• Choose $\tau'_{\mathbf{q}_r}$ as

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathbf{q}_r} \mathbf{e}(t) + [\mathcal{K}_{\nu}]_{\mathbf{q}_r} \dot{\mathbf{e}}(t)$$

• For $\mathbf{e}(t) = \mathbf{q}_{r_d} - \mathbf{q}_r$ and $\mathbf{q}_{r_d}(t)$ as the desired joint trajectory, the error equation becomes

$$\ddot{\mathbf{e}}_r(t) + [\mathcal{K}_p]_{\mathbf{q}_r} \mathbf{e}_r(t) + [\mathcal{K}_v]_{\mathbf{q}_r} \dot{\mathbf{e}}_r(t) = \mathbf{0}$$

• For appropriate controller gains $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$, $\mathbf{e}_r(t)$, $\dot{\mathbf{e}}_r(t) \to 0$ asymptotically and desired trajectory can be followed.

• Similar to rigid manipulators, substitute $[\alpha]$ and β to get an *unit inertia* plant with new input ${\tau'}_{{\bf q}_r}$

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_r$$

• Choose $\tau'_{\mathbf{q}_r}$ as

$$\tau'_{\mathbf{q}_r} = \ddot{\mathbf{q}}_{r_d}(t) + [K_{\rho}]_{\mathbf{q}_r} \mathbf{e}(t) + [K_{\nu}]_{\mathbf{q}_r} \dot{\mathbf{e}}(t)$$

• For $\mathbf{e}(t) = \mathbf{q}_{r_d} - \mathbf{q}_r$ and $\mathbf{q}_{r_d}(t)$ as the desired joint trajectory, the error equation becomes

$$\ddot{\mathbf{e}}_r(t) + [\mathcal{K}_p]_{\mathbf{q}_r} \mathbf{e}_r(t) + [\mathcal{K}_v]_{\mathbf{q}_r} \dot{\mathbf{e}}_r(t) = \mathbf{0}$$

• For appropriate controller gains $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$, $\mathbf{e}_r(t)$, $\dot{\mathbf{e}}_r(t) \rightarrow 0$ asymptotically and desired trajectory can be followed.

STABILITY ANALYSIS

• The *closed-loop system equations* for the model-based controller are

$$\begin{split} \ddot{\mathbf{q}}_r(t) &= \tau'_{\mathbf{q}_r} \\ [\mathsf{M}_{ff}] \ddot{\mathbf{q}}_f + \mathsf{C}_f(\mathbf{q}, \dot{\mathbf{q}}) + \mathsf{G}_f(\mathbf{q}) + [\mathsf{K}] \mathsf{q}_f = -[\mathsf{M}_{rf}] \tau'_{\mathbf{q}_r} \end{split}$$

• Smooth tracking of $\mathbf{q}_{r_d}(t)$ as long as flexible variables \mathbf{q}_f are stable.

- The flexible variables q_f are coupled to control input τ'_{q_r} through the matrix [M_{rf}].
- The stability of \mathbf{q}_f are determined by the zero dynamics³.

$$\ddot{\mathsf{q}}_f = -[\mathsf{M}_{ff}]^{-1}(\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathsf{q}_f)$$

where all terms are evaluated for a constant \mathbf{q}_r^* and $\dot{\mathbf{q}}_r = \mathbf{0}$.

³The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (lsidori 1989).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

71/117

STABILITY ANALYSIS

• The *closed-loop system equations* for the model-based controller are

$$\begin{split} \ddot{\mathbf{q}}_r(t) &= \tau'_{\mathbf{q}_r} \\ [\mathsf{M}_{ff}] \ddot{\mathbf{q}}_f + \mathsf{C}_f(\mathbf{q}, \dot{\mathbf{q}}) + \mathsf{G}_f(\mathbf{q}) + [\mathsf{K}] \mathbf{q}_f = -[\mathsf{M}_{rf}] \tau'_{\mathbf{q}_r} \end{split}$$

- Smooth tracking of $\mathbf{q}_{r_d}(t)$ as long as flexible variables \mathbf{q}_f are stable.
- The flexible variables q_f are coupled to control input τ'_{q_r} through the matrix [M_{rf}].
- The stability of q_f are determined by the zero dynamics³.

$$\ddot{\mathsf{q}}_f = -[\mathsf{M}_{ff}]^{-1}(\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathsf{q}_f)$$

where all terms are evaluated for a constant \mathbf{q}_r^* and $\dot{\mathbf{q}}_r = \mathbf{0}$.

³The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (Isidori 1989).

ASHITAVA GHOSAL (IISC)

STABILITY ANALYSIS

• The *closed-loop system equations* for the model-based controller are

$$\begin{split} \ddot{\mathbf{q}}_r(t) &= \tau'_{\mathbf{q}_r} \\ [\mathsf{M}_{ff}] \ddot{\mathbf{q}}_f + \mathsf{C}_f(\mathbf{q}, \dot{\mathbf{q}}) + \mathsf{G}_f(\mathbf{q}) + \ [\mathsf{K}] \mathsf{q}_f = -[\mathsf{M}_{rf}] \tau'_{\mathbf{q}_r} \end{split}$$

- Smooth tracking of $\mathbf{q}_{r_d}(t)$ as long as flexible variables \mathbf{q}_f are stable.
- The flexible variables q_f are coupled to control input τ'_{q_r} through the matrix $[M_{rf}]$.
- The stability of q_f are determined by the zero dynamics³.

$$\ddot{\mathsf{q}}_f = -[\mathsf{M}_{ff}]^{-1}(\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathsf{q}_f)$$

where all terms are evaluated for a constant \mathbf{q}_r^* and $\dot{\mathbf{q}}_r = \mathbf{0}$.

³The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (lsidori 1989).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

71/117

STABILITY ANALYSIS

• The *closed-loop system equations* for the model-based controller are

$$\begin{split} \ddot{\mathbf{q}}_r(t) &= \tau'_{\mathbf{q}_r} \\ [\mathsf{M}_{ff}] \ddot{\mathbf{q}}_f + \mathsf{C}_f(\mathbf{q}, \dot{\mathbf{q}}) + \mathsf{G}_f(\mathbf{q}) + \ [\mathsf{K}] \mathsf{q}_f = -[\mathsf{M}_{rf}] \tau'_{\mathbf{q}_r} \end{split}$$

- Smooth tracking of $\mathbf{q}_{r_d}(t)$ as long as flexible variables \mathbf{q}_f are stable.
- The flexible variables q_f are coupled to control input τ'_{q_r} through the matrix [M_{rf}].
- The stability of \mathbf{q}_f are determined by the zero dynamics³.

$$\ddot{\mathbf{q}}_f = -[\mathbf{M}_{ff}]^{-1} \left(\mathbf{C}_f + \mathbf{G}_f + [\mathbf{K}] \mathbf{q}_f \right)$$

where all terms are evaluated for a constant \mathbf{q}_r^* and $\dot{\mathbf{q}}_r = \mathbf{0}$.

³The zero dynamics of a non-linear system describe the dynamic behaviour of the system when inputs are chosen to constrain the outputs of the system to be zero or constant (Isidori 1989). $\Box \rightarrow \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \langle \Xi \rangle$

STABILITY ANALYSIS (CONTD.)

• Equilibrium points: $\dot{\mathbf{q}}_f = \mathbf{0}$ and a static deflection \mathbf{q}_f^* which satisfies

$$[\mathsf{K}]\mathsf{q}_f^* + \mathsf{G}_f(\mathsf{q}_r^*,\mathsf{q}_f^*) = \mathbf{0}$$

• Candidate Lyapunov function

$$V(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}) = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} [\mathbf{M}_{ff}] \dot{\mathbf{q}}_{f} + \frac{1}{2} (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f}^{*} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}) - V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})) + (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} \mathbf{G}_{f}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})$$

 V_G denotes the gravitational potential energy yielding \mathbf{G}_f .

• The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{M}_{ff} \right] - 2[\mathbf{C}_{ff}] \right]$, is

$$\dot{V} = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} \left(\left[\dot{\mathsf{M}}_{ff} \right] - 2[\mathsf{C}_{ff}] \right) \dot{\mathbf{q}}_{f} - \dot{\mathbf{q}}_{f}^{T} \left(\left[\mathsf{K} \right] \mathbf{q}_{f}^{*} + \mathsf{G}_{f} \left(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*} \right) \right) = 0$$

• Critically stable \rightarrow With damping asymptotically stable.

MODEL-BASED CONTROL FOR TRAJECTORY FOLLOWING

STABILITY ANALYSIS (CONTD.)

• Equilibrium points: $\dot{q}_f = 0$ and a static deflection q_f^* which satisfies

$$[\mathsf{K}]\mathsf{q}_f^* + \mathsf{G}_f(\mathsf{q}_r^*,\mathsf{q}_f^*) = \mathbf{0}$$

• Candidate Lyapunov function

$$V(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}) = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} [\mathbf{M}_{ff}] \dot{\mathbf{q}}_{f} + \frac{1}{2} (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f}^{*} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}) - V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})) + (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} \mathbf{G}_{f}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})$$

V_G denotes the gravitational potential energy yielding \mathbf{G}_f .

