

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 9 - MODELING AND ANALYSIS OF WHEELED MOBILE ROBOTS

Ashitava Ghosal¹

¹Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian Institute of Science Bangalore 560 012, India Email: asitava@mecheng.iisc.ernet.in

NPTEL, 2010

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 1/88

Contents

- 2 Lecture 1
 - Wheeled Mobile Robots on Flat Terrain
- 3 LECTURE 2*
 - Wheeled Mobile Robots on Uneven Terrain
- 4 Lecture 3*
 - Kinematics and Dynamics of WMR on Uneven Terrain
- **5** Module 9 Additional Material
 - Problems, References and Suggested Reading

OUTLINE

CONTENTS

2 Lecture 1

• Wheeled Mobile Robots on Flat Terrain

3 LECTURE 2*

• Wheeled Mobile Robots on Uneven Terrain

4 Lecture 3*

• Kinematics and Dynamics of WMR on Uneven Terrain

5 Module 9 – Additional Material

• Problems, References and Suggested Reading

CONTENTS OF LECTURE

Introduction to wheeled mobile robots.

- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

CONTENTS OF LECTURE

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

CONTENTS OF LECTURE

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

- Introduction to wheeled mobile robots.
- Different kinds of wheels and their modeling.
- Kinematics of wheeled mobile robots on flat surfaces.
- Modeling of wheel slip.
- Modeling of a WMR with omni-directional wheels.
- Simulation of a WMR with omni-wheels.
- Summary

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate *rough terrain* more easily.

→ Ξ →

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate *rough terrain* more easily.

→ ∃ →

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate rough terrain more easily.

→ ∃ →

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate *rough terrain* more easily.

→ Ξ →

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate *rough terrain* more easily.

→ ∃ →

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate *rough terrain* more easily.

- Last 8 modules, all robots considered were *stationary* with a *fixed* link or a *base*.
- Several robots are now designed to have *mobility* they can move on a surface, in water or in air.
- Only robots with capability of mobility on a surface considered.
- Earliest examples are *automated guided vehicles* (AGV's) with wheels used on *flat* factory floors.
- More recently autonomous robots with *legs* and/or a combination or wheels and legs (*hybrid*) have been built.
- Vast majority are *wheeled mobile robots* or WMR's as they are *more efficient* and *faster* than legged or tracked vehicles.
- Legged and tracked vehicles can navigate rough terrain more easily.

- Autonomous vehicles are used in
 - Industrial environments to move material (parts and finished goods) from one place to another.
 - Military and security applications.
 - Hazardous environments such as inside nuclear reactors or in deep sea bed.
 - Providing mobility to handicapped persons.
 - Planetary exploration.
- Analysis of WMR's involve kinematics, dynamics, control, sensing, motion planning, obstacle avoidance ...
- This Lecture *deals* with kinematics and dynamics of WMR's moving on a *flat* surface or a plane.
- Next Lecture WMR's moving on uneven or rough terrains.

- Autonomous vehicles are used in
 - Industrial environments to move material (parts and finished goods) from one place to another.
 - Military and security applications.
 - Hazardous environments such as inside nuclear reactors or in deep sea bed.
 - Providing mobility to handicapped persons.
 - Planetary exploration.
- Analysis of WMR's involve kinematics, dynamics, control, sensing, motion planning, obstacle avoidance ...
- This Lecture *deals* with kinematics and dynamics of WMR's moving on a *flat* surface or a plane.
- Next Lecture WMR's moving on uneven or rough terrains.

- Autonomous vehicles are used in
 - Industrial environments to move material (parts and finished goods) from one place to another.
 - Military and security applications.
 - Hazardous environments such as inside nuclear reactors or in deep sea bed.
 - Providing mobility to handicapped persons.
 - Planetary exploration.
- Analysis of WMR's involve kinematics, dynamics, control, sensing, motion planning, obstacle avoidance ...
- This Lecture *deals* with kinematics and dynamics of WMR's moving on a *flat* surface or a plane.
- Next Lecture WMR's moving on uneven or rough terrains.

- Autonomous vehicles are used in
 - Industrial environments to move material (parts and finished goods) from one place to another.
 - Military and security applications.
 - Hazardous environments such as inside nuclear reactors or in deep sea bed.
 - Providing mobility to handicapped persons.
 - Planetary exploration.
- Analysis of WMR's involve kinematics, dynamics, control, sensing, motion planning, obstacle avoidance ...
- This Lecture *deals* with kinematics and dynamics of WMR's moving on a *flat* surface or a plane.
- Next Lecture WMR's moving on uneven or rough terrains.

EXAMPLES OF WMR'S

A WMR for moving on uneven terrain

AGV's used on factory floors

A WMR with omni-directional wheels

Figure 1: Some Wheeled Mobile Robots

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 7/88

- Muir and Newman (1987)
 - A WMR is "a robot capable of locomotion on a surface solely through the wheel assemblies mounted on it and in contact with a surface.
 - A wheel assembly is a device which provides or allow relative motion between its mount and the surface on which it is intended to have single-point of rolling contact".
- In practical wheels, due to deformation, there is area contact.
- Different types of wheels used in WMR's 1) Conventional, 2)
 Omni-directional and 3) Ball wheels

- Muir and Newman (1987)
 - A WMR is "a robot capable of locomotion on a surface solely through the wheel assemblies mounted on it and in contact with a surface.
 - A wheel assembly is a device which provides or allow relative motion between its mount and the surface on which it is intended to have single-point of rolling contact".
- In practical wheels, due to deformation, there is area contact.
- Different types of wheels used in WMR's 1) Conventional, 2)
 Omni-directional and 3) Ball wheels

- Muir and Newman (1987)
 - A WMR is "a robot capable of locomotion on a surface solely through the wheel assemblies mounted on it and in contact with a surface.
 - A wheel assembly is a device which provides or allow relative motion between its mount and the surface on which it is intended to have single-point of rolling contact".
- In practical wheels, due to deformation, there is area contact.
- Different types of wheels used in WMR's 1) Conventional, 2)
 Omni-directional and 3) Ball wheels

Figure 2: Three main types of wheels in WMR's

- Conventional wheel most commonly used → Rotation about axis of wheel & steering.
- Omni-directional wheels also called Swedish wheels:
 - Barrels on the periphery of a wheel.
 - Barrel can rotate about an axis at an angle to the wheel rotation axis 90° in figure.
 - Barrel rotation is not actuated & barrel rotation leads to 'sliding' of wheel.
 - $\bullet\,$ Two DOF in each wheel & steering
- Ball or spherical wheels
 - Essentially a sphere which can rotate about two axis.
 - Complicated drive and rotation measuring arrangement.

SINGLE WHEEL KINEMATICS

Figure 3: Wheel rolling on a plane

- Disk on a plane 3 DOF configuration space (x, y, φ), φ is the steering angle^a, r is radius.
 Wheel rolling without slip motion *only* along tangent to path x sin φ y cos φ = 0. Velocity perpendicular to the tangent vector is zero.
- Non-holonomic constraint Cannot be integrated to obtain $f(x, y, \phi) = 0$
- Constrains $\dot{\mathbf{q}} = (\dot{x}, \dot{y}, \dot{\phi})^T$, and not $\mathbf{q} = (x, y, \phi)^T$.

^aTilting of wheel from the normal not considered and rotation of wheel θ not required for analysis. If *thin* disk, tilt must be considered.

SINGLE WHEEL KINEMATICS (CONTD.)

- Justification for non-holonomic nature
 - Assume $\dot{x}\sin\phi \dot{y}\cos\phi = 0$ can be integrated.
 - This implies existence of f(x, y, φ) = 0 ⇒ Two DOF ⇒ Choosing any two out of x, y, φ automatically determines the third!
 - For example, at $x = y = 0 \Rightarrow \phi = \phi^*$ is fixed¹ \Rightarrow No other value(s) of ϕ is possible!
 - This is clearly false Any ϕ is possible at (0,0) by simply rotating disk about the normal.
 - Hence $f(x, y, \phi) = 0$ is not integrable.

• The kinematics of a single wheel is given by

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} \cos \phi \\ \sin \phi \\ 0 \end{pmatrix} v + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \omega$$

where v and ω are the forward speed and steering rate.

¹At most finitely many ϕ^* if $f(x, y, \phi) = 0$ is nonlinear. $\Box \mapsto \langle \Box \rangle \land \exists \Rightarrow \langle \exists \rangle \land \exists \Rightarrow \langle \exists \rangle$

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 11 / 88

SINGLE WHEEL KINEMATICS (CONTD.)

- Justification for non-holonomic nature
 - Assume $\dot{x}\sin\phi \dot{y}\cos\phi = 0$ can be integrated.
 - This implies existence of f(x, y, φ) = 0 ⇒ Two DOF ⇒ Choosing any two out of x, y, φ automatically determines the third!
 - For example, at $x = y = 0 \Rightarrow \phi = \phi^*$ is fixed¹ \Rightarrow No other value(s) of ϕ is possible!
 - This is clearly false Any ϕ is possible at (0,0) by simply rotating disk about the normal.
 - Hence $f(x, y, \phi) = 0$ is not integrable.
- The kinematics of a single wheel is given by

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} \cos \phi \\ \sin \phi \\ 0 \end{pmatrix} v + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \omega$$

where v and ω are the forward speed and steering rate.

¹At most finitely many ϕ^* if $f(x, y, \phi) = 0$ is nonlinear. $\Box \rightarrow \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{$

TWO WHEEL ROBOT – BICYCLE

v

C – Instantaneous Centre

- ψ orientation of body & rear wheel with X axis.
- ϕ steering angle of front wheel with respect to body

front wheel Two rolling constraints in each wheel: $\dot{x} \sin w - \dot{y} \cos w = 0$

$$\dot{x}\sin(\psi+\phi)-\dot{y}\cos(\psi+\phi)-l\dot{\psi}\cos\phi=0$$

 $\frac{\text{rear wheel}}{\text{neous}} \bullet \text{Kinematics equations in terms of front}$ wheel velocity v_f and steering rate ω

x {0} v

WMR

 $\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} \cos\theta\cos\phi \\ \sin\theta\cos\phi \\ \sin\phi/l \\ 0 \end{pmatrix} v_f + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \omega$

- Lines perpendicular to front and rear wheel velocity vector meet at C.
- Instantaneous centre: motion of the bicycle is rotation about C.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 12 / 88

THREE WHEEL ROBOT – TRI-CYCLE

- Front wheel is steered.
- Speeds of rear wheels are different when vehicle is making a turn.
- Speed of wheel i, $v_i = \dot{\theta}_i r_i$, i = 1, 2, 3where $\dot{\theta}_i$ and r_i are rotational speed and radius of wheel i.
- One rear wheel is driven and the speed of the second rear wheel must adjust so that there is a single instantaneous centre C (the second rear wheel can be free or a differential is used).
- Kinematics of tri-cycle similar to bicycle.

- Figure 5: Three wheeled mobile robot or tri-cycle
 - Instantaneous centre determine relation between R, $\dot{\theta}_i$, r_i, l, ψ and ϕ .
 - If no single $C \rightarrow$ wheel (s) slip will occur.

NPTEL, 2010 13 / 88

'CAR LIKE' MOBILE ROBOTS & OTHERS

C – InstantaneousCentre

Figure 6: Four-wheeled mobile robot

• Four-wheeled (car like) mobile robot \rightarrow Steering angle of front wheels is different in a turn.

• Ackerman steering to avoid slippage – the steering angle of 'inside' wheel ϕ^i and 'outside' wheel ϕ^o are related as

$$\cot(\phi^i) - \cot(\phi^o) = d/I$$

where d and l as shown in figure.

- Multi-axle vehicles such as a truck with trailer
 - Steering front wheel to the 'left' results in 'right' motion of wheels on third axle non-minimum phase.
 - More difficult to analyse and model.

OMNI-DIRECTIONAL WHEELS

- Six equally spaced 'free' barrels on the periphery.
- Each barrel can rotate about its axis as shown.
- ullet Two rows of barrel ightarrow one barrel always in contact with ground.
- Distance of point of contact from the vehicle centre changes.

Figure 7: Omni-directional Wheel (Balakrishna & Ghosal, 1995)

- Rotation speed is $\dot{\theta}$ & Sliding speed is σ .
- Two components of velocity of wheel centre for a general case of barrel axis at an angle α to wheel axis – $(r\dot{\theta} + \sigma \cos \alpha, \sigma \sin \alpha)^T$.
- $\alpha = 90^{\circ} \rightarrow \text{components are}$ $(r\dot{\theta}, \sigma)^{T}$, *r* is radius of wheel.

NPTEL, 2010 15 / 88

Figure 8: WMR with omni-directional wheels (Balakrishna & Ghosal, 1995)

 L_i , i = 1, 2, 3 are the contact points.

- 3 × 3 matrix [R] (analogous to manipulator inverse Jacobian) can be inverted → WMR controllable with θ_i.
- Can obtain sliding speeds $(\sigma_1, \sigma_2, \sigma_3)^T$ in terms of $(\dot{x}, \dot{y}, \dot{\psi})^T \to \text{Not}$ invertible \Rightarrow WMR cannot be controlled by σ_i , i = 1, 2, 3 alone.

MODELING OF SLIP

- For rolling without slip in a conventional wheel of radius r, wheel centre velocity v and wheel angular velocity ω are related by $v = r\omega$.
- Either wheel and/or ground *must deform* for generating *tractive force* to drive a wheel.
- Deformable wheel and/or ground combination \rightarrow Wheel slip will occur (Shekhar, 1997).
- Wheel slip is defined as

$$\lambda = (\dot{ heta} - \omega^*)/y$$

where $\omega^* \stackrel{\Delta}{=} v/r$ and $\dot{\theta}$ is the wheel angular velocity.

- $y = \omega^*$ when $\omega^* > \dot{\theta}$ and $y = \dot{\theta}$ when $\omega^* < \dot{\theta}*$
- Above implies $-1 \leq \lambda \leq 1$
 - Pure rolling $\rightarrow \lambda = 0$
 - Rolling in place $ightarrow \lambda = 1$
 - Skidding $\rightarrow \lambda = -1$

NPTEL, 2010 17 / 88

MODELING OF SLIP

- For rolling without slip in a conventional wheel of radius r, wheel centre velocity v and wheel angular velocity ω are related by $v = r\omega$.
- Either wheel and/or ground *must deform* for generating *tractive force* to drive a wheel.
- Deformable wheel and/or ground combination \rightarrow Wheel slip will occur (Shekhar, 1997).
- Wheel slip is defined as

$$\lambda = (\dot{ heta} - \omega^*)/y$$

where $\omega^* \stackrel{\Delta}{=} v/r$ and $\dot{\theta}$ is the wheel angular velocity.

- $y = \omega^*$ when $\omega^* > \dot{\theta}$ and $y = \dot{\theta}$ when $\omega^* < \dot{\theta}*$
- Above implies $-1 \leq \lambda \leq 1$
 - Pure rolling $\rightarrow \lambda = 0$
 - Rolling in place $ightarrow \lambda = 1$
 - Skidding $\rightarrow \lambda = -1$

NPTEL, 2010 17 / 88
MODELING OF SLIP

- For rolling without slip in a conventional wheel of radius r, wheel centre velocity v and wheel angular velocity ω are related by $v = r\omega$.
- Either wheel and/or ground *must deform* for generating *tractive force* to drive a wheel.
- Deformable wheel and/or ground combination \rightarrow Wheel slip will occur (Shekhar, 1997).
- Wheel slip is defined as

$$\lambda = (\dot{ heta} - \omega^*)/y$$

where $\omega^* \stackrel{\Delta}{=} v/r$ and $\dot{\theta}$ is the wheel angular velocity.

