Exercise Problems for Module 2

- [**P2.1**] The position vectors of three points, not lying on a line, on a rigid body $\{B\}$, are given by ${}^{A}\mathbf{p}_{1}$, ${}^{A}\mathbf{p}_{2}$, and ${}^{A}\mathbf{p}_{3}$ with respect to a fixed coordinate system $\{A\}$. Obtain the rotation matrix ${}^{A}_{B}[R]$ in terms of the three position vectors.
- [**P2.2**] Figure 1 shows two orientations of a commonly used dice. The frames $\{A\}$ and $\{B\}$ are as shown and for clarity the origins are *not* shown coincident. Estimate a) the rotation matrix ${}_B^A[R]$, b) the equivalent $(\hat{\mathbf{k}}, \phi)$, and c) the X Y Z Euler angles which can take $\{A\}$ to $\{B\}$. For part a), use of a 3D CAD software to draw the dice in the two orientation may be helpful.

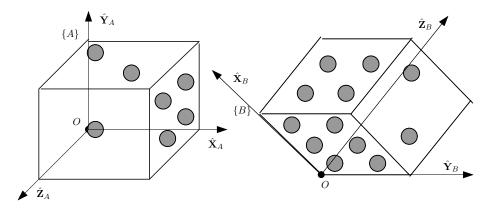


Figure 1: Two orientations of a dice

[**P2.3**] Consider a vector ${}^{A}\mathbf{Q}$ being rotated about the vector $\hat{\mathbf{k}}_{A}$ by an angle θ to form the vector ${}^{A}\mathbf{Q}'$. Show

$$^{A}\mathbf{Q}' = ^{A}\mathbf{Q}\cos\theta + \sin\theta(^{A}\hat{\mathbf{k}}\times^{A}\mathbf{Q}) + (1-\cos\theta)(^{A}\hat{\mathbf{k}}\cdot^{A}\mathbf{Q})^{A}\hat{\mathbf{k}}$$

This is known as *Rodrigues'* formula.

- [P2.4] Use the Rodrigues' formula to derive the expressions given in equation (10) in Lecture 1.
- [**P2.5**] Consider three successive rotations of $[{}^{A}\hat{\mathbf{X}}, \theta_{1}]$, $[{}^{A}\hat{\mathbf{Y}}, \theta_{2}]$, and $[{}^{A}\hat{\mathbf{Z}}, \theta_{3}]$ note the rotations are about the axis of $\{A\}$. Derive the rotation matrix ${}^{A}_{B}[R]$. (Hint: Transform the second and third rotation axes, $\hat{\mathbf{Y}}_{A}$ and $\hat{\mathbf{Z}}_{A}$ to the moving $\{B\}$ and use equation (10) in Lecture 1).

- [**P2.6**] Show that the rotation matrix obtained in [**P2.5**] above is the same as 3-2-1 (or Z-Y-X) Euler angles about the moving axis. Explain why this is so.
- [**P2.7**] If the rotation angle is small, i.e., $\sin \phi = \phi$ and $\cos \phi = 1$ holds, then obtain ${}_B^A[R]$ from equation (10). Using this result, show two infinitesimally small rotations commute.
- [**P2.8**] Obtain expressions for r_{ij} , i = 1, 2, 3, in terms of the four Euler parameters, $\epsilon_1, \epsilon_2, \epsilon_3$ and ϵ_4 .
- [**P2.9**] Figure 2 shows a commonly used dice in two locations. The origin of $\{B\}$ with respect to O_A is as shown in figure 2. The frames $\{A\}$ and $\{B\}$ are as shown. Estimate ${}_B^A[T]$. Use of a 3D CAD software may be helpful in visualization.

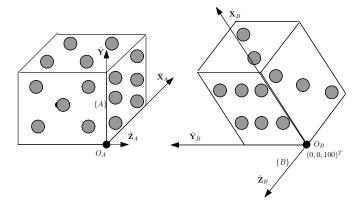


Figure 2: Two locations of a dice

- [P2.10] Assign coordinate systems and obtain the D-H parameters for the robot shown in figure 3. The arrangement of the non-intersecting joints at the wrist is shown on the right-hand side of the figure. The arrangement of the first three joints is similar to the PUMA 560 manipulator shown in figure 16 in Lecture 3.
- [P2.11] Obtain the D-H parameters for the Stanford Arm shown in figure 4 below.
- [P2.12] Obtain the transformation matrices for the robots given in Problems P2.10 and P2.11.



Figure 3: The IGM Robot with non-intersecting wrist

[P2.13] In the example of 3- degree-of-freedom manipulator, assume that the top and bottom platforms are both equilateral triangles of sides a and b, respectively. Consider $\{Top\}$ fixed at the centroid of the top (moving) platform and the $\{Base\}$ fixed at the centroid of the bottom (fixed) platform as discussed in the example. Obtain $^{Base}_{Top}[T]$ in terms of a, b and the D-H parameters of each leg as given in the example. (Hint: The centroid is given by $(1/3)(^{Base}\mathbf{S}_1 + ^{Base}\mathbf{S}_2 + ^{Base}\mathbf{S}_3))$

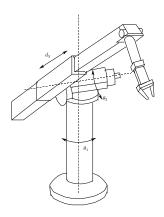


Figure 4: The Stanford arm