• The time derivative, after simplification and using skew-symmetric nature of $\left[\dot{M}_{ff} \right] - 2[C_{ff}] \right]$, is

$$\dot{V} = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} \left([\dot{\mathbf{M}}_{ff}] - 2[\mathbf{C}_{ff}] \right) \dot{\mathbf{q}}_{f} - \dot{\mathbf{q}}_{f}^{T} \left([\mathbf{K}] \mathbf{q}_{f}^{*} + \mathbf{G}_{f} (\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}) \right) = 0$$

• Critically stable \rightarrow With damping asymptotically stable.

MODEL-BASED CONTROL FOR TRAJECTORY FOLLOWING

STABILITY ANALYSIS (CONTD.)

 $\bullet\,$ Equilibrium points: $\dot{q}_f=0$ and a static deflection q_f^* which satisfies

$$[\mathsf{K}]\mathsf{q}_f^* + \mathsf{G}_f(\mathsf{q}_r^*,\mathsf{q}_f^*) = \mathbf{0}$$

• Candidate Lyapunov function

$$V(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}) = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} [\mathbf{M}_{ff}] \dot{\mathbf{q}}_{f} + \frac{1}{2} (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f}^{*} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}) - V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})) + (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} \mathbf{G}_{f}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})$$

 V_G denotes the gravitational potential energy yielding \mathbf{G}_f .

• The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{\mathbf{M}}_{ff} \right] - 2 [\mathbf{C}_{ff}] \right]$, is

$$\dot{V} = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} \left([\dot{\mathbf{M}}_{ff}] - 2[\mathbf{C}_{ff}] \right) \dot{\mathbf{q}}_{f} - \dot{\mathbf{q}}_{f}^{T} \left([\mathbf{K}] \mathbf{q}_{f}^{*} + \mathbf{G}_{f} (\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}) \right) = 0$$

• Critically stable \rightarrow With damping asymptotically stable.

MODEL-BASED CONTROL FOR TRAJECTORY FOLLOWING

STABILITY ANALYSIS (CONTD.)

• Equilibrium points: $\dot{\mathbf{q}}_f = \mathbf{0}$ and a static deflection \mathbf{q}_f^* which satisfies

$$[\mathsf{K}]\mathsf{q}_f^* + \mathsf{G}_f(\mathsf{q}_r^*,\mathsf{q}_f^*) = \mathbf{0}$$

• Candidate Lyapunov function

$$V(\mathbf{q}_{f}, \dot{\mathbf{q}}_{f}) = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} [\mathbf{M}_{ff}] \dot{\mathbf{q}}_{f} + \frac{1}{2} (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f}^{*} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}) - V_{G}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})) + (\mathbf{q}_{f}^{*} - \mathbf{q}_{f})^{T} \mathbf{G}_{f}(\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*})$$

 V_G denotes the gravitational potential energy yielding \mathbf{G}_f .

• The time derivative, after simplification and using skew-symmetric nature of $\left[\left[\dot{\mathbf{M}}_{ff} \right] - 2 [\mathbf{C}_{ff}] \right]$, is

$$\dot{V} = \frac{1}{2} \dot{\mathbf{q}}_{f}^{T} \left([\dot{\mathbf{M}}_{ff}] - 2[\mathbf{C}_{ff}] \right) \dot{\mathbf{q}}_{f} - \dot{\mathbf{q}}_{f}^{T} \left([\mathbf{K}] \mathbf{q}_{f}^{*} + \mathbf{G}_{f} (\mathbf{q}_{r}^{*}, \mathbf{q}_{f}^{*}) \right) = 0$$

Critically stable → With damping asymptotically stable.

- \bullet Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion Jacobian matrix (similar to rigid case).
- Full Jacobian contain *joint rotation* variables **q**_r and *flexible* variable **q**_f Difficult to measure *all* components of **q**_f.
- Control law using Jacobian derived from *desired* rigid variables same as the rigid Jacobian matrix *always exist*.

$$[J^{r}_{\mathbf{q}_{r}}(\mathbf{q}_{r_{d}})] = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}},\mathbf{q}_{f}=\mathbf{0}}$$

 $\mathscr{X} = \mathbf{f}(\mathbf{q}_r, \mathbf{q}_f)$ represents the kinematic equations of the flexible manipulator.

- \bullet Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion Jacobian matrix (similar to rigid case).
- Full Jacobian contain *joint rotation* variables **q**_r and *flexible* variable **q**_f Difficult to measure *all* components of **q**_f.
- Control law using Jacobian derived from *desired* rigid variables same as the rigid Jacobian matrix *always exist*.

$$[J^{r}_{\mathbf{q}_{r}}(\mathbf{q}_{r_{d}})] = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}},\mathbf{q}_{f}=\mathbf{0}}$$

 $\mathscr{X} = \mathbf{f}(\mathbf{q}_r, \mathbf{q}_f)$ represents the kinematic equations of the flexible manipulator.

- \bullet Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion Jacobian matrix (similar to rigid case).
- Full Jacobian contain *joint rotation* variables **q**_r and *flexible* variable **q**_f Difficult to measure *all* components of **q**_f.
- Control law using Jacobian derived from *desired* rigid variables same as the rigid Jacobian matrix *always exist*.

$$[J^{r}_{\mathbf{q}_{r}}(\mathbf{q}_{r_{d}})] = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}},\mathbf{q}_{f}=\mathbf{0}}$$

 $\mathscr{X} = \mathbf{f}(\mathbf{q}_r, \mathbf{q}_f)$ represents the kinematic equations of the flexible manipulator.

- \bullet Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion Jacobian matrix (similar to rigid case).
- Full Jacobian contain *joint rotation* variables q_r and *flexible* variable
 q_f Difficult to measure *all* components of q_f.
- Control law using Jacobian derived from *desired* rigid variables same as the rigid Jacobian matrix *always exist*.

$$[J^{r}_{\mathbf{q}_{r}}(\mathbf{q}_{r_{d}})] = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}},\mathbf{q}_{f}=\mathbf{0}}$$

 $\mathscr{X} = \mathbf{f}(\mathbf{q}_r, \mathbf{q}_f)$ represents the kinematic equations of the flexible manipulator.

- \bullet Joint motion excites vibration in link \rightarrow Need to be suppressed for task.
- Tip vibration to be controlled by joint rotation alone!
- Relationship between tip motion and joint motion Jacobian matrix (similar to rigid case).
- Full Jacobian contain *joint rotation* variables q_r and *flexible* variable
 q_f Difficult to measure *all* components of q_f.
- Control law using Jacobian derived from *desired* rigid variables same as the rigid Jacobian matrix *always exist*.

$$[J^{r}_{\mathbf{q}_{r}}(\mathbf{q}_{r_{d}})] = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{r}}\right)_{\mathbf{q}_{r}=\mathbf{q}_{r_{d}},\mathbf{q}_{f}=\mathbf{0}}$$

 $\mathscr{X} = \mathbf{f}(\mathbf{q}_r, \mathbf{q}_f)$ represents the kinematic equations of the flexible manipulator.

• A controller using the rigid Jacobian

$$\tau_{\mathscr{X}} = [J_{\mathbf{q}_r}^r]^T \left(-[\mathcal{K}_p]_{\mathscr{X}} \delta \mathscr{X} - [\mathcal{K}_v]_{\mathscr{X}} \dot{\mathscr{X}} \right) + \mathbf{G}_r(\mathbf{q}_{r_d}, \mathbf{q}_{f_d})$$

- \mathscr{X} represents position and orientation of the end-effector & $\delta \mathscr{X} = \mathscr{X} \mathscr{X}_d^4$.
- Gain matrices $[K_{\rho}]_{\mathscr{X}}$ and $[K_{\nu}]_{\mathscr{X}}$ are constant diagonal matrices.
- \mathbf{q}_{r_d} is the final point of the desired joint trajectory and \mathbf{q}_{f_d} is obtained from the static deflection under gravity

$$\mathbf{q}_{f_d} = -[\mathbf{K}]^{-1} \mathbf{G}_f(\mathbf{q}_{r_d}, \mathbf{q}_{f_d})$$

- $\mathscr{X} \mathscr{X}_d$ is due to *flexible* vibrations and is expected to be small.
- Control torque $\tau_{\mathscr{X}}$ at joint although $\mathscr{X} \mathscr{X}_d$ is a Cartesian error vector Similar to Cartesian control of rigid robots, Jacobian $[J^r_{\mathbf{q}_r}]^T$ relates Cartesian force/moments to joint torques (see <u>Module 7</u>, Lecture 4).

⁴Error defined *opposite* to definition $(\cdot)_d - (\cdot)$ till now and hence the - sign in control law. This is required for consistency in definition of rigid Jacobian using Taylor series expansion.