- $y = \omega^*$ when $\omega^* > \dot{\theta}$ and $y = \dot{\theta}$ when $\omega^* < \dot{\theta}*$
- Above implies $-1 \leq \lambda \leq 1$
 - Pure rolling $\rightarrow \lambda = 0$
 - Rolling in place $ightarrow \lambda = 1$
 - Skidding $\rightarrow \lambda = -1$

NPTEL, 2010 17 / 88

MODELING OF SLIP

- For rolling without slip in a conventional wheel of radius r, wheel centre velocity v and wheel angular velocity ω are related by $v = r\omega$.
- Either wheel and/or ground *must deform* for generating *tractive force* to drive a wheel.
- Deformable wheel and/or ground combination \rightarrow Wheel slip will occur (Shekhar, 1997).
- Wheel slip is defined as

$$\lambda = (\dot{ heta} - \omega^*)/y$$

where $\omega^* \stackrel{\Delta}{=} v/r$ and $\dot{\theta}$ is the wheel angular velocity.

- $y = \omega^*$ when $\omega^* > \dot{ heta}$ and $y = \dot{ heta}$ when $\omega^* < \dot{ heta} *$
- Above implies $-1 \leq \lambda \leq 1$
 - Pure rolling $\rightarrow \lambda = 0$
 - Rolling in place $ightarrow \lambda = 1$
 - Skidding $\rightarrow \lambda = -1$

NPTEL, 2010 17 / 88

MODELING OF SLIP

- For rolling without slip in a conventional wheel of radius r, wheel centre velocity v and wheel angular velocity ω are related by $v = r\omega$.
- Either wheel and/or ground *must deform* for generating *tractive force* to drive a wheel.
- Deformable wheel and/or ground combination \rightarrow Wheel slip will occur (Shekhar, 1997).
- Wheel slip is defined as

$$\lambda = (\dot{ heta} - \omega^*)/y$$

where $\omega^* \stackrel{\Delta}{=} v/r$ and $\dot{\theta}$ is the wheel angular velocity.

- $y = \omega^*$ when $\omega^* > \dot{ heta}$ and $y = \dot{ heta}$ when $\omega^* < \dot{ heta} *$
- Above implies $-1 \leq \lambda \leq 1$
 - $\bullet \ \ \mathsf{Pure \ rolling} \to \lambda = 0$
 - Rolling in place $\rightarrow \, \lambda = 1$
 - $\bullet \ {\sf Skidding} \to \lambda = -1$

NPTEL, 2010 17 / 88

MODELING OF SLIP (CONTD.)

$$F_t = M_w \ddot{x}$$

 $\tau = J_w \ddot{ heta} + F_t r$

- *F_t* is the tractive force developed at wheel-ground interface
- τ : torque applied at wheel axle.
- M_w , J_w : mass and inertia of wheel.
- \ddot{x} , $\ddot{\theta}$: linear and angular acceleration.

In state-space form

 $\dot{x} = f(x) + g\tau$

- Figure 9: Single wheel dynamics
 - Lie algebra approach \rightarrow Not *locally* controllable if tractive force F_t is constant.
 - F_t must be a function of linear and angular velocity of wheel.
 - F_t is a function of normal reaction N and adhesion co-efficient μ_a .

NPTEL, 2010 18 / 88

MODELING OF SLIP (CONTD.)

Figure 10: Typical adhesion coefficient Vs wheel slip

- Typically μ_a is a function of wheel slip λ and has a maximum μ_a peak.
- Typical plot shown in figure (Dugoff et al. 1970)
- Tractive force developed $\mathbf{F}_t = \mu_a(\lambda) \mathbf{N}$
- Actually $0 < |\mathbf{F}_t| \le \mu_a \mathbf{N}$: Proper sign of \mathbf{F}_t for acceleration or braking.
- Stable region increasing μ_a with wheel slip.
- After μ_a peak, tractive force falls with increasing wheel slip \rightarrow Unstable!

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 19/88

EQUATIONS OF MOTION

- Equations of motion using Lagrangian formulation (see Balakrishna & Ghosal, 1995)
 - Kinetic energy of platform of mass M_p and inertia I_p .
 - Kinetic energy of wheels of inertia I_i , i = 1, 2, 3.
 - No potential energy as motion on flat plane.
- Including tractive forces at wheels F_{t_i} , torque at each wheel τ_i and an approximate μ_a Vs λ curve.
- Equations of motion 6 ODE's to take into account slip

$$\begin{bmatrix} M_{p} & 0 & 0\\ 0 & M_{p} & 0\\ 0 & 0 & l_{p} \end{bmatrix} \begin{pmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{\psi} \end{pmatrix} + \dot{\Psi} \begin{bmatrix} 0 & -M_{p} & 0\\ M_{p} & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{x}\\ \dot{y}\\ \dot{\psi} \end{pmatrix} = r \begin{bmatrix} R \end{bmatrix}^{T} \begin{pmatrix} F_{t_{1}}\\ F_{t_{2}}\\ F_{t_{3}} \end{pmatrix}$$
$$\begin{bmatrix} l_{1} & 0 & 0\\ 0 & l_{2} & 0\\ 0 & 0 & l_{3} \end{bmatrix} \begin{pmatrix} \ddot{\theta}_{1}\\ \ddot{\theta}_{2}\\ \ddot{\theta}_{3} \end{pmatrix} + r \begin{pmatrix} F_{t_{1}}\\ F_{t_{2}}\\ F_{t_{3}} \end{pmatrix} = \begin{pmatrix} \tau_{1}\\ \tau_{2}\\ \tau_{3} \end{pmatrix}$$

EQUATIONS OF MOTION

- Equations of motion using Lagrangian formulation (see Balakrishna & Ghosal, 1995)
 - Kinetic energy of platform of mass M_p and inertia I_p .
 - Kinetic energy of wheels of inertia I_i , i = 1, 2, 3.
 - No potential energy as motion on flat plane.
- Including tractive forces at wheels F_{t_i} , torque at each wheel τ_i and an approximate μ_a Vs λ curve.
- Equations of motion 6 ODE's to take into account slip

$$\begin{bmatrix} M_{p} & 0 & 0 \\ 0 & M_{p} & 0 \\ 0 & 0 & l_{p} \end{bmatrix} \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{\psi} \end{pmatrix} + \dot{\Psi} \begin{bmatrix} 0 & -M_{p} & 0 \\ M_{p} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{pmatrix} = r [R]^{T} \begin{pmatrix} F_{t_{1}} \\ F_{t_{2}} \\ F_{t_{3}} \end{pmatrix}$$
$$\begin{bmatrix} l_{1} & 0 & 0 \\ 0 & l_{2} & 0 \\ 0 & 0 & l_{3} \end{bmatrix} \begin{pmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \\ \ddot{\theta}_{3} \end{pmatrix} + r \begin{pmatrix} F_{t_{1}} \\ F_{t_{2}} \\ F_{t_{3}} \end{pmatrix} = \begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix}$$

EQUATIONS OF MOTION

- Equations of motion using Lagrangian formulation (see Balakrishna & Ghosal, 1995)
 - Kinetic energy of platform of mass M_p and inertia I_p .
 - Kinetic energy of wheels of inertia I_i , i = 1, 2, 3.
 - No potential energy as motion on flat plane.
- Including tractive forces at wheels F_{t_i} , torque at each wheel τ_i and an approximate μ_a Vs λ curve.
- Equations of motion 6 ODE's to take into account slip

$$\begin{bmatrix} M_{p} & 0 & 0 \\ 0 & M_{p} & 0 \\ 0 & 0 & I_{p} \end{bmatrix} \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{\psi} \end{pmatrix} + \dot{\Psi} \begin{bmatrix} 0 & -M_{p} & 0 \\ M_{p} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{pmatrix} = r \begin{bmatrix} R \end{bmatrix}^{T} \begin{pmatrix} F_{t_{1}} \\ F_{t_{2}} \\ F_{t_{3}} \end{pmatrix}$$
$$\begin{bmatrix} I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3} \end{bmatrix} \begin{pmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \\ \ddot{\theta}_{3} \end{pmatrix} + r \begin{pmatrix} F_{t_{1}} \\ F_{t_{2}} \\ F_{t_{3}} \end{pmatrix} = \begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix}$$

CONTROL

Desired Cartesian path X_d = (x_d(t), y_d(t), ψ_d(t))^T prescribed.
PID control

$$\mathscr{F} = [K_v] \left(\dot{\mathbf{X}}_d - \dot{\mathbf{X}} \right) + [K_p] \left(\mathbf{X}_d - \mathbf{X} \right) + [K_i] \int (\mathbf{X}_d - \mathbf{X}) dt$$

 $\mathbf{X} = (x(t), y(t), \psi(t))^{\mathsf{T}}.$

 \bullet Cartesian forces ${\mathscr F}$ is related to (wheel) actuator torque by

$$\tau = [R]^{T^{-1}} \mathscr{F}$$

• Model based control scheme (see Module 7, Lecture 3) using 'ideal' rolling – $\tau = [\alpha] \tau' + \beta$ where

$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}^{-T} \begin{bmatrix} M^* \end{bmatrix}, \quad \beta = \begin{bmatrix} R \end{bmatrix}^{-T} \{ \dot{\Psi} \begin{bmatrix} Q \end{bmatrix} \dot{\mathbf{X}} \}$$

$$\tau' = \ddot{\mathbf{X}}_d + K_v (\dot{\mathbf{X}}_d - \dot{\mathbf{X}}) + K_p (\mathbf{X}_d - \mathbf{X})$$

where $[M^*] = ([M] + [R]^T [I] [R])$ is the mass matrix corresponding to 'ideal' rolling.

CONTROL

- Desired Cartesian path $\mathbf{X}_d = (x_d(t), y_d(t), \psi_d(t))^T$ prescribed.
- PID control

$$\mathscr{F} = [\mathcal{K}_{v}] \left(\dot{\mathbf{X}}_{d} - \dot{\mathbf{X}} \right) + [\mathcal{K}_{p}] \left(\mathbf{X}_{d} - \mathbf{X} \right) + [\mathcal{K}_{i}] \int (\mathbf{X}_{d} - \mathbf{X}) dt$$
$$\mathbf{X} = (\mathbf{x}(t), \, \mathbf{y}(t), \, \boldsymbol{\psi}(t))^{T}.$$
Cartesian forces \mathscr{F} is related to (wheel) actuator torque by

• Cartesian forces \mathcal{F} is related to (wheel) actuator torque by

$$\tau = [R]^{T^{-1}} \mathscr{F}$$

Model based control scheme (see Module 7, Lecture 3) using 'ideal'

$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}^{-T} \begin{bmatrix} M^* \end{bmatrix}, \quad \beta = \begin{bmatrix} R \end{bmatrix}^{-T} \{ \dot{\Psi} \begin{bmatrix} Q \end{bmatrix} \dot{X} \}$$

$$\tau' = \ddot{X}_d + K_v (\dot{X}_d - \dot{X}) + K_p (X_d - X)$$

CONTROL

- Desired Cartesian path $\mathbf{X}_d = (x_d(t), y_d(t), \psi_d(t))^T$ prescribed.
- PID control

$$\mathscr{F} = [\mathcal{K}_{v}] \left(\dot{\mathbf{X}}_{d} - \dot{\mathbf{X}} \right) + [\mathcal{K}_{p}] \left(\mathbf{X}_{d} - \mathbf{X} \right) + [\mathcal{K}_{i}] \int (\mathbf{X}_{d} - \mathbf{X}) dt$$

 $\mathbf{X} = (x(t), y(t), \psi(t))^{\mathsf{T}}.$

 $\bullet\,$ Cartesian forces $\mathscr F$ is related to (wheel) actuator torque by

$$\tau = [R]^{T^{-1}} \mathscr{F}$$

 Model based control scheme (see <u>Module 7</u>, Lecture 3) using 'ideal' rolling - τ = [α] τ' + β where

$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}^{-T} \begin{bmatrix} M^* \end{bmatrix}, \quad \beta = \begin{bmatrix} R \end{bmatrix}^{-T} \{ \dot{\Psi} \begin{bmatrix} Q \end{bmatrix} \dot{\mathbf{X}} \}$$

$$\tau' = \ddot{\mathbf{X}}_d + K_v (\dot{\mathbf{X}}_d - \dot{\mathbf{X}}) + K_p (\mathbf{X}_d - \mathbf{X})$$

where $[M^*] = ([M] + [R]^T [I] [R])$ is the mass matrix corresponding to 'ideal' rolling.

CONTROL

- Desired Cartesian path $\mathbf{X}_d = (x_d(t), y_d(t), \psi_d(t))^T$ prescribed.
- PID control

e

$$\mathscr{F} = [\mathcal{K}_{v}] \left(\dot{\mathbf{X}}_{d} - \dot{\mathbf{X}} \right) + [\mathcal{K}_{p}] \left(\mathbf{X}_{d} - \mathbf{X} \right) + [\mathcal{K}_{i}] \int (\mathbf{X}_{d} - \mathbf{X}) dt$$

 $\mathbf{X} = (x(t), y(t), \psi(t))^{T}.$

 $\bullet\,$ Cartesian forces ${\mathscr F}$ is related to (wheel) actuator torque by

$$\tau = [R]^{T^{-1}} \mathscr{F}$$

• Model based control scheme (see <u>Module 7</u>, Lecture 3) using 'ideal' rolling – $\tau = [\alpha] \tau' + \beta$ where

$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}^{-T} \begin{bmatrix} M^* \end{bmatrix}, \quad \beta = \begin{bmatrix} R \end{bmatrix}^{-T} \{ \dot{\Psi} \begin{bmatrix} Q \end{bmatrix} \dot{\mathbf{X}} \}$$

$$\tau' = \ddot{\mathbf{X}}_d + K_v (\dot{\mathbf{X}}_d - \dot{\mathbf{X}}) + K_p (\mathbf{X}_d - \mathbf{X})$$

where $[M^*] = ([M] + [R]^T [I] [R])$ is the mass matrix corresponding to 'ideal' rolling.

NUMERICAL SIMULATION RESULTS

- Geometry of WMR: $L_1 = L_2 = L_3 = 0.5 \text{ m}, r = 0.1 \text{ m}$
- Inertia parameters: $M_p = 50.0 \text{ Kg}$, $I_p = 5.0 \text{ kg m}^2$, $I_i = 2.0 \text{ kg m}^2$.
- Controller gains equal: $K_{p_i} = 15.0$, $K_{v_i} = 2\sqrt{K_{p_i}}$, and $K_{i_i} = 0.10$.

Figure 11: Straight line trajectory control using PID controller (Balakrishna & Ghosal,

Figure 12: Circular trajectory control using model-based controller (Balakrishna & Ghosal, 1995)

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 22 / 88

NUMERICAL SIMULATION RESULTS (CONTD.)

• Performance of PID controller is quite poor.

- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NPTEL, 2010 23 / 88

NUMERICAL SIMULATION RESULTS (CONTD.)

- Performance of PID controller is quite poor.
- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NUMERICAL SIMULATION RESULTS (CONTD.)

- Performance of PID controller is quite poor.
- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NUMERICAL SIMULATION RESULTS (CONTD.)

- Performance of PID controller is quite poor.
- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NUMERICAL SIMULATION RESULTS (CONTD.)

- Performance of PID controller is quite poor.
- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NPTEL, 2010 23 / 88

NUMERICAL SIMULATION RESULTS (CONTD.)

- Performance of PID controller is quite poor.
- Maximum x error is approximately 0.5 m and maximum y error is approx 0.2 m.
- Model based controller using 'ideal' rolling as model performs slightly better.
- As the μ_a peak decreases from 0.8 to 0.08, performance of model based controller becomes poorer.
- Maximum radial error from desired circular trajectory of radius 2.0 m is approximately 1.7 m.
- It is important to model or take into account slip in WMR models this is also borne out by experiments!!