END POSITION VIBRATION CONTROL

STABILITY ANALYSIS

- Equilibrium points under end-position control: $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$.
- Equilibrium points are unique (see Ghosal 2006) if for a positive constant *c*

$$\lambda_{min}([\mathbf{K}]) > c, \quad \lambda_{min}\left([J^{r}_{\mathbf{q}_{r}}]^{T}[K_{p}]_{\mathscr{X}}\right) > c$$

- Physically: The manipulator can be placed at an *arbitrary* $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

$$V = \frac{1}{2} \dot{\mathbf{q}}^{T} [\mathbf{M}(\mathbf{q})] \dot{\mathbf{q}} + \frac{1}{2} (\mathbf{q}_{f_{d}} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f_{d}} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}) - V_{G}(\mathbf{q}_{d})) + (\mathbf{q}_{d} - \mathbf{q})^{T} \mathbf{G}(\mathbf{q}_{d}) + \frac{1}{2} \delta \mathscr{X}^{T} [\mathcal{K}_{\rho}]_{\mathscr{X}} \delta \mathscr{X}$$

 V_G denotes the gravitational potential energy giving rise to $\mathbf{G}(\mathbf{q})$.

STABILITY ANALYSIS

- Equilibrium points under end-position control: $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$.
- $\bullet\,$ Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$\lambda_{min}([\mathbf{K}]) > c, \quad \lambda_{min}\left([J_{\mathbf{q}_r}^r]^{\mathcal{T}}[\mathcal{K}_{\mathcal{P}}]_{\mathscr{X}}\right) > c$$

- Physically: The manipulator can be placed at an *arbitrary* $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

$$V = \frac{1}{2} \dot{\mathbf{q}}^{T} [\mathbf{M}(\mathbf{q})] \dot{\mathbf{q}} + \frac{1}{2} (\mathbf{q}_{f_{d}} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f_{d}} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}) - V_{G}(\mathbf{q}_{d})) + (\mathbf{q}_{d} - \mathbf{q})^{T} \mathbf{G}(\mathbf{q}_{d}) + \frac{1}{2} \delta \mathscr{X}^{T} [K_{p}] \mathscr{X} \delta \mathscr{X}$$

 V_G denotes the gravitational potential energy giving rise to G(q).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

STABILITY ANALYSIS

- Equilibrium points under end-position control: $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$.
- $\bullet\,$ Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$\lambda_{min}([\mathsf{K}]) > c, \quad \lambda_{min}\left([J^{r}_{\mathbf{q}_{r}}]^{T}[\mathcal{K}_{p}]_{\mathscr{X}}\right) > c$$

- Physically: The manipulator can be placed at an *arbitrary* $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

$$V = \frac{1}{2} \dot{\mathbf{q}}^{T} [\mathbf{M}(\mathbf{q})] \dot{\mathbf{q}} + \frac{1}{2} (\mathbf{q}_{f_{d}} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f_{d}} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}) - V_{G}(\mathbf{q}_{d})) + (\mathbf{q}_{d} - \mathbf{q})^{T} \mathbf{G}(\mathbf{q}_{d}) + \frac{1}{2} \delta \mathscr{X}^{T} [K_{\rho}]_{\mathscr{X}} \delta \mathscr{X}$$

 V_G denotes the gravitational potential energy giving rise to $\mathbf{G}(\mathbf{q})$.

END POSITION VIBRATION CONTROL

STABILITY ANALYSIS

- Equilibrium points under end-position control: $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$.
- $\bullet\,$ Equilibrium points are unique (see Ghosal 2006) if for a positive constant c

$$\lambda_{min}([\mathsf{K}]) > c, \quad \lambda_{min}\left([J^{r}_{\mathbf{q}_{r}}]^{T}[\mathcal{K}_{p}]_{\mathscr{X}}\right) > c$$

- Physically: The manipulator can be placed at an *arbitrary* $\mathbf{q} = \mathbf{q}_d$ and $\dot{\mathbf{q}} = \mathbf{0}$, if the minimum stiffness and minimum controller gains are large enough to overcome static deflection due to gravity!
- Candidate Lyapunov function

$$V = \frac{1}{2} \dot{\mathbf{q}}^{T} [\mathbf{M}(\mathbf{q})] \dot{\mathbf{q}} + \frac{1}{2} (\mathbf{q}_{f_{d}} - \mathbf{q}_{f})^{T} [\mathbf{K}] (\mathbf{q}_{f_{d}} - \mathbf{q}_{f}) + (V_{G}(\mathbf{q}) - V_{G}(\mathbf{q}_{d})) + (\mathbf{q}_{d} - \mathbf{q})^{T} \mathbf{G}(\mathbf{q}_{d}) + \frac{1}{2} \delta \mathscr{X}^{T} [\mathcal{K}_{p}]_{\mathscr{X}} \delta \mathscr{X}$$

 V_G denotes the gravitational potential energy giving rise to $\mathbf{G}(\mathbf{q})$.

STABILITY ANALYSIS (CONTD.)

• Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$\dot{V} = -\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}} + \left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)$$

• \dot{V} is *strictly* negative if

$$\left| \left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}] \dot{\mathbf{q}}_{r} \right)^{T} \left([K_{p}]_{\mathscr{X}} \delta \mathscr{X} + [K_{v}]_{\mathscr{X}} \dot{\mathscr{X}} \right) \right| < \left| \dot{\mathscr{X}}^{T} [K_{v}]_{\mathscr{X}} \dot{\mathscr{X}} \right|$$

• $[K_v]_{\mathscr{X}}$ satisfies inequality if *minimum* eigenvalue of $[K_v]_{\mathscr{X}}$, λ_v , satisfy

$$\lambda_{v} > rac{\gamma \ \lambda_{
ho} \ lpha}{eta(eta-\gamma)}$$

where $\|(\hat{\mathscr{X}} - [J_{\mathbf{q}_r}^r]\dot{\mathbf{q}}_r)\| = \gamma$, $\|\delta\mathscr{X}\| = \alpha$, $\|\hat{\mathscr{X}}\| = \beta$, $\lambda + ([K_1], \cdot) - \lambda$ at the end of the trajectory following

- $\lambda_{min}([K_p]_{\mathscr{X}}) = \lambda_p$, at the end of the trajectory following phase.
- Note: Link vibration are not zero at the end of the trajectory following phase $\Rightarrow \beta \neq 0$.

ASHITAVA GHOSAL (IISC)

STABILITY ANALYSIS (CONTD.)

• Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$\dot{V} = -\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}} + \left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)$$

• \dot{V} is *strictly* negative if

$$|\left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}']\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)| < |\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}|$$

• $[K_v]_{\mathscr{X}}$ satisfies inequality if *minimum* eigenvalue of $[K_v]_{\mathscr{X}}$, λ_v , satisfy

$$\lambda_{
m v} ~>~ rac{\gamma ~\lambda_{
m
ho} ~lpha}{eta(eta-\gamma)}$$

where $\|(\hat{\mathscr{X}} - [J_{\mathbf{q}_r}^r]\dot{\mathbf{q}}_r)\| = \gamma$, $\|\delta\mathscr{X}\| = \alpha$, $\|\hat{\mathscr{X}}\| = \beta$, $\lambda \to ([K_1]_r) = \lambda^r$ at the end of the trajectory following

- $\lambda_{min}([K_p]_{\mathscr{X}}) = \lambda_p$, at the end of the trajectory following phase.
- Note: Link vibration are not zero at the end of the trajectory following phase $\Rightarrow \beta \neq 0$.

ASHITAVA GHOSAL (IISC)

STABILITY ANALYSIS (CONTD.)

• Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$\dot{V} = -\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}} + \left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)$$

• \dot{V} is *strictly* negative if

$$|\left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)| < |\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}|$$

• $[K_v]_{\mathscr{X}}$ satisfies inequality if *minimum* eigenvalue of $[K_v]_{\mathscr{X}}$, λ_v , satisfy

$$\lambda_{
m v} ~>~ rac{\gamma \; \lambda_{
m p} \; lpha}{eta(eta-\gamma)}$$

where $\| (\hat{\mathscr{X}} - [J_{\mathbf{q}_r}^r] \dot{\mathbf{q}}_r) \| = \gamma$, $\| \delta \mathscr{X} \| = \alpha$, $\| \hat{\mathscr{X}} \| = \beta$, $\lambda_{min}([\mathcal{K}_p]_{\mathscr{X}}) = \lambda_p$, at the end of the trajectory following phase. • Note: Link vibration are not zero at the end of the trajectory following phase $\Rightarrow \beta \neq 0$.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

STABILITY ANALYSIS (CONTD.)

• Time derivative of V, after simplification using equations of motion, the skew-symmetry property and the control law based on rigid Jacobian

$$\dot{V} = -\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}} + \left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)$$

• \dot{V} is *strictly* negative if

$$|\left(\dot{\mathscr{X}} - [J_{\mathbf{q}_{r}}^{r}]\dot{\mathbf{q}}_{r}\right)^{T}\left([K_{p}]_{\mathscr{X}}\delta\mathscr{X} + [K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}\right)| < |\dot{\mathscr{X}}^{T}[K_{v}]_{\mathscr{X}}\dot{\mathscr{X}}|$$

• $[K_v]_{\mathscr{X}}$ satisfies inequality if *minimum* eigenvalue of $[K_v]_{\mathscr{X}}$, λ_v , satisfy

$$\lambda_{v} > rac{\gamma \ \lambda_{p} \ lpha}{eta(eta-\gamma)}$$

where $\| (\dot{\mathcal{X}} - [J_{\mathbf{q}_r}^r] \dot{\mathbf{q}}_r) \| = \gamma$, $\| \delta \mathcal{X} \| = \alpha$, $\| \dot{\mathcal{X}} \| = \beta$, $\lambda_{min} ([K_n]_{\infty}) = \lambda_n$, at the end of the trajectory following

- $\lambda_{min}([\kappa_p]_{\mathscr{X}}) = \lambda_p$, at the end of the trajectory following phase.
- Note: Link vibration are not zero at the end of the trajectory following phase $\Rightarrow \beta \neq 0$.

ASHITAVA GHOSAL (IISC)

TWO-STAGE CONTROL ALGORITHM

• Model based control law

$$au_{\mathbf{q}_r} = [lpha] au'_{\mathbf{q}_r} + eta$$

with

$$\begin{aligned} & [\alpha] = [\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \\ & \beta = \mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f) \\ & \tau'_{\mathsf{q}_r} = \ddot{\mathsf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathsf{q}_r} \mathsf{e}(t) + [\mathcal{K}_{\nu}]_{\mathsf{q}_r} \dot{\mathsf{e}}(t) \end{aligned}$$

provide asymptotic trajectory following for q_r .

• End-effector vibrations induced can be damped out by

$$\tau_{\mathscr{X}} = [J_{\mathbf{q}_{r}}^{r}]^{T} \left(-[\mathcal{K}_{\rho}]_{\mathscr{X}} \delta \mathscr{X} - [\mathcal{K}_{v}]_{\mathscr{X}} \dot{\mathscr{X}} \right) + \mathbf{G}_{r}(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}})$$

• Two-stage controller

$$\tau = ([U] - [\mathbf{S}])\tau_{\mathbf{q}_r} + [\mathbf{S}]\tau_{\mathscr{X}}$$

 $[\mathbf{S}] = \begin{cases} \begin{bmatrix} \mathbf{0} \\ \end{bmatrix} \\ \begin{bmatrix} U \end{bmatrix}$

null matrix during joint trajectory tracking stage identity matrix during end position vibration control

TWO-STAGE CONTROL ALGORITHM

• Model based control law

$$\tau_{\mathbf{q}_r} = [\alpha] \tau'_{\mathbf{q}_r} + \beta$$

with

$$\begin{aligned} & [\alpha] = [\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \\ & \beta = \mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f) \\ & \tau'_{\mathsf{q}_r} = \ddot{\mathsf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathsf{q}_r} \mathsf{e}(t) + [\mathcal{K}_{\nu}]_{\mathsf{q}_r} \dot{\mathsf{e}}(t) \end{aligned}$$

provide asymptotic trajectory following for q_r .

• End-effector vibrations induced can be damped out by

$$\tau_{\mathscr{X}} = [J_{\mathbf{q}_{r}}^{r}]^{T} \left(-[K_{p}]_{\mathscr{X}} \delta \mathscr{X} - [K_{v}]_{\mathscr{X}} \dot{\mathscr{X}} \right) + \mathbf{G}_{r}(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}})$$

Two-stage controller

$$\tau = ([U] - [\mathbf{S}])\tau_{\mathbf{q}_r} + [\mathbf{S}]\tau_{\mathscr{X}}$$

null matrix during joint trajectory tracking stage identity matrix during end position vibration control

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

77/117
TWO-STAGE CONTROL ALGORITHM

• Model based control law

$$\tau_{\mathbf{q}_r} = [\alpha] \tau'_{\mathbf{q}_r} + \beta$$

with

$$\begin{aligned} & [\alpha] = [\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \\ & \beta = \mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}] \mathsf{q}_f) \\ & \tau'_{\mathsf{q}_r} = \ddot{\mathsf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathsf{q}_r} \mathsf{e}(t) + [\mathcal{K}_{\nu}]_{\mathsf{q}_r} \dot{\mathsf{e}}(t) \end{aligned}$$

provide asymptotic trajectory following for q_r .

• End-effector vibrations induced can be damped out by

$$\tau_{\mathscr{X}} = [J_{\mathbf{q}_{r}}^{r}]^{T} \left(-[K_{p}]_{\mathscr{X}} \delta \mathscr{X} - [K_{v}]_{\mathscr{X}} \dot{\mathscr{X}} \right) + \mathbf{G}_{r}(\mathbf{q}_{r_{d}}, \mathbf{q}_{f_{d}})$$

Two-stage controller

$$\tau = ([U] - [\mathbf{S}])\tau_{\mathbf{q}_r} + [\mathbf{S}]\tau_{\mathscr{X}}$$

 $[\mathbf{S}] = \begin{cases} [\mathbf{0}] & \text{null matrix during joint trajectory tracking stage} \\ [U] & \text{identity matrix during end position vibration control} \end{cases}$

TWO-STAGE CONTROL ALGORITHM

Figure 16: Two-stage controller for flexible link manipulators – $[\alpha]$, β are model-based terms

- \bullet Uncertainty in stiffness matrix $[\mathsf{K}]$ & in mass matrix $[\mathsf{M}(q)].$
- Considered together as uncertainty in structural natural frequencies

$$\omega_i^2 = \lambda_i([\Omega]) = \lambda_i([\mathsf{M}_{ff}]^{-1}[\mathsf{K}]), \qquad i = 1, 2, \dots, N$$

 $\lambda_i(\cdot)$ denotes the *i*th eigenvalue.

- AMM and FEM (or any discretisation method) *always overestimates* stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is *more* than actual stiffness!
- Model (estimated) natural frequencies *larger* than actual natural frequencies.

NPTEL, 2010 7

79/117

- Uncertainty in stiffness matrix $[\mathsf{K}]$ & in mass matrix $[\mathsf{M}(q)].$
- Considered together as uncertainty in structural natural frequencies

$$\omega_i^2 = \lambda_i([\Omega]) = \lambda_i([\mathsf{M}_{ff}]^{-1}[\mathsf{K}]), \qquad i = 1, 2, \dots, N$$

$\lambda_i(\cdot)$ denotes the *i*th eigenvalue.

- AMM and FEM (or any discretisation method) *always overestimates* stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is *more* than actual stiffness!
- Model (estimated) natural frequencies *larger* than actual natural frequencies.

NPTEL, 2010 79 / 117

- \bullet Uncertainty in stiffness matrix $[\mathsf{K}]$ & in mass matrix $[\mathsf{M}(q)].$
- Considered together as uncertainty in structural *natural* frequencies

$$\omega_i^2 = \lambda_i([\Omega]) = \lambda_i([\mathsf{M}_{ff}]^{-1}[\mathsf{K}]), \qquad i = 1, 2, \dots, N$$

 $\lambda_i(\cdot)$ denotes the *i*th eigenvalue.

- AMM and FEM (or any discretisation method) *always overestimates* stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is *more* than actual stiffness!
- Model (estimated) natural frequencies *larger* than actual natural frequencies.

NPTEL, 2010 79 / 117

- \bullet Uncertainty in stiffness matrix $[\mathsf{K}]$ & in mass matrix $[\mathsf{M}(q)].$
- Considered together as uncertainty in structural natural frequencies

$$\omega_i^2 = \lambda_i([\Omega]) = \lambda_i([\mathsf{M}_{ff}]^{-1}[\mathsf{K}]), \qquad i = 1, 2, \dots, N$$

 $\lambda_i(\cdot)$ denotes the *i*th eigenvalue.

- AMM and FEM (or any discretisation method) *always overestimates* stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is *more* than actual stiffness!
- Model (estimated) natural frequencies *larger* than actual natural frequencies.

NPTEL, 2010 79 / 117

- \bullet Uncertainty in stiffness matrix $[\mathsf{K}]$ & in mass matrix $[\mathsf{M}(q)].$
- Considered together as uncertainty in structural natural frequencies

$$\omega_i^2 = \lambda_i([\Omega]) = \lambda_i([\mathsf{M}_{ff}]^{-1}[\mathsf{K}]), \qquad i = 1, 2, \dots, N$$

 $\lambda_i(\cdot)$ denotes the *i*th eigenvalue.

- AMM and FEM (or any discretisation method) *always overestimates* stiffness matrix.
- Due to mechanical joints and play, estimated stiffness is *more* than actual stiffness!
- Model (estimated) natural frequencies *larger* than actual natural frequencies.