NPTEL, 2010 23 / 88

- WMR modeling and analysis is very different from serial and parallel manipulators.
 - Base is not fixed.
 - Wheel-ground contact results in *non-holonomic* constraints compare with *holonomic* constraints when two links are connected by a joint.
 - Non-holonomic constraints *does not* restrict the configuration space but *restrict* space of velocities!
- Various kinds of wheels in use conventional, omni-directional and ball wheels.
 - Conventional wheels rotate about the wheel axis and can be steered about the normal.
 - Omni-directional wheel can rotate about its axis, slide along another direction and also steered.
 - Ball wheels can rotate about two different axis.
- WMR with three wheels simplest four wheeled and multi-axle WMR's more difficult to model and analyse.
- \bullet Slip, due to deformation, always present in wheels \rightarrow Need to be taken into account in WMR dynamics and control.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 24 / 88

- WMR modeling and analysis is very different from serial and parallel manipulators.
 - Base is not fixed.
 - Wheel-ground contact results in *non-holonomic* constraints compare with *holonomic* constraints when two links are connected by a joint.
 - Non-holonomic constraints *does not* restrict the configuration space but *restrict* space of velocities!
- Various kinds of wheels in use conventional, omni-directional and ball wheels.
 - Conventional wheels rotate about the wheel axis and can be steered about the normal.
 - Omni-directional wheel can rotate about its axis, slide along another direction and also steered.
 - Ball wheels can rotate about two different axis.
- WMR with three wheels simplest four wheeled and multi-axle WMR's more difficult to model and analyse.
- \bullet Slip, due to deformation, always present in wheels \rightarrow Need to be taken into account in WMR dynamics and control.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 24 / 88

- WMR modeling and analysis is very different from serial and parallel manipulators.
 - Base is not fixed.
 - Wheel-ground contact results in *non-holonomic* constraints compare with *holonomic* constraints when two links are connected by a joint.
 - Non-holonomic constraints *does not* restrict the configuration space but *restrict* space of velocities!
- Various kinds of wheels in use conventional, omni-directional and ball wheels.
 - Conventional wheels rotate about the wheel axis and can be steered about the normal.
 - Omni-directional wheel can rotate about its axis, slide along another direction and also steered.
 - Ball wheels can rotate about two different axis.
- WMR with three wheels simplest four wheeled and multi-axle WMR's more difficult to model and analyse.
- \bullet Slip, due to deformation, always present in wheels \rightarrow Need to be taken into account in WMR dynamics and control.

- WMR modeling and analysis is very different from serial and parallel manipulators.
 - Base is not fixed.
 - Wheel-ground contact results in *non-holonomic* constraints compare with *holonomic* constraints when two links are connected by a joint.
 - Non-holonomic constraints *does not* restrict the configuration space but *restrict* space of velocities!
- Various kinds of wheels in use conventional, omni-directional and ball wheels.
 - Conventional wheels rotate about the wheel axis and can be steered about the normal.
 - Omni-directional wheel can rotate about its axis, slide along another direction and also steered.
 - Ball wheels can rotate about two different axis.
- WMR with three wheels simplest four wheeled and multi-axle WMR's more difficult to model and analyse.
- Slip, due to deformation, always present in wheels \rightarrow Need to be taken into account in WMR dynamics and control.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 24 / 88

CONTENTS

2 Lecture 1

• Wheeled Mobile Robots on Flat Terrain

3 Lecture 2*

• Wheeled Mobile Robots on Uneven Terrain

4 LECTURE 3*

• Kinematics and Dynamics of WMR on Uneven Terrain

5 Module 9 – Additional Material

• Problems, References and Suggested Reading

CONTENTS OF LECTURE

Introduction

- Modeling of torus-shaped wheel and uneven terrain
- Single wheel on uneven terrain kinematic and dynamic modeling and simulation.
- A WMR for traversing uneven terrain without slip.
- Summary

Introduction

• Modeling of torus-shaped wheel and uneven terrain

- Single wheel on uneven terrain kinematic and dynamic modeling and simulation.
- A WMR for traversing uneven terrain without slip.
- Summary

- Introduction
- Modeling of torus-shaped wheel and uneven terrain
- Single wheel on uneven terrain kinematic and dynamic modeling and simulation.
- A WMR for traversing uneven terrain without slip.
- Summary

- Introduction
- Modeling of torus-shaped wheel and uneven terrain
- Single wheel on uneven terrain kinematic and dynamic modeling and simulation.
- A WMR for traversing uneven terrain without slip.

Summary

- Introduction
- Modeling of torus-shaped wheel and uneven terrain
- Single wheel on uneven terrain kinematic and dynamic modeling and simulation.
- A WMR for traversing uneven terrain without slip.
- Summary

- Most WMR are used in industrial environments flat & structured surfaces.
- Recent interest in uneven and rough terrains & off-road environments.
 - Planetary exploration.
 - DARPA Grand Challenge to develope a fully autonomous ground vehicle capable of completing a off-road course in limited time (see <u>link</u> for more details).
 - Luxury cars.
- Flat terrain vehicle platform has 3 DOF consisting of position (x,y) and orientation ψ
- Uneven terrain vehicle platform can possibly have all three components of translation and three components of orientation → up to 6 DOF.

→ 3 → 4 3

- Most WMR are used in industrial environments flat & structured surfaces.
- Recent interest in uneven and rough terrains & off-road environments.
 - Planetary exploration.
 - DARPA Grand Challenge to develope a fully autonomous ground vehicle capable of completing a off-road course in limited time (see <u>link</u> for more details).
 - Luxury cars.
- Flat terrain vehicle platform has 3 DOF consisting of position (x,y) and orientation ψ
- Uneven terrain vehicle platform can possibly have all three components of translation and three components of orientation \rightarrow up to 6 DOF.

- 4 回 ト - 4 回 ト

- Most WMR are used in industrial environments flat & structured surfaces.
- Recent interest in uneven and rough terrains & off-road environments.
 - Planetary exploration.
 - DARPA Grand Challenge to develope a fully autonomous ground vehicle capable of completing a off-road course in limited time (see <u>link</u> for more details).
 - Luxury cars.
- Flat terrain vehicle platform has 3 DOF consisting of position (x, y) and orientation ψ
- Uneven terrain vehicle platform can possibly have all three components of translation and three components of orientation \rightarrow up to 6 DOF.

- 4 回 ト - 4 回 ト

- Most WMR are used in industrial environments flat & structured surfaces.
- Recent interest in uneven and rough terrains & off-road environments.
 - Planetary exploration.
 - DARPA Grand Challenge to develope a fully autonomous ground vehicle capable of completing a off-road course in limited time (see <u>link</u> for more details).
 - Luxury cars.
- Flat terrain vehicle platform has 3 DOF consisting of position (x, y) and orientation ψ
- Uneven terrain vehicle platform can possibly have all three components of translation and three components of orientation \rightarrow up to 6 DOF.

Figure 13: Wheel slip on uneven terrain

- Two wheels connected by a *fixed* length axle distance AB is fixed.
- Points of contact with *uneven* ground P, Q can change → Length PQ is variable and *not equal* to AB.
- Variation of length PQ require a velocity component along axle AB and along the normal (Waldron, 1995).
- Also no instantaneous centre compatible with both wheels ⇒ Wheel slip will occur.
- Wheel slip leads to a) localization errors, and b) wastage of fuel.

- To overcome wheel slip \rightarrow variable length axle (Choi & Sreenivasan, 1999).
- Add *passive* prismatic joint in axle prismatic joint changes axle length by required amount to ensure compatible instantaneous centre for both wheels.
- At large inclination, gravity causes prismatic joint to change length in undesired way!
- Actuated (and controlled) prismatic joint accurate sensing of slip is required.
- New concept of WMR capable of traversing uneven terrain without slip.

- To overcome wheel slip \rightarrow variable length axle (Choi & Sreenivasan, 1999).
- Add *passive* prismatic joint in axle prismatic joint changes axle length by required amount to ensure compatible instantaneous centre for both wheels.
- At large inclination, gravity causes prismatic joint to change length in undesired way!
- Actuated (and controlled) prismatic joint accurate sensing of slip is required.
- New concept of WMR capable of traversing uneven terrain without slip.

- To overcome wheel slip \rightarrow variable length axle (Choi & Sreenivasan, 1999).
- Add *passive* prismatic joint in axle prismatic joint changes axle length by required amount to ensure compatible instantaneous centre for both wheels.
- At large inclination, gravity causes prismatic joint to change length in undesired way!
- Actuated (and controlled) prismatic joint accurate sensing of slip is required.
- New concept of WMR capable of traversing uneven terrain without slip.

- To overcome wheel slip \rightarrow variable length axle (Choi & Sreenivasan, 1999).
- Add *passive* prismatic joint in axle prismatic joint changes axle length by required amount to ensure compatible instantaneous centre for both wheels.
- At large inclination, gravity causes prismatic joint to change length in undesired way!
- Actuated (and controlled) prismatic joint accurate sensing of slip is required.
- New concept of WMR capable of traversing uneven terrain without slip.

- To overcome wheel slip \rightarrow variable length axle (Choi & Sreenivasan, 1999).
- Add *passive* prismatic joint in axle prismatic joint changes axle length by required amount to ensure compatible instantaneous centre for both wheels.
- At large inclination, gravity causes prismatic joint to change length in undesired way!
- Actuated (and controlled) prismatic joint accurate sensing of slip is required.
- New concept of WMR capable of traversing uneven terrain without slip.

- Main concepts (see Chakraborty & Ghosal (2004, 2005)).
 - Use of torus shaped wheel wheel has single point contact with uneven terrain.
 - Torus shaped wheels connected to WMR body with passive rotary joints.
 - Passive rotary joint allow lateral tilting and wheel-ground contact distance (PQ) to change.
 - Three actuated joints (for a 3DOF model) in WMR.
 - Rear wheels are driven and can tilt laterally.
 - Front wheel steered and can roll *freely*.
- Use of contact equations (Montana, 1988) to model wheel-ground contact.
- WMR modeled as a parallel robot at each instant.

- Main concepts (see Chakraborty & Ghosal (2004, 2005)).
 - Use of torus shaped wheel wheel has single point contact with uneven terrain.
 - Torus shaped wheels connected to WMR body with passive rotary joints.
 - Passive rotary joint allow lateral tilting and wheel-ground contact distance (PQ) to change.
 - Three actuated joints (for a 3DOF model) in WMR.
 - Rear wheels are driven and can tilt laterally.
 - Front wheel steered and can roll *freely*.
- Use of contact equations (Montana, 1988) to model wheel-ground contact.
- WMR modeled as a parallel robot at each instant.

- Main concepts (see Chakraborty & Ghosal (2004, 2005)).
 - Use of torus shaped wheel wheel has single point contact with uneven terrain.
 - Torus shaped wheels connected to WMR body with passive rotary joints.
 - Passive rotary joint allow lateral tilting and wheel-ground contact distance (PQ) to change.
 - Three actuated joints (for a 3DOF model) in WMR.
 - Rear wheels are driven and can tilt laterally.
 - Front wheel steered and can roll *freely*.
- Use of contact equations (Montana, 1988) to model wheel-ground contact.
- WMR modeled as a parallel robot at each instant.

• A surface in \Re^3 can be represented in

MODELING OF SURFACE

MODELING OF A TORUS-SHAPED WHEEL

• Equation of a torus in parametric form

$$x = r_1 \cos u_w$$

$$y = \cos v_w (r_2 + r_1 \sin u_w)$$

$$z = \sin v_w (r_2 + r_1 \sin u_w)$$

- *r*₁ and *r*₂ are the two radii associated with a torus.
- Subscript *w* on the parameters *u* and *v* denote a wheel.
- Uneven terrain/ground $(x, y, z)^T = f(u_g, v_g)$

METRIC, CURVATURE AND TORSION OF A SURFACE

- From the parametric equation, define
 - Second partials of **f**, $\mathbf{f}_{(\cdot)(\cdot)} = \frac{\partial^{-\mathbf{T}}}{\partial(\cdot)\partial(\cdot)}$, with respect to u and v,
 - Partial of **n**, $\mathbf{n}_{(\cdot)}$, with respect to u and v.
 - Metric on a surface

$$\left[\mathbf{M}\right] = \left[\begin{array}{cc} |\mathbf{f}_{u}| & \mathbf{0} \\ \mathbf{0} & |\mathbf{f}_{v}| \end{array} \right]$$

• Curvature form

$$\left[\mathsf{K}\right] = \begin{bmatrix} \frac{\mathbf{f}_{u'} \mathbf{n}_{u}}{|\mathbf{f}_{u}|^{2}} & \frac{\mathbf{f}_{u'} \mathbf{n}_{v}}{|\mathbf{f}_{u}||\mathbf{f}_{v}|} \\ \\ \frac{\mathbf{f}_{v} \cdot \mathbf{n}_{u}}{|\mathbf{f}_{u}||\mathbf{f}_{v}|} & \frac{\mathbf{f}_{v} \cdot \mathbf{n}_{v}}{|\mathbf{f}_{v}|^{2}} \end{bmatrix}$$

• Torsion form

$$[\mathbf{T}] = \begin{bmatrix} \mathbf{f}_{v} \cdot \mathbf{f}_{uu} & & \mathbf{f}_{v} \cdot \mathbf{f}_{uv} \\ |\mathbf{f}_{u}|^{2} |\mathbf{f}_{v}| & & & |\mathbf{f}_{v}|^{2} |\mathbf{f}_{u}| \end{bmatrix}$$

 Metric 'defines' distance, Curvature determines 'in-plane' bending and Torsion determines 'out-of-plane' bending on a surface.

ASHITAVA GHOSAL (IISC)

METRIC, CURVATURE AND TORSION OF A SURFACE

- From the parametric equation, define
 - Second partials of **f**, $\mathbf{f}_{(\cdot)(\cdot)} = \frac{\partial^{-\mathbf{r}}}{\partial(\cdot)\partial(\cdot)}$, with respect to *u* and *v*,
 - Partial of **n**, $\mathbf{n}_{(\cdot)}$, with respect to u and v.
 - Metric on a surface

$$[\mathbf{M}] = \left[\begin{array}{cc} |\mathbf{f}_u| & \mathbf{0} \\ \mathbf{0} & |\mathbf{f}_v| \end{array} \right]$$

Curvature form

$$\left[\mathbf{K}\right] = \begin{bmatrix} \frac{\mathbf{f}_{u'} \mathbf{n}_{u}}{|\mathbf{f}_{u}|^{2}} & \frac{\mathbf{f}_{u'} \mathbf{n}_{v}}{|\mathbf{f}_{u}||\mathbf{f}_{v}|} \\ \\ \frac{\mathbf{f}_{v} \cdot \mathbf{n}_{u}}{|\mathbf{f}_{u}||\mathbf{f}_{v}|} & \frac{\mathbf{f}_{v} \cdot \mathbf{n}_{v}}{|\mathbf{f}_{v}|^{2}} \end{bmatrix}$$

• Torsion form

$$[\mathbf{T}] = \begin{bmatrix} \mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}_{uu} & & \mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}_{uv} \\ |\mathbf{f}_{u}|^{2} |\mathbf{f}_{v}| & & & |\mathbf{f}_{v}|^{2} |\mathbf{f}_{u}| \end{bmatrix}$$

• Metric 'defines' distance, Curvature determines 'in-plane' bending and Torsion determines 'out-of-plane' bending on a surface.