NPTEL, 2010

79/117

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

• Rewrite trajectory following control law as

$$\begin{aligned} \tau_{\mathbf{q}_r} &= ([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}]) \tau'_{\mathbf{q}_r} \\ &+ (\mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T ([\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f) + \widehat{[\Omega]} \mathbf{q}_f)) \end{aligned}$$

Symbol $[\widehat{\Omega}]$ denotes estimated (computed) $[M_{ff}]^{-1}[K]$.

• The closed-loop error equation becomes

 $\ddot{\mathbf{e}}(t) + [K_v]_{\mathbf{q}_r} \dot{\mathbf{e}}(t) + [K_p]_{\mathbf{q}_r} \mathbf{e}(t) = -([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}])^{-1} [\mathsf{M}_{rf}]^T$ Flexible variables \mathbf{q}_f are governed by

 $\ddot{\mathsf{q}}_f + [\mathsf{M}_{ff}]^{-1}(\mathsf{C}_f + \mathsf{G}_f) + ([\Omega] - [\mathscr{M}][\Delta \ \Omega])\mathsf{q}_f = -[\mathsf{M}_{ff}]^{-1}[\mathsf{M}_{rf}]\tau'_{\mathsf{q}_r}$

where $[\mathcal{M}] = [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] ([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}])^{-1} [\mathsf{M}_{rf}]^T$ and $[\Delta \Omega] = [\widehat{\Omega}] - [\Omega].$

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

• Rewrite trajectory following control law as

$$\tau_{\mathbf{q}_r} = ([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}]) \tau'_{\mathbf{q}_r} + (\mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T ([\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f) + \widehat{[\Omega]} \mathbf{q}_f))$$

Symbol $[\widehat{\Omega}]$ denotes estimated (computed) $[M_{ff}]^{-1}[K]$.

• The closed-loop error equation becomes

$$\begin{split} \ddot{\mathbf{e}}(t) + [\mathcal{K}_{v}]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t) + [\mathcal{K}_{p}]_{\mathbf{q}_{r}} \mathbf{e}(t) &= -([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^{T} [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}])^{-1} [\mathsf{M}_{rf}]^{T} \\ \text{Flexible variables } \mathbf{q}_{f} \text{ are governed by} \\ \ddot{\mathbf{q}}_{f} + [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_{f} + \mathsf{G}_{f}) + ([\Omega] - [\mathscr{M}] [\Delta \ \Omega]) \mathbf{q}_{f} &= -[\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \tau'_{\mathbf{q}_{r}} \\ \text{where } [\mathscr{M}] &= [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] ([\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^{T} [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}])^{-1} [\mathsf{M}_{rf}]^{T} \end{split}$$

where $[\mathcal{M}] = [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}]([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{-1} [\mathbf{M}_{rf}]) [\mathbf{M}_{rf}]$ and $[\Delta \Omega] = [\widehat{\Omega}] - [\Omega].$

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For q_f to be stable, the closed-loop *frequency matrix* ([Ω] - [ℳ]Δ[Ω]) must be positive definite (Inman 1989).
- Intuitive justification:
 - Spring-mass-damper system $\ddot{x} + \omega^2 x = u(t) \omega^2 < 0 \rightarrow x(t) \rightarrow \infty$.
 - ([Ω] [ℳ][Δ Ω]) is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator – positive definite for q_f(t) to be bounded.
- $[\Delta \Omega] < 0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_f will be stable.
- [Δ Ω] > 0 → Closed-loop frequency matrix may not be positive definite and q_f may be unstable.
- Bounds on uncertainty in natural frequency for stable q_f can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For q_f to be stable, the closed-loop *frequency matrix* ([Ω] [M]Δ[Ω]) must be positive definite (Inman 1989).
- Intuitive justification:
 - Spring-mass-damper system $\ddot{x} + \omega^2 x = u(t) \omega^2 < 0 \rightarrow x(t) \rightarrow \infty$.
 - $([\Omega] [\mathcal{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator positive definite for $\mathbf{q}_f(t)$ to be bounded.
- $[\Delta \Omega] < 0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_f will be stable.
- [Δ Ω] > 0 → Closed-loop frequency matrix may not be positive definite and q_f may be unstable.
- Bounds on uncertainty in natural frequency for stable q_f can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For q_f to be stable, the closed-loop *frequency matrix* ([Ω] - [ℳ]Δ[Ω]) must be positive definite (Inman 1989).
- Intuitive justification:
 - Spring-mass-damper system $\ddot{x} + \omega^2 x = u(t) \omega^2 < 0 \rightarrow x(t) \rightarrow \infty$.
 - $([\Omega] [\mathcal{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator positive definite for $\mathbf{q}_f(t)$ to be bounded.
- $[\Delta \ \Omega] < 0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_f will be stable.
- [Δ Ω] > 0 → Closed-loop frequency matrix may not be positive definite and q_f may be unstable.
- Bounds on uncertainty in natural frequency for stable q_f can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For q_f to be stable, the closed-loop frequency matrix
 ([Ω] [ℳ]Δ[Ω]) must be positive definite (Inman 1989).
- Intuitive justification:
 - Spring-mass-damper system $\ddot{x} + \omega^2 x = u(t) \omega^2 < 0 \rightarrow x(t) \rightarrow \infty$.
 - $([\Omega] [\mathcal{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator positive definite for $\mathbf{q}_f(t)$ to be bounded.
- $[\Delta \ \Omega] < 0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_f will be stable.
- $[\Delta \Omega] > 0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_f may be unstable.
- Bounds on uncertainty in natural frequency for stable q_f can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

EFFECT OF OVERESTIMATION OF NATURAL FREQUENCY

- For q_f to be stable, the closed-loop frequency matrix
 ([Ω] [ℳ]Δ[Ω]) must be positive definite (Inman 1989).
- Intuitive justification:
 - Spring-mass-damper system $\ddot{x} + \omega^2 x = u(t) \omega^2 < 0 \rightarrow x(t) \rightarrow \infty$.
 - $([\Omega] [\mathcal{M}][\Delta \Omega])$ is like an equivalent closed-loop natural frequency matrix for the multi-link flexible manipulator positive definite for $\mathbf{q}_f(t)$ to be bounded.
- $[\Delta \Omega] < 0 \rightarrow$ Closed-loop frequency matrix is positive definite and q_f will be stable.
- $[\Delta \Omega] > 0 \rightarrow$ Closed-loop frequency matrix may not be positive definite and \mathbf{q}_f may be unstable.
- Bounds on uncertainty in natural frequency for stable q_f can be derived (see Theodore (1995), Theodore and Ghosal (1995, 2003)).

• Three DOF manipulator with two flexible links - Parameters.

Physical system parameters	Value
mass of link 1 (m_1)	3.66 kg
linear mass density of link 2 $(\rho_2 A_2)$	$0.331 \ kg m^{-1}$
linear mass density of link 3 $(\rho_3 A_3)$	$0.331 \ kg m^{-1}$
mass of payload (m_p)	0.1 <i>kg</i>
length of link 1	0.12 <i>m</i>
length of link 2	1.0 <i>m</i>
length of link 3	1.0 <i>m</i>
rotary inertia of joint 1 (<i>I_{joint1}</i>)	0.4 kgm ²
rotary inertia of joint 2 (<i>I_{joint2}</i>)	3.275 kg m ²
rotary inertia of joint 3 (I_{joint_3})	3.275 kg m ²
flexural rigidity of link 2 $((EI)_2)$	1165.4916 Nm ²
flexural rigidity of link 3 $((EI)_3)$	1165.4916 Nm ²

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end represents a right-circular helix of radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
- Total time is 1.0 seconds chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}_d} = 0$ is chosen to be zero & 1.0 seconds to damp vibrations.
- Controller gains:
 - I-stage $[K_{\rho}]_{q_r}$ and $[K_{\nu}]_{q_r}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
 - Il-stage $[K_p]_{\mathscr{X}}$ and $[K_v]_{\mathscr{X}}$ are chosen as diagonal matrices with elements {100.0, 100.0, 400.0} and {40.0, 40.0, 80.0}, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end represents a right-circular helix of radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
- Total time is 1.0 seconds chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}_d} = 0$ is chosen to be zero & 1.0 seconds to damp vibrations.
- Controller gains:
 - I-stage $[K_{\rho}]_{q_r}$ and $[K_{\nu}]_{q_r}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
 - Il-stage $[K_p]_{\mathscr{X}}$ and $[K_v]_{\mathscr{X}}$ are chosen as diagonal matrices with elements {100.0, 100.0, 400.0} and {40.0, 40.0, 80.0}, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end represents a right-circular helix of radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
- Total time is 1.0 seconds chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}_d} = 0$ is chosen to be zero & 1.0 seconds to damp vibrations.
- Controller gains:
 - I-stage $[K_p]_{q_r}$ and $[K_v]_{q_r}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
 - Il-stage $[K_p]_{\mathscr{X}}$ and $[K_v]_{\mathscr{X}}$ are chosen as diagonal matrices with elements {100.0, 100.0, 400.0} and {40.0, 40.0, 80.0}, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end represents a right-circular helix of radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
- Total time is 1.0 seconds chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}_d} = 0$ is chosen to be zero & 1.0 seconds to damp vibrations.
- Controller gains:
 - I-stage $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
 - II-stage $[K_p]_{\mathscr{X}}$ and $[K_v]_{\mathscr{X}}$ are chosen as diagonal matrices with elements {100.0, 100.0, 400.0} and {40.0, 40.0, 80.0}, respectively.

• Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

- Desired trajectory is smooth sine profile with zero velocity and acceleration at the start and end represents a right-circular helix of radius 25 cm, pitch 2.5 cm, and 3π rotations about the helix axis.
- Total time is 1.0 seconds chosen 'fast' to excite vibrations!
- After 1.0 seconds, $\dot{\mathscr{X}_d} = 0$ is chosen to be zero & 1.0 seconds to damp vibrations.
- Controller gains:
 - I-stage $[K_p]_{\mathbf{q}_r}$ and $[K_v]_{\mathbf{q}_r}$ are diagonal matrices with equal diagonal elements of 64.0 and 32.0.
 - II-stage $[K_p]_{\mathscr{X}}$ and $[K_v]_{\mathscr{X}}$ are chosen as diagonal matrices with elements {100.0, 100.0, 400.0} and {40.0, 40.0, 80.0}, respectively.
- Mass parameters underestimated by 25% and stiffness parameters overestimated by 25%.

NUMERICAL SIMULATION OF A FLEXIBLE LINK

Figure 18: Desired trajectories (— : $q_{r_1}^d(\dot{q}_{r_1}^d)$, ---: $q_{r_2}^d(\dot{q}_{r_2}^d)$, ----: $q_{r_3}^d(\dot{q}_{r_3}^d)$)

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

- Two simulation result cases:
 - CASE 1: Two-stage control algorithm with no uncertainties in model parameters $\tau_{\mathbf{q}_r} = [\alpha] \tau'_{\mathbf{q}_r} + \beta$ and

$$\begin{aligned} & [\alpha] = [\mathsf{M}_{rr}] - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} [\mathsf{M}_{rf}] \\ & \beta = \mathsf{C}_r + \mathsf{G}_r - [\mathsf{M}_{rf}]^T [\mathsf{M}_{ff}]^{-1} (\mathsf{C}_f + \mathsf{G}_f + [\mathsf{K}]\mathsf{q}_f) \\ & \tau'_{\mathsf{q}_r} = \ddot{\mathsf{q}}_{r_d}(t) + [\mathcal{K}_{\rho}]_{\mathsf{q}_r} \mathsf{e}(t) + [\mathcal{K}_{\nu}]_{\mathsf{q}_r} \dot{\mathsf{e}}(t) \end{aligned}$$

CASE 2: Two-stage control algorithm with uncertainty in model parameters

$$\begin{aligned} \boldsymbol{\tau}_{\mathbf{q}_{r}} &= ([\mathbf{M}_{rr}] - [\mathbf{M}_{rf}]^{T} [\mathbf{M}_{ff}]^{-1} [\mathbf{M}_{rf}]) \boldsymbol{\tau}'_{\mathbf{q}_{r}} \\ &+ (\mathbf{C}_{r} + \mathbf{G}_{r} - [\mathbf{M}_{rf}]^{T} ([\mathbf{M}_{ff}]^{-1} (\mathbf{C}_{f} + \mathbf{G}_{f}) + \widehat{[\Omega]} \mathbf{q}_{f})) \\ \boldsymbol{\tau}'_{\mathbf{q}_{r}} &= \ddot{\mathbf{q}}_{r_{d}}(t) + [\mathcal{K}_{\rho}]_{\mathbf{q}_{r}} \mathbf{e}(t) + [\mathcal{K}_{\nu}]_{\mathbf{q}_{r}} \dot{\mathbf{e}}(t) \end{aligned}$$

Figure 19: Case 1: Time $\underset{(x_2)}{\underset{(x_2)}{\text{time}}} (\overset{(x_2)}{\underset{(x_2)}{\text{cyc}}} of the joint position and velocity, and tip position and velocity errors for two-stage controller (joint error: — : <math>e_1(\dot{e}_1), - - : e_2(\dot{e}_2), - - : e_3(\dot{e}_3)$; tip error: — : $e_x(\dot{e}_x), - - : e_y(\dot{e}_y), - - : e_z(\dot{e}_z)$

NUMERICAL SIMULATION OF A FLEXIBLE LINK

Figure 20: Case 1: Time $\underset{istory}{\text{time}} \underset{O}{\text{(sec)}}$ of the elastic deflection variable along the Y direction, at the tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z direction, at the tip of flexible link 2, and its rate

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

Figure 21: Case 2: Time history of the joint position and velocity. Seed tip position and velocity errors for two-stage controller (joint error: $- : e_1(\dot{e}_1), - - - : e_2(\dot{e}_2), - - - : e_3(\dot{e}_3)$; tip error: $- : e_x(\dot{e}_x), - - - : e_y(\dot{e}_y), - - - : e_z(\dot{e}_z)$

Figure 22: Case 2: Time $\underset{istory}{\text{time}} \underset{O}{\text{(sec)}}$ of the elastic deflection variable along the Y direction, at the tip of flexible link 1, and its rate; time history of the elastic rotation variable about the Z direction, at the tip of flexible link 2, and its rate

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 90 / 117

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm} \text{quite large!}$
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to ≈ 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $\approx 20^{\circ} \& \approx 30$ cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm} \text{quite large!}$
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to ≈ 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^\circ$ & ≈ 30 cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm}$ quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to \approx 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $\approx 20^{\circ} \& \approx 30$ cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm}$ quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to \approx 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ}$ & ≈ 30 cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm}$ quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to \approx 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $-\approx 20^{\circ}$ & ≈ 30 cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

SUMMARY OF SIMULATION RESULTS

- Without any uncertainty (Case 1), joint trajectory errors (between 0 and 1 sec) are quite small.
- Even in Case 1, the tip errors at the the end of trajectory following (t = 1 sec) are $\approx 5 \text{ cm}$ quite large!
- With the end-position controller (between 1 and 2 sec), the tip vibration errors are reduced to \approx 1 cm.
- In presence of uncertainties in model parameters (Case 2), joint and tip errors are much larger $\approx 20^{\circ} \& \approx 30$ cm.
- Due to end position vibration controller (between 1 and 2 sec), the joint and tip position errors are again driven to lower levels of about 2° and 3 cm.
- To reduce errors further, robust compensator is required (See Theodore and Ghosal (2003)).

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

SUMMARY

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

- Kinematic modeling \rightarrow Dynamic equations of motion using Lagrangian formulation.
- Equations of motion can be done using computer algebra software such as Maple® or Mathematica®.
- Two-way coupling between rigid joint variables and flexible vibration variables!
- Number of ODE's in 3D with n_f flexible links and N_j modes or elements for each flexible link $-2\sum_{j=1}^{n_f} N_j$ in AMM and $4\sum_{j=1}^{n_f} N_j$ in FEM.
- Trajectory and end-position vibration control using *only* rigid joint variable.
- \bullet Overestimation of natural frequency \rightarrow unstable behaviour!
- Numerical simulation results for 2-stage controller.

OUTLINE

CONTENTS

- 2 Lecture 1
 - Flexible Manipulators
- 3 Lecture 2*
 - Kinematic Modeling of Flexible Link Manipulators

4 LECTURE 3*

- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators

LECTURE 4

• Experiments with a Planar Two Link Flexible System

MODULE 8 – ADDITIONAL MATERIAL

• Problems, References and Suggested Reading

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al.(1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al.(1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al.(1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al. (1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al. (1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al. (1997) & Nagaraj et al. (2003).

- A planar 2R flexible link system moving on a horizontal table on air bearings.
- Simulate deployment of a two element solar panel in zero gravity environment.
- Added complication: Locking at the end of motion induces flexible vibration.
- Modeled as flexible beams (made of Aluminum), actuated by two springs and locking mechanism.
- Instrumented with potentiometer (to measure joint rotation) and strain gages (to estimate vibration).
- Goal is to do modeling and numerical simulation & compare with experimental data.
- See details in Nagaraj et al. (1997) & Nagaraj et al. (2003).

• Initially both links are folded - shown in (a).

- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

- Initially both links are folded shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

- Initially both links are folded shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

NPTEL, 2010 95 / 117

- Initially both links are folded shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

NPTEL, 2010 95 / 117

- Initially both links are folded shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

- Initially both links are folded shown in (a).
- Both joints are actuated by torsional springs with link 1 rotating counter-clockwise (CCW) and link 2 rotating clock-wise (CW) – Stage 1 motion shown in (b).
- The second joint locks first when $\theta_2 = 0$ shown as (c).
- Both links rotate as one in a CCW manner Stage 2 motion shown as (d).
- At $\theta_1 = 90^\circ$, the first joint locks shown as (e).
- Both links together vibrate as a cantilever Stage 3.

NPTEL, 2010 96 / 117

- FEM approach for modeling.
- Two elements in each link and Hermite cubic shape functions.
- Clamped-mass boundary conditions for both links.

Deformed shape Undeformed shape vectors

- Kinetic energy from Links 1 and 2, Revolute joints 1 and 2m and tip mass at end of both links.
- - Potential energy from strain energy of both links and torsion springs.
 - Torque due to rocker arm in the locking mechanism.
 - Dynamic equations of motion obtained using Lagrangian formulation.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 97/117

Figure 24: Flexible 2R system in Stage $1 - \tau_2$ is actually CW

MODELING OF LOCKING

• Equations of motion for Stage 1 motion (see Lecture 3)

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_r \\ \ddot{\mathsf{q}}_f \end{pmatrix} + \begin{pmatrix} \mathsf{C}_r(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_f(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \mathsf{K}_j \end{bmatrix} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K}_f \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_r \\ \mathsf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

Note: the gravity term is not present, the stiffness due to torsional springs is $[{\bf K}_j]$ and τ is due to the rocker-arm force.

- After θ_2 rotates by π (CW direction), the joint locks \rightarrow 2R system changes to 1R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using *momentum balance*.
- Assumptions:
 - Time duration of impact during locking is neglected.
 - $\bullet\,$ Generalised coordinates before and after locking is same $\rightarrow\, {\bf q}_+ = {\bf q}_-$
 - Velocities are bounded during impact.

NPTEL, 2010 98 / 117

MODELING OF LOCKING

• Equations of motion for Stage 1 motion (see Lecture 3)

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \mathsf{K}_{j} \end{bmatrix} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K}_{f} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

Note: the gravity term is not present, the stiffness due to torsional springs is $[{\bf K}_j]$ and τ is due to the rocker-arm force.

- After θ_2 rotates by π (CW direction), the joint locks \rightarrow 2R system changes to 1R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using *momentum balance*.
- Assumptions:
 - Time duration of impact during locking is neglected.
 - $\bullet\,$ Generalised coordinates before and after locking is same $\rightarrow\, {\bf q}_+ = {\bf q}_-$
 - Velocities are bounded during impact.

NPTEL, 2010 98 / 117

- 4 同 2 4 日 2 4 日

MODELING OF LOCKING

• Equations of motion for Stage 1 motion (see Lecture 3)

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^{\mathsf{T}} \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_{r} \\ \ddot{\mathsf{q}}_{f} \end{pmatrix} + \begin{pmatrix} \mathsf{C}_{r}(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_{f}(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \mathsf{K}_{j} \end{bmatrix} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K}_{f} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_{r} \\ \mathsf{q}_{f} \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

Note: the gravity term is not present, the stiffness due to torsional springs is $[{\bf K}_j]$ and τ is due to the rocker-arm force.

- After θ_2 rotates by π (CW direction), the joint locks \rightarrow 2R system changes to 1R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using *momentum balance*.
- Assumptions:
 - Time duration of impact during locking is neglected.
 - $\bullet\,$ Generalised coordinates before and after locking is same $\rightarrow\, {\bf q}_+ = {\bf q}_-$
 - Velocities are bounded during impact.

NPTEL, 2010 98 / 117

MODELING OF LOCKING

• Equations of motion for Stage 1 motion (see Lecture 3)

$$\begin{pmatrix} \begin{bmatrix} \mathsf{M}_{rr} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix}^T \\ \begin{bmatrix} \mathsf{M}_{rf} \end{bmatrix} & \begin{bmatrix} \mathsf{M}_{ff} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \ddot{\mathsf{q}}_r \\ \ddot{\mathsf{q}}_f \end{pmatrix} + \begin{pmatrix} \mathsf{C}_r(\mathsf{q}, \dot{\mathsf{q}}) \\ \mathsf{C}_f(\mathsf{q}, \dot{\mathsf{q}}) \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} \mathsf{K}_j \end{bmatrix} & \mathsf{0} \\ \mathsf{0} & \begin{bmatrix} \mathsf{K}_f \end{bmatrix} \end{pmatrix} \begin{pmatrix} \mathsf{q}_r \\ \mathsf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathsf{0} \end{pmatrix}$$

Note: the gravity term is not present, the stiffness due to torsional springs is $[{\bf K}_j]$ and τ is due to the rocker-arm force.

- After θ_2 rotates by π (CW direction), the joint locks \rightarrow 2R system changes to 1R system.
- Initial conditions for motion just after locking (Stage 2 motion) obtained using *momentum balance*.
- Assumptions:
 - Time duration of impact during locking is neglected.
 - $\bullet~$ Generalised coordinates before and after locking is same $\rightarrow~\textbf{q}_{+}=\textbf{q}_{-}$
 - Velocities are bounded during impact.

NPTEL, 2010 98 / 117

MODELING OF LOCKING (CONTD.)

- Momentum balance equation, with H denoting generalised impulse, $[M(q)] \Delta \dot{q} = H$
- The velocity after locking is $\dot{\mathbf{q}}_{+} = \dot{\mathbf{q}}_{-} + \Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+} = 0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

where H_1 is the impulse acting on joint 2 and $M_{rf_{ij}}$ is computed assuming 2 elements in each link.

$$\dot{\theta}_{1+} = \dot{\theta}_{1-} + \Delta \dot{\theta}_1, \quad \dot{\mathbf{q}}_{f+} = \dot{\mathbf{q}}_{f-} + \Delta \dot{\mathbf{q}}_f$$

MODELING OF LOCKING (CONTD.)

• Momentum balance equation, with H denoting generalised impulse,

 $[\mathsf{M}(\mathsf{q})]\Delta\dot{\mathsf{q}}=\mathsf{H}$

- The velocity after locking is $\dot{\mathbf{q}}_+ = \dot{\mathbf{q}}_- + \Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+} = 0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

where H_1 is the impulse acting on joint 2 and $M_{rf_{ij}}$ is computed assuming 2 elements in each link.

$$\dot{\theta}_{1+} = \dot{\theta}_{1-} + \Delta \dot{\theta}_1, \quad \dot{\mathbf{q}}_{f+} = \dot{\mathbf{q}}_{f-} + \Delta \dot{\mathbf{q}}_f$$

MODELING OF LOCKING (CONTD.)

• Momentum balance equation, with H denoting generalised impulse,

$$[\mathsf{M}(\mathsf{q})]\Delta\dot{\mathsf{q}}=\mathsf{H}$$

- The velocity after locking is $\dot{\mathbf{q}}_+ = \dot{\mathbf{q}}_- + \Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+} = 0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

$$\begin{pmatrix} M_{rr_{11}} & M_{rf_{11}} & \dots & M_{rf_{14}} & 0 \\ M_{rr_{21}} & M_{rf_{21}} & \dots & M_{rf_{24}} & -1 \\ M_{rf_{11}} & M_{ff_{11}} & \dots & M_{ff_{14}} & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ M_{rf_{14}} & M_{ff_{41}} & \dots & M_{ff_{44}} & 0 \end{pmatrix} \begin{pmatrix} \Delta \dot{\theta}_1 \\ \Delta \dot{q}_{11} \\ \dots \\ \dots \\ \dots \\ H_1 \end{pmatrix} = \dot{\theta}_{2-} \begin{pmatrix} M_{rr_{12}} \\ M_{rf_{22}} \\ M_{rf_{21}} \\ \dots \\ M_{rf_{24}} \end{pmatrix}$$

where H_1 is the impulse acting on joint 2 and $M_{rf_{ij}}$ is computed assuming 2 elements in each link.

$$\dot{\theta}_{1+} = \dot{ heta}_{1-} + \Delta \dot{ heta}_1, \quad \dot{ extbf{q}}_{f+} = \dot{ extbf{q}}_{f-} + \Delta \dot{ extbf{q}}_f$$

MODELING OF LOCKING (CONTD.)