ASHITAVA GHOSAL (IISC)

MODELING OF A TORUS-SHAPED WHEEL

• For the torus-shaped wheel

$$\begin{bmatrix} \mathbf{M}_{w} \end{bmatrix} = \begin{bmatrix} r_{1} & 0 \\ 0 & r_{2} + r_{1} \sin u_{w} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{K}_{w} \end{bmatrix} = \begin{bmatrix} \frac{1}{r_{1}} & 0 \\ 0 & \frac{\sin u_{w}}{r_{2} + r_{1} \sin u_{w}} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{T}_{w} \end{bmatrix} = \begin{bmatrix} 0 & \frac{\cos u}{r_{2} + r_{1} \sin u_{w}} \end{bmatrix}$$

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, *not* terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain f(u, v) from measurementsnon-uniqueness.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $\mathbf{f}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, *not* terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain f(u, v) from measurementsnon-uniqueness.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $f(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, *not* terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain f(u, v) from measurementsnon-uniqueness.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $f(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, not terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain **f**(*u*, *v*) from measurements*non-uniqueness*.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $f(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, *not* terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain f(u, v) from measurementsnon-uniqueness.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $\mathbf{f}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

MODELING OF UNEVEN TERRAIN

- Uneven terrain smooth and hard, *not* terrains with sand, dirt or any discontinuities!
- Explicit or parametric equation of uneven terrain not available.
- Local elevation of a point is known from measurement (laser scanner).
- Ill-posed problem to obtain f(u, v) from measurementsnon-uniqueness.
- Use bi-cubic and B-spline surfaces (see Mortenson, 1985)
 - Bi-cubic surface patch: $\mathbf{f}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} u^{i} v^{j}$, $(u,v) \in [0,1]$
 - Can be determined from 4 corner points of the patch.
 - Patches can be smoothly connected to make up the whole surface.
 - Higher-order continuity can be obtained by using Non-uniform Rational B-Spline (NURBS)
- Matlab® spline toolbox Partial derivatives of surface available to compute metric, curvature and torsion form.

ASHITAVA GHOSAL (IISC)

EXAMPLES OF UNEVEN TERRAINS

Figure 18: A B-spline uneven surface

KINEMATICS OF CONTACT

Figure 19: Two arbitrary surfaces in single-point contact

- Two surfaces 1 and 2 described with respect to {*C*_{r1}} and {*C*_{r2}}.
- Parametric equations are $f(u_1, v_1)$ and $f(u_2, v_2)$.
- At point of contact ${}^{0}\mathbf{p}$, fix frames $\{C_{l_1}\}$ and $\{C_{l_2}\}$.
- ψ angle between X axis of $\{C_{l_1}\}$ and $\{C_{l_2}\}$.
- (u₁, v₁), (u₂, v₂) and ψ define the 5 DOF for single-point contact.
- Define metric, [M], Curvature
 [K] and Torsion [T] for the two surfaces at ⁰p.

KINEMATICS OF CONTACT

Contact equations: Relationship between (*u*₁, *v*₁, *u*₂, *v*₂, *ψ*) and the linear and angular velocity components *v_x*, *v_y*, *v_z* and *ω_x*, *ω_y*, *ω_z*

$$\begin{aligned} (\dot{u}_{1}, \dot{v}_{1})^{T} &= & [\mathsf{M}_{1}]^{-1} ([\mathsf{K}_{1}] + [\mathsf{K}^{*}])^{-1} [(-\omega_{y}, \omega_{x})^{T} - [\mathsf{K}^{*}](v_{x}, v_{y})^{T}] \\ (\dot{u}_{2}, \dot{v}_{2})^{T} &= & [\mathsf{M}_{2}]^{-1} [R_{\psi}] ([\mathsf{K}_{1}] + [\mathsf{K}^{*}])^{-1} [(-\omega_{y}, \omega_{x})^{T} + [\mathsf{K}_{1}](v_{x}, v_{y})^{T}] \\ \dot{\psi} &= & \omega_{z} + [\mathsf{T}_{1}] [\mathsf{M}_{1}] (\dot{u}_{1}, \dot{v}_{1})^{T} + [\mathsf{T}_{2}] [\mathsf{M}_{2}] (\dot{u}_{2}, \dot{v}_{2})^{T} \\ 0 &= & v_{z} \end{aligned}$$

where the *relative* curvature of surface 2 with respect to 1 is $[\mathbf{K}^*] = [R_{\psi}][\mathbf{K}_2][R_{\psi}]^T$ and the rotation matrix [R] is

$$[R_{\psi}] = \left(\begin{array}{cc} \cos\psi & -\sin\psi \\ -\sin\psi & -\cos\psi \end{array}\right)$$

KINEMATICS OF CONTACT

• Can also invert the equations

$$\begin{aligned} (v_x, v_y)^T &= -[\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T + [R_{\psi}][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ (\omega_y, -\omega_x)^T &= -[\mathsf{K}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [R_{\psi}][\mathsf{K}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ \omega_z &= \dot{\psi} - [\mathsf{T}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [\mathsf{T}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ v_z &= 0 \end{aligned}$$

v_z = 0 holonomic constraint ⇒ Ensures surfaces stay in contact!
Five other equations need to be *numerically* integrated with initial conditions for solution.

KINEMATICS OF CONTACT

• Can also invert the equations

$$\begin{aligned} (v_x, v_y)^T &= -[\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T + [R_{\psi}][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ (\omega_y, -\omega_x)^T &= -[\mathsf{K}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [R_{\psi}][\mathsf{K}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ \omega_z &= \dot{\psi} - [\mathsf{T}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [\mathsf{T}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ v_z &= 0 \end{aligned}$$

• $v_z = 0$ holonomic constraint \Rightarrow Ensures surfaces stay in contact!

• Five other equations need to be *numerically* integrated with initial conditions for solution.

KINEMATICS OF CONTACT

• Can also invert the equations

$$\begin{aligned} (v_x, v_y)^T &= -[\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T + [R_{\psi}][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ (\omega_y, -\omega_x)^T &= -[\mathsf{K}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [R_{\psi}][\mathsf{K}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ \omega_z &= \dot{\psi} - [\mathsf{T}_1][\mathsf{M}_1](\dot{u}_1, \dot{v}_1)^T - [\mathsf{T}_2][\mathsf{M}_2](\dot{u}_2, \dot{v}_2)^T \\ v_z &= 0 \end{aligned}$$

• $v_z = 0$ holonomic constraint \Rightarrow Ensures surfaces stay in contact!

• Five other equations need to be *numerically* integrated with initial conditions for solution.

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow \text{important for WMR's}$
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0 \rightarrow$ Three DOF *in velocities*.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling − non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow \text{important for WMR's}$
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0 \rightarrow$ Three DOF *in velocities*.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling − non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

- 4 同 6 4 日 6 4 日

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow$ important for WMR's
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0$ \rightarrow Three DOF *in velocities*.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling − non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow$ important for WMR's
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0 \rightarrow$ Three DOF in velocities.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling − non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow$ important for WMR's
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0 \rightarrow$ Three DOF in velocities.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling − non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

NPTEL, 2010 40 / 88

- 4 同 5 - 4 目 5 - 4 目 5

KINEMATICS OF CONTACT

- Contact equations similar to constraint equations for joints (see <u>Module 2</u>, Lecture 2)
- Main difference: equations contain derivatives with respect to time!
- Two main types of contacts :
 - Pure rolling $v_x = v_y = 0 \rightarrow$ important for WMR's
 - Pure sliding $\omega_x = \omega_y = 0$
- Pure rolling $v_x = v_y = v_z = 0 \rightarrow$ Three DOF in velocities.
- Very much unlike a 3 DOF spherical joint → S joint x = y = z are also same for both links!
- Pure rolling non-holonomic → Only v_x = v_y = 0 (also v_z = 0) and x, y, z coordinates of the contact point can change as the rolling proceeds!

> < = > < = >

- $\{C_{r_2}\}$ is same as $\{0\}$.
- {*C_{r1}*} is fixed at the wheel centre C, same as {*w*}.
- $\{C_{l_1}\}$ and $\{C_{l_2}\}$ at the contact point denoted by $\{2\}$ and $\{1\}$.
- {3} and {4} as shown in figure.

Figure 20: Single wheel on uneven ground

• 4×4 transformation matrices from assigned frames:

$${}^{0}_{1}[T] = \begin{pmatrix} l_{1} & m_{1} & n_{1} & u_{g} \\ l_{2} & m_{2} & n_{2} & v_{g} \\ l_{3} & m_{3} & n_{3} & f(u_{g}, v_{g}) \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ {}^{1}_{2}[T] = \begin{pmatrix} \cos \psi & -\sin \psi & 0 & 0 \\ -\sin \psi & -\cos \psi & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 I_i , m_i , n_i , i = 1, 2, 3 are the components of $\{\mathbf{f}_u / |\mathbf{f}_u|, \mathbf{n} \times \mathbf{f}_u / |\mathbf{f}_u|, \mathbf{n}\}$.

• Transformation matrices from {2} to {4} are

$${}^{2}_{3}[T] = \begin{pmatrix} \sin u_{W} & 0 & \cos u_{W} & 0 \\ 0 & 1 & 0 & 0 \\ -\cos u_{W} & 0 & \sin u_{W} & -r_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}, {}^{3}_{4}[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\sin v_{W} & \cos v_{W} & 0 \\ 0 & -\cos v_{W} & -\sin v_{W} & -r_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Transformation matrix from {4} to {w} is

$${}^{4}_{w}[\mathcal{T}] = \left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

100

• The transformation matrix from $\{w\}$ to $\{0\}$ is

${}^{0}_{w}[T] = {}^{0}_{1}[T] {}^{1}_{2}[T] {}^{2}_{3}[T] {}^{3}_{4}[T] {}^{4}_{w}[T]$

• The contact equation for a single-wheel rolling without slip

$$\begin{aligned} (\dot{u}_{w}, \dot{v}_{w})^{T} &= [\mathsf{M}_{w}]^{-1} ([\mathsf{K}_{w}] + [\mathsf{K}^{*}])^{-1} [(-\omega_{y}, \omega_{x})^{T}] \\ (\dot{u}_{g}, \dot{v}_{g})^{T} &= [\mathsf{M}_{g}]^{-1} [\mathsf{R}_{\psi}] ([\mathsf{K}_{g}] + [\mathsf{K}^{*}])^{-1} [(-\omega_{y}, \omega_{x})^{T}] \\ \dot{\psi} &= \omega_{z} + [\mathsf{T}_{w}] [\mathsf{M}_{w}] (\dot{u}_{w}, \dot{v}_{w})^{T} + [\mathsf{T}_{g}] [\mathsf{M}_{g}] (\dot{u}_{g}, \dot{v}_{g})^{T} \\ 0 &= v_{z} \end{aligned}$$

w denotes wheel and g denotes ground.

- Inputs: ω_x , ω_y , ω_z .
- Integrate contact equations to obtain evolution of point of contact on wheel *and* ground in time.

• The transformation matrix from $\{w\}$ to $\{0\}$ is

$${}^{0}_{w}[T] = {}^{0}_{1}[T] {}^{1}_{2}[T] {}^{2}_{3}[T] {}^{3}_{4}[T] {}^{4}_{w}[T]$$

• The contact equation for a single-wheel rolling without slip

$$\begin{aligned} (\dot{u}_{w}, \dot{v}_{w})^{T} &= & [\mathsf{M}_{w}]^{-1}([\mathsf{K}_{w}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ (\dot{u}_{g}, \dot{v}_{g})^{T} &= & [\mathsf{M}_{g}]^{-1}[\mathsf{R}_{\psi}]([\mathsf{K}_{g}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ \dot{\psi} &= & \omega_{z} + [\mathsf{T}_{w}][\mathsf{M}_{w}](\dot{u}_{w}, \dot{v}_{w})^{T} + [\mathsf{T}_{g}][\mathsf{M}_{g}](\dot{u}_{g}, \dot{v}_{g})^{T} \\ 0 &= & v_{z} \end{aligned}$$

w denotes wheel and g denotes ground.

- Inputs: ω_x , ω_y , ω_z .
- Integrate contact equations to obtain evolution of point of contact on wheel *and* ground in time.

ASHITAVA GHOSAL (IISC)

• The transformation matrix from $\{w\}$ to $\{0\}$ is

$${}^{0}_{w}[T] = {}^{0}_{1}[T] {}^{1}_{2}[T] {}^{2}_{3}[T] {}^{3}_{4}[T] {}^{4}_{w}[T]$$

• The contact equation for a single-wheel rolling without slip

$$\begin{aligned} (\dot{u}_{w}, \dot{v}_{w})^{T} &= & [\mathsf{M}_{w}]^{-1}([\mathsf{K}_{w}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ (\dot{u}_{g}, \dot{v}_{g})^{T} &= & [\mathsf{M}_{g}]^{-1}[\mathsf{R}_{\psi}]([\mathsf{K}_{g}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ \dot{\psi} &= & \omega_{z} + [\mathsf{T}_{w}][\mathsf{M}_{w}](\dot{u}_{w}, \dot{v}_{w})^{T} + [\mathsf{T}_{g}][\mathsf{M}_{g}](\dot{u}_{g}, \dot{v}_{g})^{T} \\ 0 &= & v_{z} \end{aligned}$$

w denotes wheel and g denotes ground.

- Inputs: ω_x , ω_y , ω_z .
- Integrate contact equations to obtain evolution of point of contact on wheel *and* ground in time.

ASHITAVA GHOSAL (IISC)

• The transformation matrix from $\{w\}$ to $\{0\}$ is

$${}^{0}_{w}[T] = {}^{0}_{1}[T] {}^{1}_{2}[T] {}^{2}_{3}[T] {}^{3}_{4}[T] {}^{4}_{w}[T]$$

• The contact equation for a single-wheel rolling without slip

$$\begin{aligned} (\dot{u}_{w}, \dot{v}_{w})^{T} &= & [\mathsf{M}_{w}]^{-1}([\mathsf{K}_{w}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ (\dot{u}_{g}, \dot{v}_{g})^{T} &= & [\mathsf{M}_{g}]^{-1}[\mathsf{R}_{\psi}]([\mathsf{K}_{g}] + [\mathsf{K}^{*}])^{-1}[(-\omega_{y}, \omega_{x})^{T}] \\ \dot{\psi} &= & \omega_{z} + [\mathsf{T}_{w}][\mathsf{M}_{w}](\dot{u}_{w}, \dot{v}_{w})^{T} + [\mathsf{T}_{g}][\mathsf{M}_{g}](\dot{u}_{g}, \dot{v}_{g})^{T} \\ 0 &= & v_{z} \end{aligned}$$

w denotes wheel and g denotes ground.

- Inputs: ω_x , ω_y , ω_z .
- Integrate contact equations to obtain evolution of point of contact on wheel *and* ground in time.

ASHITAVA GHOSAL (IISC)

- Simulation for bi-cubic surface shown earlier.
- $r_1 = 0.05$ m, $r_2 = 0.25$ m.
- Wheel tilts as it rolls.

Figure 21: Variation of u_w, v_w and ψ with t

- Trace of wheel centre and ground contact point is different.
- Unlike a disk rolling on flat surface.

Figure 22: Plot of wheel centre and ground contact point

NPTEL, 2010 45/88

DYNAMIC ANALYSIS

- Equations of motion of a torus-shaped wheel on uneven terrain using Lagrangian formulation.
- Non-holonomic constraints

$$(v_x, v_y)^T = -[\mathsf{M}_w](\dot{u}_w, \dot{v}_w)^T + [R_{\psi}][\mathsf{M}_g](\dot{u}_g, \dot{v}_g)^T = (0, 0)^T$$

after rearranging $[\Psi(\mathbf{q})]\dot{\mathbf{q}} = 0$

- Kinetic energy of wheel
 - Angular velocity ${}^{0}_{w}[\Omega]$ from rotation matrix as ${}^{0}_{w}[\dot{R}] {}^{v}_{w}[R]^{T}$.
 - Linear velocity by differentiating position of wheel centre ${}^{0}V_{w} = {}^{0}\dot{\mathbf{p}}_{w}$
 - Kinetic energy: $KE = \frac{1}{2}\Omega^{T}[I_{w}]\Omega + \frac{1}{2}m_{w}^{0}\mathbf{V}_{w}^{T}$
- Potential energy: $PE = m_w g z_{wc}$
- Equations of motion (see <u>Module 6</u>, Lecture 1)

DYNAMIC ANALYSIS

- Equations of motion of a torus-shaped wheel on uneven terrain using Lagrangian formulation.
- Non-holonomic constraints

$$(v_x, v_y)^T = -[\mathbf{M}_w](\dot{u}_w, \dot{v}_w)^T + [R_\psi][\mathbf{M}_g](\dot{u}_g, \dot{v}_g)^T = (0, 0)^T$$

after rearranging $[\Psi(\textbf{q})]\dot{\textbf{q}}=0$

- Kinetic energy of wheel
 - Angular velocity ${}^{0}_{w}[\Omega]$ from rotation matrix as ${}^{0}_{w}[\dot{R}] {}^{T}_{w}[R]^{T}$.
 - Linear velocity by differentiating position of wheel centre ${}^{0}V_{w} = {}^{0}\dot{\mathbf{p}}_{w}$
 - Kinetic energy: $KE = \frac{1}{2}\Omega^{T}[I_{w}]\Omega + \frac{1}{2}m_{w}^{0}\mathbf{V}_{w}^{T}$
- Potential energy: $PE = m_w g z_{wc}$
- Equations of motion (see <u>Module 6</u>, Lecture 1)

DYNAMIC ANALYSIS

- Equations of motion of a torus-shaped wheel on uneven terrain using Lagrangian formulation.
- Non-holonomic constraints

$$(v_x, v_y)^T = -[\mathbf{M}_w](\dot{u}_w, \dot{v}_w)^T + [R_\psi][\mathbf{M}_g](\dot{u}_g, \dot{v}_g)^T = (0, 0)^T$$

after rearranging $[\Psi(\mathbf{q})]\dot{\mathbf{q}} = 0$

- Kinetic energy of wheel
 - Angular velocity ${}^{0}_{w}[\Omega]$ from rotation matrix as ${}^{0}_{w}[\dot{R}] {}^{v}_{w}[R]^{T}$.
 - Linear velocity by differentiating position of wheel centre ${}^{0}V_{w} = {}^{0}\dot{\mathbf{p}}_{w}$
 - Kinetic energy: $KE = \frac{1}{2}\Omega^T [I_w] \Omega + \frac{1}{2}m_w^0 \mathbf{V}_w^2$
- Potential energy: $PE = m_w g z_{wc}$
- Equations of motion (see <u>Module 6</u>, Lecture 1)

DYNAMIC ANALYSIS

- Equations of motion of a torus-shaped wheel on uneven terrain using Lagrangian formulation.
- Non-holonomic constraints

$$(v_x, v_y)^T = -[\mathbf{M}_w](\dot{u}_w, \dot{v}_w)^T + [R_\psi][\mathbf{M}_g](\dot{u}_g, \dot{v}_g)^T = (0, 0)^T$$

after rearranging $[\Psi(\mathbf{q})]\dot{\mathbf{q}} = 0$

- Kinetic energy of wheel
 - Angular velocity ${}^{0}_{w}[\Omega]$ from rotation matrix as ${}^{0}_{w}[\dot{R}] {}^{v}_{w}[R]^{T}$.
 - Linear velocity by differentiating position of wheel centre ${}^{0}V_{w} = {}^{0}\dot{\mathbf{p}}_{w}$
 - Kinetic energy: $KE = \frac{1}{2}\Omega^T [I_w]\Omega + \frac{1}{2}m_w^0 \mathbf{V}_w^2$
- Potential energy: $PE = m_w g z_{wc}$
- Equations of motion (see <u>Module 6</u>, Lecture 1)

DYNAMIC ANALYSIS

- Equations of motion of a torus-shaped wheel on uneven terrain using Lagrangian formulation.
- Non-holonomic constraints

$$(v_x, v_y)^T = -[\mathbf{M}_w](\dot{u}_w, \dot{v}_w)^T + [R_\psi][\mathbf{M}_g](\dot{u}_g, \dot{v}_g)^T = (0, 0)^T$$

after rearranging $[\Psi(\mathbf{q})]\dot{\mathbf{q}} = 0$

- Kinetic energy of wheel
 - Angular velocity ${}^{0}_{w}[\Omega]$ from rotation matrix as ${}^{0}_{w}[\dot{R}] {}^{v}_{w}[R]^{T}$.
 - Linear velocity by differentiating position of wheel centre ${}^{0}\mathbf{V}_{w} = {}^{0}\dot{\mathbf{p}}_{w}$
 - Kinetic energy: $KE = \frac{1}{2}\Omega^T [I_w] \Omega + \frac{1}{2} m_w^0 \mathbf{V}_w^2$
- Potential energy: $PE = m_w g z_{wc}$
- Equations of motion (see Module 6, Lecture 1)

SINGLE WHEEL ON UNEVEN TERRAIN Dynamic Analysis (Contd.)

- Wheel dimensions: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
- Mass of wheel $m_w = 1.0$ kg.
- Inertia components of a torus-shaped wheel

$$[I_w] = \begin{pmatrix} \frac{1}{4}m_w(3r_1^2 + 4r_2^2) & 0 & 0\\ 0 & \frac{1}{8}m_w(5r_1^2 + 4r_2^2) & 0\\ 0 & 0 & \frac{1}{8}m_w(5r_1^2 + 4r_2^2) \end{pmatrix}$$

- Initial conditions satisfy non-holonomic constrains.
- No external force $au = \mathbf{0}$
- Torus-shaped wheels rolls down under gravity on surface shown next.

SINGLE WHEEL ON UNEVEN TERRAIN Dynamic Analysis (Contd.)

Figure 23: B-spline surface used for single wheel dynamics

Figure 24: Trace of wheel centre and ground contact points

NPTEL, 2010 48 / 88

DYNAMIC ANALYSIS (CONTD.)

Figure 25: Variation of u_w, v_w and ψ with t

Figure 26: Components of slip velocity at wheel-ground contact point

- Slip components are very small $(10^{-8} m/sec)$.
- Simulation checked for conservation of energy.

A WMR FOR TRAVERSING UNEVEN TERRAIN CONFIGURATIONS

- Three torus-shaped wheels connected to rigid platform with rotary (R) joints.
- Two possible configurations platform with 3 DOF
 - Each wheel attached to platform with two R joints.
 - For rear wheels one R joint is actuated by a motor making the wheel roll.
 - For front wheel one R joint represents steering.
 - For rear wheels one R joint is passive allowing lateral tilting about axis perpendicular to wheel rotation axis.
 - For front wheel one R joint represents free rolling of the wheel.
- WMR platform with 6 DOF
 - Each wheel attached to platform by three R joints.
 - 2 R joints in rear and front wheel function as above.
 - Additional R joint in rear wheel allow for steering.
 - Additional R joint in front wheel allow lateral tilt.

A WMR FOR TRAVERSING UNEVEN TERRAIN CONFIGURATIONS

- Three torus-shaped wheels connected to rigid platform with rotary (R) joints.
- Two possible configurations platform with 3 DOF
 - Each wheel attached to platform with two R joints.
 - For rear wheels one R joint is actuated by a motor making the wheel roll.
 - For front wheel one R joint represents steering.
 - For rear wheels one R joint is passive allowing lateral tilting about axis perpendicular to wheel rotation axis.
 - For front wheel one R joint represents free rolling of the wheel.
- WMR platform with 6 DOF
 - Each wheel attached to platform by three R joints.
 - 2 R joints in rear and front wheel function as above.
 - Additional R joint in rear wheel allow for steering.
 - Additional R joint in front wheel allow lateral tilt.

A WMR FOR TRAVERSING UNEVEN TERRAIN CONFIGURATIONS

- Three torus-shaped wheels connected to rigid platform with rotary (R) joints.
- Two possible configurations platform with 3 DOF
 - Each wheel attached to platform with two R joints.
 - For rear wheels one R joint is actuated by a motor making the wheel roll.
 - For front wheel one R joint represents steering.
 - For rear wheels one R joint is passive allowing lateral tilting about axis perpendicular to wheel rotation axis.
 - For front wheel one R joint represents free rolling of the wheel.
- WMR platform with 6 DOF
 - Each wheel attached to platform by three R joints.
 - 2 R joints in rear and front wheel function as above.
 - Additional R joint in rear wheel allow for steering.
 - Additional R joint in front wheel allow lateral tilt.

A WMR FOR TRAVERSING UNEVEN TERRAIN

Figure 27: Schematic of a three-wheeled mobile robot with 3 DOF

- Wheel-ground contact has 3 DOF instantaneously only velocities are restricted \rightarrow *non-holonomic joint*
- Grübler criterion DOF = $6(N J 1) + \sum_{i=1}^{J} F_i N = 8$, J = 9, and $\sum_{i=1}^{J} F_i = 15 \rightarrow \text{DOF} = 3$.

A WMR FOR TRAVERSING UNEVEN TERRAIN

Figure 28: Schematic of three wheeled mobile robot with 6 DOF

- Wheel-ground contact 3 DOF non-holonomic joint.
- Grübler criterion DOF = $6(N J 1) + \sum_{i=1}^{J} F_i$, N = 11, J = 12 and $\sum_{i=1}^{J} F_i = 18 \rightarrow \text{DOF} = 6$.
- Study kinematics and dynamics of 3 DOF configuration.

• WMR with fixed length axle, moving on uneven terrain, can slip.

- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

- WMR with fixed length axle, moving on uneven terrain, can slip.
- Variable length axle concepts and concept of passive tilting.
- Geometric modeling of torus-shaped wheel and uneven terrain.
- Contact equations representing 5 DOF between two surfaces in single point contact.
- Kinematic and dynamic analysis and simulation of single wheel on uneven terrain.
- Configuration of a three-wheeled mobile robot for traversing uneven terrain without slip.
- Kinematic, dynamic and stability analysis in next lecture.

OUTLINE

CONTENTS

2 Lecture 1

• Wheeled Mobile Robots on Flat Terrain

3 LECTURE 2*

• Wheeled Mobile Robots on Uneven Terrain

LECTURE 3*

• Kinematics and Dynamics of WMR on Uneven Terrain

MODULE 9 – ADDITIONAL MATERIAL

• Problems, References and Suggested Reading

• Kinematic analysis a three-wheeled mobile robot

- Solution of the direct kinematics problem.
- Solution of the inverse kinematics problem.
- Formulation of Equations of Motion for Dynamic analysis.
- Simulation results.
- Stability of three wheeled mobile robot on uneven terrain
- Summary

- Kinematic analysis a three-wheeled mobile robot
 - Solution of the direct kinematics problem.
 - Solution of the inverse kinematics problem.
- Formulation of Equations of Motion for Dynamic analysis.
- Simulation results.
- Stability of three wheeled mobile robot on uneven terrain
- Summary

- Kinematic analysis a three-wheeled mobile robot
 - Solution of the direct kinematics problem.
 - Solution of the inverse kinematics problem.
- Formulation of Equations of Motion for Dynamic analysis.
- Simulation results.
- Stability of three wheeled mobile robot on uneven terrain

Summary

- Kinematic analysis a three-wheeled mobile robot
 - Solution of the direct kinematics problem.
 - Solution of the inverse kinematics problem.
- Formulation of Equations of Motion for Dynamic analysis.
- Simulation results.
- Stability of three wheeled mobile robot on uneven terrain

Summary

- Kinematic analysis a three-wheeled mobile robot
 - Solution of the direct kinematics problem.
 - Solution of the inverse kinematics problem.
- Formulation of Equations of Motion for Dynamic analysis.
- Simulation results.
- Stability of three wheeled mobile robot on uneven terrain
- Summary

Figure 29: Equivalent instantaneous parallel manipulator

- Instantaneous parallel manipulator with a platform "connected" to ground by three serial chains.
- Actuated: Rear wheel rotations, θ_1 and θ_2 , front wheel steering ϕ_3 .
- Passive: Rear wheel tilt δ_1 , δ_2 and front wheel rotation θ_3 .

• Analyse the WMR as a parallel manipulator at *every* instant.

- Instantaneously Wheels are not fixed as in a parallel manipulator!
- Non-holonomic (no slip) constraints and hence kinematics in terms of joint rates!
- Direct Kinematic: Given actuation rates $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$, the terrain and WMR geometry, find orientation of top platform ${}^0_p[R]$ and the position vector of the centre of the platform.
- Inverse kinematics: Given geometry of WMR and terrain and given any three of $V_{P_x}, V_{P_y}, V_{P_z}, \Omega_{P_x}, \Omega_{P_y}, \Omega_{P_z}$, find rear wheel actuator inputs $\dot{\theta_1}$ and $\dot{\theta_2}$ and the steering input to the front wheel $\dot{\phi_3}$.

- Analyse the WMR as a parallel manipulator at *every* instant.
- Instantaneously Wheels are not fixed as in a parallel manipulator!
- Non-holonomic (no slip) constraints and hence kinematics in terms of joint rates!
- Direct Kinematic: Given actuation rates $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$, the terrain and WMR geometry, find orientation of top platform ${}^0_p[R]$ and the position vector of the centre of the platform.
- Inverse kinematics: Given geometry of WMR and terrain and given any three of $V_{p_x}, V_{p_y}, V_{p_z}, \Omega_{p_x}, \Omega_{p_y}, \Omega_{p_z}$, find rear wheel actuator inputs $\dot{\theta_1}$ and $\dot{\theta_2}$ and the steering input to the front wheel $\dot{\phi_3}$.

- Analyse the WMR as a parallel manipulator at *every* instant.
- Instantaneously Wheels are not fixed as in a parallel manipulator!
- Non-holonomic (no slip) constraints and hence kinematics in terms of joint rates!
- Direct Kinematic: Given actuation rates $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$, the terrain and WMR geometry, find orientation of top platform ${}^0_p[R]$ and the position vector of the centre of the platform.
- Inverse kinematics: Given geometry of WMR and terrain and given any three of $V_{p_x}, V_{p_y}, V_{p_z}, \Omega_{p_x}, \Omega_{p_y}, \Omega_{p_z}$, find rear wheel actuator inputs $\dot{\theta_1}$ and $\dot{\theta_2}$ and the steering input to the front wheel $\dot{\phi_3}$.

- Analyse the WMR as a parallel manipulator at *every* instant.
- Instantaneously Wheels are not fixed as in a parallel manipulator!
- Non-holonomic (no slip) constraints and hence kinematics in terms of joint rates!
- Direct Kinematic: Given actuation rates $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$, the terrain and WMR geometry, find orientation of top platform ${}^0_p[R]$ and the position vector of the centre of the platform.
- Inverse kinematics: Given geometry of WMR and terrain and given any three of $V_{p_x}, V_{p_y}, V_{p_z}, \Omega_{p_x}, \Omega_{p_y}, \Omega_{p_z}$, find rear wheel actuator inputs $\dot{\theta_1}$ and $\dot{\theta_2}$ and the steering input to the front wheel $\dot{\phi_3}$.