• Momentum balance equation, with H denoting generalised impulse,

$$[\mathsf{M}(\mathsf{q})]\Delta\dot{\mathsf{q}}=\mathsf{H}$$

- The velocity after locking is $\dot{\mathbf{q}}_+ = \dot{\mathbf{q}}_- + \Delta \dot{\mathbf{q}}, \quad \dot{\theta}_{2+} = 0$
- Momentum balance, for this case, is given by (see Nagaraj et al. 1997)

$$\begin{pmatrix} M_{rr_{11}} & M_{rf_{11}} & \dots & M_{rf_{14}} & 0 \\ M_{rr_{21}} & M_{rf_{21}} & \dots & M_{rf_{24}} & -1 \\ M_{rf_{11}} & M_{ff_{11}} & \dots & M_{ff_{14}} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ M_{rf_{14}} & M_{ff_{41}} & \dots & M_{ff_{44}} & 0 \end{pmatrix} \begin{pmatrix} \Delta \dot{\theta}_1 \\ \Delta \dot{q}_{11} \\ \dots \\ \dots \\ \dots \\ H_1 \end{pmatrix} = \dot{\theta}_{2-} \begin{pmatrix} M_{rr_{12}} \\ M_{rr_{22}} \\ M_{rf_{21}} \\ \dots \\ M_{rf_{24}} \end{pmatrix}$$

where H_1 is the impulse acting on joint 2 and $M_{rf_{ij}}$ is computed assuming 2 elements in each link.

$$\dot{\theta}_{1+} = \dot{\theta}_{1-} + \Delta \dot{\theta}_1, \quad \dot{\mathbf{q}}_{f+} = \dot{\mathbf{q}}_{f-} + \Delta \dot{\mathbf{q}}_f$$

- Potential energy from strain energy and torsion spring.
- Torque due to rocker arm in the locking mechanism.
- Dynamic equations of motion obtained using Lagrangian formulation.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_1 = \pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_1 = \pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_1 = \pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_1 = \pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $heta_1=\pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

• Equations of motion are (see Lecture 3)

$$\begin{pmatrix} M_{rr} & [\mathbf{M}_{rf}]^T \\ [\mathbf{M}_{rf}] & [\mathbf{M}_{ff}] \end{pmatrix} \begin{pmatrix} \ddot{q}_r \\ \ddot{\mathbf{q}}_f \end{pmatrix} + \begin{pmatrix} C_r(\mathbf{q}, \dot{\mathbf{q}}) \\ C_f(\mathbf{q}, \dot{\mathbf{q}}) \end{pmatrix} \\ + \begin{pmatrix} K_j & \mathbf{0} \\ \mathbf{0} & [\mathbf{K}_f] \end{pmatrix} \begin{pmatrix} q_r \\ \mathbf{q}_f \end{pmatrix} = \begin{pmatrix} \tau \\ \mathbf{0} \end{pmatrix}$$

- Only one rigid body equation and scalar joint spring stiffness.
- $\mathbf{q}_f \in \Re^{2(n_1+n_2)}$, n_1 and n_2 are number of element in link 1 and 2 (both chosen equal to 2 in simulations).
- Displacement and slope at first element is set to zero.
- At $\theta_1 = \pi/2$, the first joint locks.
- After locking, system becomes a vibrating cantilever.

- FEM with clamped-mass boundary conditions.
- Equations of motion

 $[\mathsf{M}_c]\ddot{\mathsf{q}}_f + [\mathsf{K}_c]\mathsf{q}_f = \mathbf{0}$

 $[M_c]$ and $[K_c]$ are the mass and stiffness matrix and q_f are the flexible variables for the cantilever.

Figure 26: Vibrating flexible cantilever • $\dot{\theta}_{1+} = 0.$

• Velocity after locking $\dot{\mathbf{q}}_{f+} = \dot{\mathbf{q}}_{f-} + \Delta \dot{\mathbf{q}}_{f-}$, and $\Delta \dot{\mathbf{q}}_{f-}$ is obtained from

$$\begin{pmatrix} M_{rf_{11}} & \dots & M_{rf_{14}} & -1 \\ & [M_{ff}] & & \mathbf{0}^{T} \end{pmatrix} \begin{pmatrix} \Delta \dot{\mathbf{q}}_{f-} \\ H_{2} \end{pmatrix} = \dot{\theta}_{1-} \begin{pmatrix} M_{rr_{11}} \\ M_{rf_{11}} \\ \dots \\ M_{rf_{14}} \end{pmatrix}$$

 H_2 is the impulse acting at joint 1.

NPTEL, 2010
PARAMETERS USED FOR SIMULATION

- Length = 1.006423 m
- X-section = 1.78076 $10^{-4} m^2$
- Thickness = $4.4519 \ 10^{-3} \ m$
- Flexural Rigidity $EI = 20.5879 \text{ N} \text{m}^2$
- Link mass = 0.52334 Kg
- Spring stiffness = 0.0789 N m/rad
- Parameters of link 2 (from hardware)
 - Length = 0.9945 m
 - X-section = 1.77748 $10^{-4} m^2$
 - Thickness = $4.437 \ 10^{-3} \ m$
 - Flexural Rigidity $EI = 20.3819 \text{ N} \text{m}^2$
 - Link mass = 0.42958 Kg
 - Spring stiffness = 0.0789 N m/rad

RIGID BODY SIMULATION

Figure 27: Motion of joint 1

Figure 28: Motion of joint 2

- Time to first lock 2.898 sec
- Time to second lock 4.38 sec

NPTEL, 2010

FLEXIBLE LINK SIMULATION - JOINT MOTION

Figure 29: Motion of joint 1

Figure 30: Motion of joint 2

- Time to first lock 2.923 sec
- Time to second lock 5.78 sec

NPTEL, 2010

FLEXIBLE LINK SIMULATION – STRAINS

Figure 31: Strain at a location near base of link 1

Figure 32: Strain at location near base of link 2

- Maximum strain (Stage 1): link 1 and link 2 < 50 μ -strains.
- Maximum strain (Stage 2): link 1 pprox 150 & link 2 pprox 400 μ -strains.
- Maximum strain (Stage 3): link 1 pprox 700 & link 2 pprox 400 μ -strains.

EXPERIMENTAL SET-UP

Figure 33: Experimental set-up for planar 2R motion studies

- Flexible Aluminum beams floating on air bearings on a horizontal glass table and actuated by two springs.
- Locking mechanism to lock after deployment.
- Instrumented to measure rotation and strain,

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 107 / 117

Figure 34: First joint assembly at initial configuration

Figure 35: First joint assembly at locked configuration

- Rocker arm moves on cam and pressed by a spring.
- At $\theta_1 = \pi/2$, the joint 1 is locked.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 108 / 117

EXPERIMENTAL SET-UP

INSTRUMENTATION

Figure 36: Instrumentation to measure rotation and strain

- Potentiometer measures joint rotation.
- Strain gages used to measure strains near the base of the links.
- All readings stored on a PC.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010

EXPERIMENTAL HARDWARE

Initial folded configuration

Deployment under progress

Figure 37: Experimental set-up for planar 2R motion studies

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 110 / 117

э

EXPERIMENTAL RESULTS

JOINT ROTATION

Figure 38: Rotation at joint 1 in Stage 1 and Stage 2

- Time to first lock 3.07 sec
- Time to second lock 6.13 sec

Figure 39: Rotation at joint 2

EXPERIMENTAL RESULTS

Strain in Link 1 and 2 $\,$

- Maximum strain (Stage 1): link 1 and link 2 < 50 μ -strains
- Maximum strain (Stage 2): link 1 pprox 150 and link 2 pprox 600 μ -strains.
- Maximum strain (Stage 3): link 1 \approx 500 and link 2 \approx 300 $\mu\text{-strains}.$

COMPARISON OF EXPERIMENTAL AND NUMERICAL SIMULATION

Figure 42: Comparison of joint rotations

- Time for first locking 2.92 sec(computed) Vs. 3.07 sec(measured).
- Time for second locking 5.87 sec(computed) Vs. 6.13 sec(measured).

ASHITAVA GHOSAL (IISC)

COMPARISON OF EXPERIMENTAL AND NUMERICAL

Figure 43: Comparison of strains near base of links

- Simulation pprox 700 μ -strains Vs. experimental pprox 500 μ -strains .
- Simulation pprox 400 μ -strain Vs. experimental pprox 600 μ -strains.
- Frequency after first lock: 1.95 Hz good agreement with simulation.
- Two frequencies after second lock: 0.39 Hz and 2.73 Hz (simulation) Vs. 0.49 Hz and 2.93 Hz (experiments).

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 114 / 117

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

NPTEL, 2010

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

NPTEL, 2010

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

NPTEL, 2010

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

NPTEL, 2010

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

NPTEL, 2010

- Modeling of 2 link flexible system mimicking deployment of a two element solar panel under zero gravity environment.
- Three stage motion Stage 1: two link flexible, Stage 2: One link flexible system and Stage 3: Vibrating cantilever.
- Numerical simulation results based on finite element modeling of flexible multi-link manipulators.
- Modeling of locking to determine initial conditions in different stages of motion.
- Experimental hardware and results.
- Experimental results match reasonably well time for locking is underestimated due to un-modeled friction.

OUTLINE

CONTENTS

- 2 Lecture 1
 - Flexible Manipulators
- 3 LECTURE 2*
 - Kinematic Modeling of Flexible Link Manipulators

4 LECTURE 3*

- Dynamic Modeling of Flexible Link Manipulators
- Control of Flexible Link Manipulators

5 LECTURE 4

- Experiments with a Planar Two Link Flexible System
- MODULE 8 ADDITIONAL MATERIAL
 - Problems, References and Suggested Reading

MODULE 8 – ADDITIONAL MATERIAL

• Exercise Problems

• References & Suggested Reading

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010