- Analyse the WMR as a parallel manipulator at *every* instant.
- Instantaneously Wheels are not fixed as in a parallel manipulator!
- Non-holonomic (no slip) constraints and hence kinematics in terms of joint rates!
- Direct Kinematic: Given actuation rates $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$, the terrain and WMR geometry, find orientation of top platform ${}^0_p[R]$ and the position vector of the centre of the platform.
- Inverse kinematics: Given geometry of WMR and terrain and given any three of $V_{p_x}, V_{p_y}, V_{p_z}, \Omega_{p_x}, \Omega_{p_y}, \Omega_{p_z}$, find rear wheel actuator inputs $\dot{\theta_1}$ and $\dot{\theta_2}$ and the steering input to the front wheel $\dot{\phi_3}$.

ALGORITHM

- Step 1: Generate the uneven terrain surface:
 - Use bi-cubic patches or B-splines to reconstruct the surface from elevation data.
 - Find [M], [K] and [T] for the ground and wheels at the three wheel-ground contact points.
- Step 2: Form contact equations:
 - For each wheel, obtain 5 ODE's in u_i , v_i , u_{g_i} , v_{g_i} , and ψ_i i = 1, 2, 3.
 - For no-slip motion, set $v_x = v_y = 0$ for each of the three wheels.
 - ω_x, ω_y, and ω_z are related to Ω_{px}, Ω_{py}, Ω_{pz}, and the input and passive joint rates

$${}^{0}(\boldsymbol{\omega}_{x},\boldsymbol{\omega}_{y},\boldsymbol{\omega}_{z})^{T} = {}^{0}(\boldsymbol{\Omega}_{\boldsymbol{p}_{x}},\boldsymbol{\Omega}_{\boldsymbol{p}_{y}},\boldsymbol{\Omega}_{\boldsymbol{p}_{z}})^{T} + {}^{0}\boldsymbol{\omega}_{\text{input}}$$

- Above equation *couples* all five sets of ODE's resulting in a set of 15 ODE's in 21 variables 15 contact variables, $\theta_1, \theta_2, \theta_3, \delta_1, \delta_2$, and ϕ_3 .
- Out of 21 variables, θ_1 , θ_2 , and ϕ_3 are actuated and known.

ALGORITHM

- Step 1: Generate the uneven terrain surface:
 - Use bi-cubic patches or B-splines to reconstruct the surface from elevation data.
 - Find [M], [K] and [T] for the ground and wheels at the three wheel-ground contact points.
- Step 2: Form contact equations:
 - For each wheel, obtain 5 ODE's in u_i , v_i , u_{g_i} , v_{g_i} , and ψ_i i = 1, 2, 3.
 - For no-slip motion, set $v_x = v_y = 0$ for each of the three wheels.
 - ω_x , ω_y , and ω_z are related to Ω_{p_x} , Ω_{p_y} , Ω_{p_z} , and the input and passive joint rates

$${}^{0}(\omega_{x}, \omega_{y}, \omega_{z})^{T} = {}^{0}(\Omega_{\rho_{x}}, \Omega_{\rho_{y}}, \Omega_{\rho_{z}})^{T} + {}^{0}\omega_{\text{input}}$$

- Above equation *couples* all five sets of ODE's resulting in a set of 15 ODE's in 21 variables 15 contact variables, $\theta_1, \theta_2, \theta_3, \delta_1, \delta_2$, and ϕ_3 .
- Out of 21 variables, θ_1 , θ_2 , and ϕ_3 are actuated and known.

Algorithm (Contd.)

- Step 3: Obtain the angular and linear velocities of centre of the platform:
 - If γ , β , α be a Z-Y-X Euler angle parametrization (see Module 2, Lecture 1) representing the orientation of the platform, then

$${}^{0}\Omega_{P_{x}} = \dot{\alpha}\cos\beta\cos\gamma - \dot{\beta}\sin\gamma = f_{1}(u_{i}, v_{i}, u_{g_{i}}, v_{g_{i}}, \psi_{i}, \dot{u}_{i}, \dot{v}_{i}, \dot{u}_{g_{i}}, \dot{v}_{g_{i}}, \dot{\psi}_{i})$$

$${}^{0}\Omega_{P_{y}} = \dot{\alpha}\cos\beta\sin\gamma + \dot{\beta}\cos\gamma = f_{2}(u_{i}, v_{i}, u_{g_{i}}, v_{g_{i}}, \psi_{i}, \dot{u}_{i}, \dot{v}_{i}, \dot{u}_{g_{i}}, \dot{v}_{g_{i}}, \dot{\psi}_{i})$$

$${}^{0}\Omega_{P_{z}} = \dot{\gamma} - \dot{\alpha}\sin\beta = f_{3}(u_{i}, v_{i}, u_{g_{i}}, v_{g_{i}}, \psi_{i}, \dot{u}_{i}, \dot{v}_{g_{i}}, \dot{\psi}_{g}), \quad i = 1, 2, 3$$

• If x_c , y_c , and z_c denote the coordinates of the centre of the platform in $\{0\}$, the linear velocity of the centre of the platform is

$${}^{0}(V_{\rho_{x}}, V_{\rho_{y}}, V_{\rho_{z}})^{T} \stackrel{\Delta}{=} {}^{0}(\dot{x_{c}}, \dot{y_{c}}, \dot{z_{c}})^{T} = {}^{0}\mathbf{V}_{w_{i}} + {}^{0}(\Omega_{\rho_{x}}, \Omega_{\rho_{y}}, \Omega_{\rho_{z}})^{T} \times {}^{0}\mathbf{p}_{c_{i}}$$

i = 1, 2, 3 denote three wheels, ${}^{0}\mathbf{p}_{c_{i}}$ locates the point of attachment of the wheel to the platform from the centre of the platform, and ${}^{0}\mathbf{V}_{w_{i}}$ is the velocity of the centre of the wheel.
ALGORITHM (CONTD.)

- Distance between the three points C_1 , C_2 , and C_3 must remain constant for the moving platform to be *rigid*.
- Holonomic constraint are

$$\|{}^{0}\mathbf{p}_{C_{1}} - {}^{0}\mathbf{p}_{C_{2}}\|^{2} = l_{12}^{2}$$

$$\|{}^{0}\mathbf{p}_{C_{2}} - {}^{0}\mathbf{p}_{C_{3}}\|^{2} = l_{23}^{2}$$

$$\|{}^{0}\mathbf{p}_{C_{3}} - {}^{0}\mathbf{p}_{C_{1}}\|^{2} = l_{31}^{2}$$

 ${}^{0}\mathbf{p}_{C_{i}}$, i = 1,2,3 locate C_{1} , C_{2} , C_{3} , from the origin of $\{0\}$ and l_{ij} is the distance between centres of wheels i and j, respectively.

• Holonomic constraints are same as spherical-spherical pair (S-S) joint constraint of <u>Module 2</u>, Lecture 2.

Algorithm (Contd.)

- Solution of Direct Kinematics Problem:
 - Steps 1, 2 & 4 \rightarrow 15 ODE's and 3 algebraic equations in 21 variables.
 - 18 Unknown variables $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$ are given!
 - Differentiate holonomic constraints \rightarrow Convert to a system of 18 ODE's.
 - Integrate using ODE solver with initial conditions.
 - Obtain position vector of centre and orientation of platform from 21 variables at each \boldsymbol{t}
- Solution of Inverse Kinematics Problem:
 - $\bullet\,$ Steps 1 to 4 \rightarrow 21 first order ODE's and 3 algebraic equations.
 - Assuming linear velocity of the platform $\dot{x_c}$, $\dot{y_c}$ and the angular velocity about the vertical, $\dot{\gamma}$, are given \rightarrow 24 unknowns.
 - Convert DAE's into ODE's by differentiating holonomic constraints.
 - Integrate set of 24 ODE's and obtain required θ_1 , θ_2 and ϕ_3 as function of t.
- *Initial conditions* for the direct and inverse kinematics problems *must* satisfy the *holonomic and non-holonomic* constraints.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 61 / 88

Algorithm (Contd.)

- Solution of Direct Kinematics Problem:
 - Steps 1, 2 & 4 \rightarrow 15 ODE's and 3 algebraic equations in 21 variables.
 - 18 Unknown variables $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$ are given!
 - Differentiate holonomic constraints \rightarrow Convert to a system of 18 ODE's.
 - Integrate using ODE solver with initial conditions.
 - Obtain position vector of centre and orientation of platform from 21 variables at each \boldsymbol{t}
- Solution of Inverse Kinematics Problem:
 - $\bullet~$ Steps 1 to 4 \rightarrow 21 first order ODE's and 3 algebraic equations.
 - Assuming linear velocity of the platform $\dot{x_c}$, $\dot{y_c}$ and the angular velocity about the vertical, $\dot{\gamma}$, are given $\rightarrow 24$ unknowns.
 - Convert DAE's into ODE's by differentiating holonomic constraints.
 - Integrate set of 24 ODE's and obtain required θ_1 , θ_2 and ϕ_3 as function of t.

• *Initial conditions* for the direct and inverse kinematics problems *must* satisfy the *holonomic and non-holonomic* constraints.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 61 / 88

Algorithm (Contd.)

- Solution of Direct Kinematics Problem:
 - Steps 1, 2 & 4 \rightarrow 15 ODE's and 3 algebraic equations in 21 variables.
 - 18 Unknown variables $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\phi}_3$ are given!
 - Differentiate holonomic constraints \rightarrow Convert to a system of 18 ODE's.
 - Integrate using ODE solver with initial conditions.
 - Obtain position vector of centre and orientation of platform from 21 variables at each \boldsymbol{t}
- Solution of Inverse Kinematics Problem:
 - $\bullet~$ Steps 1 to 4 \rightarrow 21 first order ODE's and 3 algebraic equations.
 - Assuming linear velocity of the platform $\dot{x_c}$, $\dot{y_c}$ and the angular velocity about the vertical, $\dot{\gamma}$, are given \rightarrow 24 unknowns.
 - Convert DAE's into ODE's by differentiating holonomic constraints.
 - Integrate set of 24 ODE's and obtain required $\theta_1, \ \theta_2$ and ϕ_3 as function of t.
- *Initial conditions* for the direct and inverse kinematics problems *must* satisfy the *holonomic and non-holonomic* constraints.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 61 / 88

- Geometry of the WMR
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5816$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 4.089$ m, $v_{g_1} = 0.3917$ m, $\psi_1 = -3.1414$, $u_2 = 1.5560$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 3.1$ m, $v_{g_2} = 0.4$ m, $\psi_2 = -3.1413$, $u_3 = 1.5735$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.5977$ m, $v_{g_3} = 1.4097$ m, $\psi_3 = -3.1404$, $\theta_3 = 0$, $\delta_1 = 0$, and $\delta_2 = 0$ All angles in radians.
- Actuator inputs: $\dot{\theta}_1 = -1$ rad/sec, $\dot{\theta}_2 = -0.9$ rad/sec, $\dot{\phi}_3 = 0.005t$ rad/sec.
- Uneven surface same as used for single wheel dynamic simulation.

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

- Geometry of the WMR
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5816$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 4.089$ m, $v_{g_1} = 0.3917$ m, $\psi_1 = -3.1414$, $u_2 = 1.5560$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 3.1$ m, $v_{g_2} = 0.4$ m, $\psi_2 = -3.1413$, $u_3 = 1.5735$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.5977$ m, $v_{g_3} = 1.4097$ m, $\psi_3 = -3.1404$, $\theta_3 = 0$, $\delta_1 = 0$, and $\delta_2 = 0$ All angles in radians.
- Actuator inputs: $\dot{\theta}_1 = -1$ rad/sec, $\dot{\theta}_2 = -0.9$ rad/sec, $\dot{\phi}_3 = 0.005t$ rad/sec.
- Uneven surface same as used for single wheel dynamic simulation.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

- Geometry of the WMR
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5816$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 4.089$ m, $v_{g_1} = 0.3917$ m, $\psi_1 = -3.1414$, $u_2 = 1.5560$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 3.1$ m, $v_{g_2} = 0.4$ m, $\psi_2 = -3.1413$, $u_3 = 1.5735$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.5977$ m, $v_{g_3} = 1.4097$ m, $\psi_3 = -3.1404$, $\theta_3 = 0$, $\delta_1 = 0$, and $\delta_2 = 0$ All angles in radians.
- Actuator inputs: $\dot{\theta}_1 = -1$ rad/sec, $\dot{\theta}_2 = -0.9$ rad/sec, $\dot{\phi}_3 = 0.005t$ rad/sec.

• Uneven surface same as used for single wheel dynamic simulation.

A B A A B A

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

- Geometry of the WMR
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5816$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 4.089$ m, $v_{g_1} = 0.3917$ m, $\psi_1 = -3.1414$, $u_2 = 1.5560$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 3.1$ m, $v_{g_2} = 0.4$ m, $\psi_2 = -3.1413$, $u_3 = 1.5735$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.5977$ m, $v_{g_3} = 1.4097$ m, $\psi_3 = -3.1404$, $\theta_3 = 0$, $\delta_1 = 0$, and $\delta_2 = 0$ All angles in radians.
- Actuator inputs: $\dot{\theta}_1 = -1$ rad/sec, $\dot{\theta}_2 = -0.9$ rad/sec, $\dot{\phi}_3 = 0.005t$ rad/sec.
- Uneven surface same as used for single wheel dynamic simulation.

(신문) (신문)

- The locus of wheel centres are *not* the same as the wheel-ground contact point due to uneven terrain and lateral tilt!!
- Lateral tilt changes at different points of the uneven terrain.

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

Figure 32: Satisfaction of holonomic constraints

Figure 33: Slip velocities at wheel-ground contact points for three wheels

- The holonomic constraints are satisfied up to 10^{-7} m
- There is virtually no slip WMR traverses uneven terrain without slip!!

ASHITAVA GHOSAL (IISC)

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

Figure 34: Video of direct kinematics of WMR

See video for a simulation of the three wheeled mobile robot on uneven terrain.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 65 / 88

- Geometry of the WMR same as used in direct kinematics
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5801$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 3.9904$ m, $v_{g_1} = 0.4895$ m, $\psi_1 = -3.1415$, $u_2 = 1.5535$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 2$ m, $v_{g_2} = 0.5$ m, $\psi_2 = -3.1411$, $u_3 = 1.5808$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.4898$ m, $v_{g_3} = 1.5702$ m, $\psi_3 = -3.1414$, $z_c = 2.22$ m, $\alpha = -0.0448$, and $\beta = -0.0498$ All angles in radians.
- Given inputs: $\dot{x}_c=0.03$ m/sec, $\dot{y}_c=0.15$ m/sec, and $\dot{\gamma}=-0.005t$ rad/sec.
- Uneven surface same as used for direct kinematics.

- Geometry of the WMR same as used in direct kinematics
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5801$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 3.9904$ m, $v_{g_1} = 0.4895$ m, $\psi_1 = -3.1415$, $u_2 = 1.5535$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 2$ m, $v_{g_2} = 0.5$ m, $\psi_2 = -3.1411$, $u_3 = 1.5808$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.4898$ m, $v_{g_3} = 1.5702$ m, $\psi_3 = -3.1414$, $z_c = 2.22$ m, $\alpha = -0.0448$, and $\beta = -0.0498$ All angles in radians.
- Given inputs: $\dot{x}_c = 0.03$ m/sec, $\dot{y}_c = 0.15$ m/sec, and $\dot{\gamma} = -0.005t$ rad/sec.
- Uneven surface same as used for direct kinematics.

- Geometry of the WMR same as used in direct kinematics
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5801$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 3.9904$ m, $v_{g_1} = 0.4895$ m, $\psi_1 = -3.1415$, $u_2 = 1.5535$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 2$ m, $v_{g_2} = 0.5$ m, $\psi_2 = -3.1411$, $u_3 = 1.5808$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.4898$ m, $v_{g_3} = 1.5702$ m, $\psi_3 = -3.1414$, $z_c = 2.22$ m, $\alpha = -0.0448$, and $\beta = -0.0498$ All angles in radians.
- Given inputs: $\dot{x}_c = 0.03$ m/sec, $\dot{y}_c = 0.15$ m/sec, and $\dot{\gamma} = -0.005t$ rad/sec.
- Uneven surface same as used for direct kinematics.

- Geometry of the WMR same as used in direct kinematics
 - Length of the rear axle 1 m.
 - Distance of the centre of front wheel from middle of the rear axle 1 m.
 - Torus-shaped wheel: $r_1 = 0.05$ m, $r_2 = 0.25$ m.
 - WMR centre is at the centroid of the triangular platform.
- Initial conditions: $u_1 = 1.5801$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 3.9904$ m, $v_{g_1} = 0.4895$ m, $\psi_1 = -3.1415$, $u_2 = 1.5535$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 2$ m, $v_{g_2} = 0.5$ m, $\psi_2 = -3.1411$, $u_3 = 1.5808$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 3.4898$ m, $v_{g_3} = 1.5702$ m, $\psi_3 = -3.1414$, $z_c = 2.22$ m, $\alpha = -0.0448$, and $\beta = -0.0498$ All angles in radians.
- Given inputs: $\dot{x}_c = 0.03$ m/sec, $\dot{y}_c = 0.15$ m/sec, and $\dot{\gamma} = -0.005t$ rad/sec.
- Uneven surface same as used for direct kinematics.

Figure 35: Locus of wheel-ground contact point, wheel centre and platform centre

- Due to uneven terrain, the locus of wheel centres are *not* the same as the wheel-ground contact point.
- Lateral tilt changes at different points of the uneven terrain.

NUMERICAL SIMULATIONS RESULTS FOR DIRECT KINEMATICS

Figure 38: Slip velocities at wheel-ground contact points for three wheels

- $\bullet\,$ The holonomic constraints are satisfied up to 10^{-7} m $\,$
- There is virtually no slip WMR traverses uneven terrain without slip!!

OVERVIEW

- Formulation of equation of motion for WMR using Lagrangian formulation.
 - Kinetic energy of wheels, platform and 'links' connecting actuated and passive joints to platform.
 - Potential energy due to gravity.
- 15 contact variables at three wheel-ground contact points, 3 passive, 3 actuated and 6 variables for position and orientation of WMR platform \rightarrow Total 27 generalised coordinates.
- Three actuating torques two in rear wheel and for front wheel steering.
- Need 24 independent constraint equations for the system to be well-posed inverse kinematics equations!!
- Derive equations of motion subjected to holonomic and non-holonomic constraints (see <u>Module 6</u>, Lecture 1).

・ロト ・ 同ト ・ ヨト ・ 日

OVERVIEW

- Formulation of equation of motion for WMR using Lagrangian formulation.
 - Kinetic energy of wheels, platform and 'links' connecting actuated and passive joints to platform.
 - Potential energy due to gravity.
- 15 contact variables at three wheel-ground contact points, 3 passive, 3 actuated and 6 variables for position and orientation of WMR platform \rightarrow Total 27 generalised coordinates.
- Three actuating torques two in rear wheel and for front wheel steering.
- Need 24 independent constraint equations for the system to be well-posed inverse kinematics equations!!
- Derive equations of motion subjected to holonomic and non-holonomic constraints (see <u>Module 6</u>, Lecture 1).

・ロト ・ 同ト ・ ヨト ・ 日

OVERVIEW

- Formulation of equation of motion for WMR using Lagrangian formulation.
 - Kinetic energy of wheels, platform and 'links' connecting actuated and passive joints to platform.
 - Potential energy due to gravity.
- 15 contact variables at three wheel-ground contact points, 3 passive, 3 actuated and 6 variables for position and orientation of WMR platform \rightarrow Total 27 generalised coordinates.
- Three actuating torques two in rear wheel and for front wheel steering.
- Need 24 independent constraint equations for the system to be well-posed inverse kinematics equations!!
- Derive equations of motion subjected to holonomic and non-holonomic constraints (see <u>Module 6</u>, Lecture 1).

OVERVIEW

- Formulation of equation of motion for WMR using Lagrangian formulation.
 - Kinetic energy of wheels, platform and 'links' connecting actuated and passive joints to platform.
 - Potential energy due to gravity.
- 15 contact variables at three wheel-ground contact points, 3 passive, 3 actuated and 6 variables for position and orientation of WMR platform \rightarrow Total 27 generalised coordinates.
- Three actuating torques two in rear wheel and for front wheel steering.
- Need 24 independent constraint equations for the system to be well-posed inverse kinematics equations!!
- Derive equations of motion subjected to holonomic and non-holonomic constraints (see <u>Module 6</u>, Lecture 1).

OVERVIEW

- Formulation of equation of motion for WMR using Lagrangian formulation.
 - Kinetic energy of wheels, platform and 'links' connecting actuated and passive joints to platform.
 - Potential energy due to gravity.
- 15 contact variables at three wheel-ground contact points, 3 passive, 3 actuated and 6 variables for position and orientation of WMR platform \rightarrow Total 27 generalised coordinates.
- Three actuating torques two in rear wheel and for front wheel steering.
- Need 24 independent constraint equations for the system to be well-posed inverse kinematics equations!!
- Derive equations of motion subjected to holonomic and non-holonomic constraints (see <u>Module 6</u>, Lecture 1).

100

DYNAMIC ANALYSIS

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathcal{K}\mathcal{E} = (\mathcal{K}\mathcal{E})_{w_1} + (\mathcal{K}\mathcal{E})_{w_2} + (\mathcal{K}\mathcal{E})_{w_3} + (\mathcal{K}\mathcal{E})_{\text{platform}} + (\mathcal{K}\mathcal{E})_{\text{actuators}} + (\mathcal{K}\mathcal{E})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{\text{platform}} + (PE)_{\text{actuators}} + (PE)_{\text{links}}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\mathbf{q}} = 0 [\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 × 27 mass matrix, $[C(q,\dot{q})]\dot{q}$, G(q) and τ are 27 × 1 vectors.

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathit{KE} = (\mathit{KE})_{w_1} + (\mathit{KE})_{w_2} + (\mathit{KE})_{w_3} + (\mathit{KE})_{\text{platform}} + (\mathit{KE})_{\text{actuators}} + (\mathit{KE})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{platform} + (PE)_{actuators} + (PE)_{links}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\mathbf{q}} = 0 [\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 × 27 mass matrix, $[C(q,\dot{q})]\dot{q}$, G(q) and τ are 27 × 1 vectors.

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathcal{K}\mathcal{E} = (\mathcal{K}\mathcal{E})_{w_1} + (\mathcal{K}\mathcal{E})_{w_2} + (\mathcal{K}\mathcal{E})_{w_3} + (\mathcal{K}\mathcal{E})_{\text{platform}} + (\mathcal{K}\mathcal{E})_{\text{actuators}} + (\mathcal{K}\mathcal{E})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{platform} + (PE)_{actuators} + (PE)_{links}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\textbf{q}}=0-[\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 × 27 mass matrix, $[C(q,\dot{q})]\dot{q}$, G(q) and τ are 27 × 1 vectors.

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathcal{K}\mathcal{E} = (\mathcal{K}\mathcal{E})_{w_1} + (\mathcal{K}\mathcal{E})_{w_2} + (\mathcal{K}\mathcal{E})_{w_3} + (\mathcal{K}\mathcal{E})_{\text{platform}} + (\mathcal{K}\mathcal{E})_{\text{actuators}} + (\mathcal{K}\mathcal{E})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{platform} + (PE)_{actuators} + (PE)_{links}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\mathbf{q}}=0-[\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 × 27 mass matrix, $[C(q,\dot{q})]\dot{q}$, G(q) and τ are 27 × 1 vectors.

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathcal{K}\mathcal{E} = (\mathcal{K}\mathcal{E})_{w_1} + (\mathcal{K}\mathcal{E})_{w_2} + (\mathcal{K}\mathcal{E})_{w_3} + (\mathcal{K}\mathcal{E})_{\text{platform}} + (\mathcal{K}\mathcal{E})_{\text{actuators}} + (\mathcal{K}\mathcal{E})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{platform} + (PE)_{actuators} + (PE)_{links}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\bm{q}}=0-[\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 \times 27 mass matrix, $[\textbf{C}(\textbf{q},\dot{\textbf{q}})]\dot{\textbf{q}},~\textbf{G}(\textbf{q})$ and τ are 27 \times 1 vectors.

LAGRANGIAN FORMULATION

• Total kinetic energy

 $\mathcal{K}\mathcal{E} = (\mathcal{K}\mathcal{E})_{w_1} + (\mathcal{K}\mathcal{E})_{w_2} + (\mathcal{K}\mathcal{E})_{w_3} + (\mathcal{K}\mathcal{E})_{\text{platform}} + (\mathcal{K}\mathcal{E})_{\text{actuators}} + (\mathcal{K}\mathcal{E})_{\text{links}}$

Total potential energy

 $PE = (PE)_{w_1} + (PE)_{w_2} + (PE)_{w_3} + (PE)_{platform} + (PE)_{actuators} + (PE)_{links}$

- All kinetic energy and potential energy components can be found (see Chakraborty & Ghosal, 2005).
- Constraints equation from inverse kinematics: $[\Psi]\dot{\bm{q}}=0-[\Psi]$ is a 24×27 matrix.
- Equations of motion from Lagrangian formulation

 $[\mathsf{M}(\mathsf{q})]\ddot{\mathsf{q}} + [\mathsf{C}(\mathsf{q},\dot{\mathsf{q}})]\dot{\mathsf{q}} + \mathsf{G}(\mathsf{q}) = \tau + [\Psi(\mathsf{q})]^{\mathsf{T}}\lambda$

[M(q)] is a 27 \times 27 mass matrix, $[\textbf{C}(\textbf{q},\dot{\textbf{q}})]\dot{\textbf{q}},~\textbf{G}(\textbf{q})$ and τ are 27 \times 1 vectors.

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 imes 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight! - contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 imes 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight! - contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 \times 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight!
 contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 \times 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight! - contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 \times 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight! - contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

LAGRANGIAN FORMULATION (CONTD.)

- λ is 24 imes 1 vector of the Lagrange multipliers.
- Solve for λ as shown in Moudule 6.
- Finally obtain a set of 27 second-order ODE's Obtained in symbolic form by using Mathematica®extensively!
- With actuators locked and wheels tilted, WMR falls under own weight!
 contrary to a normal parallel manipulator !!
- Wheel-ground contact modeled as *instantaneous* 3 DOF joint *not* like a spherical (S) joint.
- Form closure not present \rightarrow Additional terms modeling a torsion springs and a damper (preventing falling under own weight with actuators locked) is added in τ corresponding to lateral tilts

$$k_{s_i}\delta_i + k_{d_i}\dot{\delta}_i, \quad (i=1,2)$$

Algorithm

• Step 1: Generate the uneven terrain surface

- Reconstruct the surface from elevation data.
- Derivative of constraints are required $\rightarrow \, \mathscr{C}^3$ continuity required.
- Fourth degree B-spline surface using Matlab®Spline Tool Box.

• Step 2: Form equations of motion - 27 second-order ODEs.

- Step 3: Obtain initial conditions
 - Initial conditions must satisfy no-slip and holonomic constraints.
 - 3 actuated variables can be chosen arbitrarily.
 - Rest 24 obtained using inverse kinematics equations.
- *Step 4: Solve ODEs numerically* ODE solver in Matlab®used to obtain evolution of all generalised coordinates.

NPTEL, 2010 72 / 88

Algorithm

- Step 1: Generate the uneven terrain surface
 - Reconstruct the surface from elevation data.
 - Derivative of constraints are required $o \mathscr{C}^3$ continuity required.
 - Fourth degree B-spline surface using Matlab®Spline Tool Box.

• Step 2: Form equations of motion – 27 second-order ODEs.

- Step 3: Obtain initial conditions
 - Initial conditions must satisfy no-slip and holonomic constraints.
 - 3 actuated variables can be chosen arbitrarily.
 - Rest 24 obtained using inverse kinematics equations.
- *Step 4: Solve ODEs numerically* ODE solver in Matlab®used to obtain evolution of all generalised coordinates.

Algorithm

- Step 1: Generate the uneven terrain surface
 - Reconstruct the surface from elevation data.
 - Derivative of constraints are required $o \mathscr{C}^3$ continuity required.
 - Fourth degree B-spline surface using Matlab®Spline Tool Box.
- Step 2: Form equations of motion 27 second-order ODEs.
- Step 3: Obtain initial conditions
 - Initial conditions must satisfy no-slip and holonomic constraints.
 - 3 actuated variables can be chosen arbitrarily.
 - Rest 24 obtained using inverse kinematics equations.
- *Step 4: Solve ODEs numerically* ODE solver in Matlab®used to obtain evolution of all generalised coordinates.

NPTEL, 2010 72 / 88

Algorithm

- Step 1: Generate the uneven terrain surface
 - Reconstruct the surface from elevation data.
 - Derivative of constraints are required $o \mathscr{C}^3$ continuity required.
 - Fourth degree B-spline surface using Matlab®Spline Tool Box.
- Step 2: Form equations of motion 27 second-order ODEs.
- Step 3: Obtain initial conditions
 - Initial conditions must satisfy no-slip and holonomic constraints.
 - 3 actuated variables can be chosen arbitrarily.
 - Rest 24 obtained using inverse kinematics equations.
- Step 4: Solve ODEs numerically ODE solver in Matlab®used to obtain evolution of all generalised coordinates.

NPTEL, 2010 72 / 88

NUMERICAL SIMULATIONS RESULTS

Figure 40: B-spline surface with C^3 continuity

- Synthetic elevation data
- Uneven terrain generated using Matlab®Spline Tool Box

DYNAMIC ANALYSIS NUMERICAL SIMULATION RESULTS

• Mass of platform = 10 kg, Mass of each wheel = 1 Kg.

- Maximum allowable deflection of δ_i is $\pi/4$ under self-weight $\Rightarrow k_{s_i} = 16.24$ N-m/rad and $k_{d_i} = 0.57$ N-m-s/rad.
- Initial conditions: $u_1 = 1.57$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 5.008$ m, $v_{g_1} = 1.5067$ m, $\psi_1 = -3.142$, $u_2 = 1.5648$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 4$ m, $v_{g_2} = 1.5$ m, $\psi_2 = -3.1418$, $u_3 = 1.5818$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 4.4897$ m, $v_{g_3} = 2.483$ m, $\psi_3 = -3.1419$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\phi_3 = 0$, $z_c = 2.3088$ m, $\alpha = -0.0127$, and $\beta = 0.0133$ – all angles in radians.
- All the initial values of the first derivatives are chosen to be 0.
- Inputs: $\tau_1 = -0.35$ N-m, $\tau_2 = -0.5$ N-m, and $\tau_3 = -0.001t$ N-m.

NUMERICAL SIMULATION RESULTS

- Mass of platform = 10 kg, Mass of each wheel = 1 Kg.
- Maximum allowable deflection of δ_i is $\pi/4$ under self-weight $\Rightarrow k_{s_i} = 16.24$ N-m/rad and $k_{d_i} = 0.57$ N-m-s/rad.
- Initial conditions: $u_1 = 1.57$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 5.008$ m, $v_{g_1} = 1.5067$ m, $\psi_1 = -3.142$, $u_2 = 1.5648$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 4$ m, $v_{g_2} = 1.5$ m, $\psi_2 = -3.1418$, $u_3 = 1.5818$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 4.4897$ m, $v_{g_3} = 2.483$ m, $\psi_3 = -3.1419$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\phi_3 = 0$, $z_c = 2.3088$ m, $\alpha = -0.0127$, and $\beta = 0.0133$ – all angles in radians.
- All the initial values of the first derivatives are chosen to be 0.
- Inputs: $\tau_1 = -0.35$ N-m, $\tau_2 = -0.5$ N-m, and $\tau_3 = -0.001t$ N-m.

NUMERICAL SIMULATION RESULTS

- Mass of platform = 10 kg, Mass of each wheel = 1 Kg.
- Maximum allowable deflection of δ_i is $\pi/4$ under self-weight $\Rightarrow k_{s_i} = 16.24$ N-m/rad and $k_{d_i} = 0.57$ N-m-s/rad.
- Initial conditions: $u_1 = 1.57$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 5.008$ m, $v_{g_1} = 1.5067$ m, $\psi_1 = -3.142$, $u_2 = 1.5648$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 4$ m, $v_{g_2} = 1.5$ m, $\psi_2 = -3.1418$, $u_3 = 1.5818$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 4.4897$ m, $v_{g_3} = 2.483$ m, $\psi_3 = -3.1419$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\phi_3 = 0$, $z_c = 2.3088$ m, $\alpha = -0.0127$, and $\beta = 0.0133$ – all angles in radians.

• All the initial values of the first derivatives are chosen to be 0.

• Inputs: $\tau_1 = -0.35$ N-m, $\tau_2 = -0.5$ N-m, and $\tau_3 = -0.001t$ N-m.

(本間) (本語) (本語) (二語)

NUMERICAL SIMULATION RESULTS

- Mass of platform = 10 kg, Mass of each wheel = 1 Kg.
- Maximum allowable deflection of δ_i is $\pi/4$ under self-weight $\Rightarrow k_{s_i} = 16.24$ N-m/rad and $k_{d_i} = 0.57$ N-m-s/rad.
- Initial conditions: $u_1 = 1.57$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 5.008$ m, $v_{g_1} = 1.5067$ m, $\psi_1 = -3.142$, $u_2 = 1.5648$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 4$ m, $v_{g_2} = 1.5$ m, $\psi_2 = -3.1418$, $u_3 = 1.5818$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 4.4897$ m, $v_{g_3} = 2.483$ m, $\psi_3 = -3.1419$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\phi_3 = 0$, $z_c = 2.3088$ m, $\alpha = -0.0127$, and $\beta = 0.0133$ – all angles in radians.
- All the initial values of the first derivatives are chosen to be 0.

• Inputs: $\tau_1 = -0.35$ N-m, $\tau_2 = -0.5$ N-m, and $\tau_3 = -0.001t$ N-m.

(김희) 김 국가 김 국가 영화

NUMERICAL SIMULATION RESULTS

- Mass of platform = 10 kg, Mass of each wheel = 1 Kg.
- Maximum allowable deflection of δ_i is $\pi/4$ under self-weight $\Rightarrow k_{s_i} = 16.24$ N-m/rad and $k_{d_i} = 0.57$ N-m-s/rad.
- Initial conditions: $u_1 = 1.57$, $v_1 = \frac{3\pi}{2}$, $u_{g_1} = 5.008$ m, $v_{g_1} = 1.5067$ m, $\psi_1 = -3.142$, $u_2 = 1.5648$, $v_2 = \frac{3\pi}{2}$, $u_{g_2} = 4$ m, $v_{g_2} = 1.5$ m, $\psi_2 = -3.1418$, $u_3 = 1.5818$, $v_3 = \frac{3\pi}{2}$, $u_{g_3} = 4.4897$ m, $v_{g_3} = 2.483$ m, $\psi_3 = -3.1419$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\phi_3 = 0$, $z_c = 2.3088$ m, $\alpha = -0.0127$, and $\beta = 0.0133$ – all angles in radians.
- All the initial values of the first derivatives are chosen to be 0.
- Inputs: $au_1 = -0.35$ N-m, $au_2 = -0.5$ N-m, and $au_3 = -0.001t$ N-m.

• • B • • B • B

NUMERICAL SIMULATIONS RESULTS

point, wheel centre and platform centre

Figure 42: Variation of δ_1 and δ_2

• Uneven terrain – δ_1 and δ_2 varies automatically to avoid slip.

Figure 43: Satisfaction of holonomic constraints in dynamics

Figure 44: Slip velocities at wheel-ground contact points for three wheels

- All constraints are satisfied at least up to 10^{-7} m.
- Three-wheeled mobile robot can traverses uneven terrain without slip!!

• Uneven terrain - loss of vehicle stability due to tip-over or roll over.

- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

OVERVIEW

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

→ ∃ →

OVERVIEW

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

→ 3 → 4 3

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

- Uneven terrain loss of vehicle stability due to tip-over or roll over.
- Tip-over Vehicle undergoes rotation resulting in reduction in number of vehicle-ground contact points.
- Mobility is lost and, if rotational motion is not arrested, vehicle overturns.
- Need a 'measure' of stability to warn operator.
- Placement of centre of mass, speed, acceleration, external forces/moments and nature of terrain determine tip-over or stability.
- Various measures of stability force-angle stability measure (Papadopoulos and Rey, 1996) used.
- Investigate stability of the earlier studied three-wheeled mobile robots with torus-shaped wheels for different conditions.

FORCE-ANGLE STABILITY MEASURE

Figure 45: Planar force-angle stability measure

- Centre of mass subjected to a net force **f**_r.
- f_r makes angle θ₁ and θ₂ with tip-over axis normals l₁ and l₂.
- Force-angle stability measure $\xi = \min\{\theta_1, \theta_2\} ||\mathbf{f}_r||$

NPTEL, 2010 78 / 88

FORCE-ANGLE STABILITY MEASURE FOR WMR

Figure 46: Force-angle stability measure for WMR

- Wheel-ground contact points \mathbf{p}_i , = $(u_{g_i}, v_{g_i}, z_i)^T$, i = 1, 2, 3 known.
- Location of centre of mass $\mathbf{p}_c = (x_c, y_c, z_c)^T$ known in $\{0\}$.
- Line joining wheel-ground contact points **a**_i, *i* = 1,2,3 are tip-over axis.

Component of net resultant force is Wheel 3 f_2^* for tip-over axis a_2 (see next slide).

- Angle θ_2 for tip-over axis \mathbf{a}_2 .
- Likewise find θ_1 for \mathbf{a}_1 and θ_3 for \mathbf{a}_3 .
- If any $\theta_i = 0$, WMR can tip-over \mathbf{a}_i .

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{\text{gravity}}$ and inertial $\mathbf{f}_{\text{inertial}}$ obtained from dynamic simulation.
 - **f**_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component **f**_i and **n**_i about tip-over axis **a**_i.
- Combine **f**_i and **n**_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

 I_i is the tip-over axis normal.

- Angle for stability measure, θ_i, angle between f^{*}_i and unit vector along I_i. Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

$$\boldsymbol{\xi}_i = \min\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\} ||\mathbf{f}_r||$$

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{gravity}$ and inertial $\mathbf{f}_{inertial}$ obtained from dynamic simulation.
 - **f**_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component **f**_i and **n**_i about tip-over axis **a**_i.
- Combine **f**_i and **n**_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

 I_i is the tip-over axis normal.

- Angle for stability measure, θ_i, angle between f^{*}_i and unit vector along I_i. Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

$$\xi_i = \min\{\theta_1, \theta_2, \theta_3\} ||\mathbf{f}_r||$$

A B M A B M

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{\text{gravity}}$ and inertial $\mathbf{f}_{\text{inertial}}$ obtained from dynamic simulation.
 - **f**_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component f_i and n_i about tip-over axis a_i .
- Combine **f**_i and **n**_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

 I_i is the tip-over axis normal.

- Angle for stability measure, θ_i, angle between f^{*}_i and unit vector along I_i. Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

$$\boldsymbol{\xi}_i = \min\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\} ||\mathbf{f}_r||$$

A B M A B M

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{\text{gravity}}$ and inertial $\mathbf{f}_{\text{inertial}}$ obtained from dynamic simulation.
 - \mathbf{f}_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component **f**_i and **n**_i about tip-over axis **a**_i.
- Combine f_i and n_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

I_i is the tip-over axis normal.

- Angle for stability measure, θ_i, angle between f^{*}_i and unit vector along I_i. Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

$$\boldsymbol{\xi}_i = \min\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\} ||\mathbf{f}_r||$$

A B M A B M

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{gravity}$ and inertial $\mathbf{f}_{inertial}$ obtained from dynamic simulation.
 - \mathbf{f}_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component **f**_i and **n**_i about tip-over axis **a**_i.
- Combine f_i and n_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

 I_i is the tip-over axis normal.

- Angle for stability measure, θ_i , angle between \mathbf{f}_i^* and unit vector along \mathbf{I}_i . Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

 $\xi_i = \min\{\theta_1, \theta_2, \theta_3\} ||\mathbf{f}_r||$

FORCE-ANGLE STABILITY MEASURE

- Net resultant force at centre of mass: $f_r = f_{\text{gravity}} + f_{\text{dist}} f_{\text{inertial}}$
 - Force due to $\mathbf{f}_{\text{gravity}}$ and inertial $\mathbf{f}_{\text{inertial}}$ obtained from dynamic simulation.
 - \mathbf{f}_{rmdist} External disturbance.
- Net resultant moment at centre of mass: $n_r = n_{\text{gravity}} + n_{\text{dist}} n_{\text{inertial}}$
- Interested in component **f**_i and **n**_i about tip-over axis **a**_i.
- Combine f_i and n_i to get a net resultant force

$$\mathbf{f}_i^* = \mathbf{f}_i + \frac{\mathbf{I}_i \times \mathbf{n}_i}{|\mathbf{I}_i|}$$

 I_i is the tip-over axis normal.

- Angle for stability measure, θ_i , angle between \mathbf{f}_i^* and unit vector along \mathbf{I}_i . Sign of θ_i determines if the net resultant force in *inside* the support polygon or not.
- Overall force-angle stability measure

$$\xi_i = \min\{\theta_1, \theta_2, \theta_3\} ||\mathbf{f}_r||$$

NUMERICAL SIMULATION RESULTS

• Geometry, mass and inertial parameters same as in dynamic analysis

- Mass of platform = 10 kg and Mass of each wheel = 1 kg.
- Spring constant = 16.24 Nm/rad and damping = 0.57 Nms/rad.
- Various terrains: Curved path on flat terrain, two rear wheels on two different planes and uneven terrains.
- For each chosen paths and/or input torques, compute at every instant of time *t*
 - Net resultant force \mathbf{f}_r at centre of mass.
 - Net resultant moment \mathbf{n}_r at centre of mass.
 - Compute tip-over axis \mathbf{a}_i and normal \mathbf{I}_i for i = 1, 2, 3
 - Compute **f**^{*}_i
 - Compute force-angle stability measure ξ_i .

NUMERICAL SIMULATION RESULTS

- Geometry, mass and inertial parameters same as in dynamic analysis
 - Mass of platform = 10 kg and Mass of each wheel = 1 kg.
 - Spring constant = 16.24 Nm/rad and damping = 0.57 Nms/rad.
- Various terrains: Curved path on flat terrain, two rear wheels on two different planes and uneven terrains.
- For each chosen paths and/or input torques, compute at every instant of time *t*
 - Net resultant force \mathbf{f}_r at centre of mass.
 - Net resultant moment \mathbf{n}_r at centre of mass.
 - Compute tip-over axis \mathbf{a}_i and normal \mathbf{I}_i for i = 1, 2, 3
 - Compute **f**^{*}_i
 - Compute force-angle stability measure ξ_i .

NUMERICAL SIMULATION RESULTS

- Geometry, mass and inertial parameters same as in dynamic analysis
 - Mass of platform = 10 kg and Mass of each wheel = 1 kg.
 - Spring constant = 16.24 Nm/rad and damping = 0.57 Nms/rad.
- Various terrains: Curved path on flat terrain, two rear wheels on two different planes and uneven terrains.
- For each chosen paths and/or input torques, compute at every instant of time *t*
 - Net resultant force \mathbf{f}_r at centre of mass.
 - Net resultant moment \mathbf{n}_r at centre of mass.
 - Compute tip-over axis \mathbf{a}_i and normal \mathbf{I}_i for i = 1, 2, 3
 - Compute **f**^{*}_i
 - Compute force-angle stability measure ξ_i .

NUMERICAL SIMULATION RESULTS - FLAT PLANE

Figure 47: Curve path on a plane

Figure 48: Stability margin for curve path on a plane

- Actuator torques: $au_1 = -0.5$ N-m, $au_2 = -0.75$ N-m, $au_3 = -0.004t$ N-m.
- As the WMR turns, stability margin reduces.

ASHITAVA GHOSAL (IISC)

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

NPTEL, 2010 82/88

NUMERICAL SIMULATION RESULTS – INCLINED PLANE

Figure 49: Path traced by WMR on incline plane

Figure 50: Stability margin for path on an inclined plane

- Input torques: $\tau_1 = -2.4$ N-m, $\tau_2 = -4$ N-m and $\tau_3 = -0.08t$ N-m.
- Initially least stability about axis 2 As the WMR turns, tip-over starts shifting from axis 2 to axis 1 \rightarrow stability increases.

ASHITAVA GHOSAL (IISC)

NPTEL, 2010 83 / 88

NUMERICAL SIMULATION RESULTS – UNEVEN TERRAIN

Figure 51: WMR climbing obstacle on a straight path

Figure 52: Stability margin along straight path

- Input torques: $\tau_1 = -4$ N-m, $\tau_2 = -4.0$ N-m and $\tau_3 = -0.0$ N-m.
- WMR is able to negotiate obstacle on uneven terrain without tip-over.

NUMERICAL SIMULATION RESULTS – UNEVEN TERRAIN

Figure 53: Path traced by WMR on an uneven terrain

- Input torques: $\tau_1 = -4$ N-m, $\tau_2 = -4.0$ N-m and $\tau_3 = -0.0$ N-m.
- ξ reduces while climbing second peak, tip-over occurs about axis 1.
- Simulation *strictly* not valid after the vertical line wheel slip increases to more than 10^{-3} m!

ASHITAVA GHOSAL (IISC)

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN

SUMMARY

• A three-wheeled mobile robot with torus-shaped wheels.

- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN

SUMMARY

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN

SUMMARY

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN 🥁

SUMMARY

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.
KINEMATICS AND DYNAMICS OF WMR ON UNEVEN 🥁

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN 🤐

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN 🤐

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

KINEMATICS AND DYNAMICS OF WMR ON UNEVEN 🤐

- A three-wheeled mobile robot with torus-shaped wheels.
- Rear wheels with passive lateral tilting capability.
- Modeled as an instantaneous parallel robot with 3 DOF.
- Solution of direct and inverse kinematics by integration.
- Dynamic modeling and simulation.
- Simulation show the capability of traversing uneven terrain without slip.
- Use of force-angle stability measure for tip-over stability.
- Tip-over stability studied for three-wheeled mobile robot for various terrains.

OUTLINE

CONTENTS

2 Lecture 1

• Wheeled Mobile Robots on Flat Terrain

3 LECTURE 2*

• Wheeled Mobile Robots on Uneven Terrain

4 LECTURE 3*

• Kinematics and Dynamics of WMR on Uneven Terrain

MODULE 9 – ADDITIONAL MATERIAL

• Problems, References and Suggested Reading

- Simulation movies in ADAMS for a three-wheeled mobile robot Movie clip 1 and Movie clip 2.
- Exercise Problems
- References & Sugested Reading