
Exercise Problems for Module 3

[P3.1] Determine the expression for the area of the workspace of 2R manip-
ulator with l1 and l2. Assume that l1 and l2 can be changed with
l1 + l2 = constant. Show that l1 = l2 for maximum workspace.

[P3.2] Sketch the workspace of planar 2R manipulator with −π/2 ≤ θi ≤
π/2, i = 1, 2.

[P3.3] For the planar 3R manipulator, discussed in Lecture 3, verify numeri-
cally that for a point (x, y) chosen in the dexterous region, i.e., between
circles of radius l1+ l2− l3, and l1− l2+ l3, the inverse kinematics can
be solved with arbitrary ϕ. Use l1 = 5, l2 = 3 and l3 = 1.

[P3.4] Obtain the D-H parameters for the RRR manipulator shown in fig-
ure ??. Derive expressions for the (x, y, z) coordinates of the point P
on the manipulator, with respect to {Base}, as a function of (θ1, θ2, θ3).
Derive the expressions for θ1, θ2, and θ3 for a given (x, y, z)T .
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Figure 1: A RRR Manipulator

[P3.5] Assign coordinate systems, obtain D-H parameters and derive expres-
sions for the (x, y, z) coordinates of the point P , on the manipulator,
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shown in figure ??, as a function of (θ1, θ2, θ3). Derive the expressions
for θ1, θ2, and θ3 for a given (x, y, z)T .
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Figure 2: A different RRR Manipulator

[P3.6] Derive the direct and inverse kinematics for Stanford Arm shown in
Exercise Problems in Module 2.

[P3.7] Show that the expressions for θ1, θ2 and θ3 for a PUMA 560 robot can
also be obtained in the form

θ1 = Atan2(O6y, O6x)−Atan2(d3,±
√
O6

2
x +O6

2
y − d23)

θ3 = Atan2(a3, d4)−Atan2(K,±
√
a23 + d24 −K2)

θ2 = Atan2[(−a3 − a2c3)O6z − (c1O6x + s1O6y)(d4 − a2s3),
(a2s3 − d4)O6z + (c1O6x + s1O6y)(a3 + a2c3)]− θ3

where

K = (1/2a2)(O6
2
x +O6

2
y +O6

2
z − a22 − a23 − d23 − d24)

and Atan2(y, x) is the four-quadrant tan−1 function.

[P3.8] Obtain other inverse kinematics solutions by using different initial
guesses for the 0

6[T ] given for the non-intersecting wrist robot.
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[P3.9] Derive the inverse kinematics equations of a SCARA manipulator
shown Lecture 3 and sketch the workspace of the SCARA manipu-
lator.

[P3.10] Take a straight line path in the workspace and plot θi when joint ro-
tations are limited for the redundant planar 3R manipulator. Assume
−120◦ ≤ θi ≤ +120◦, i = 1, 2, 3, and the link lengths are 5, 3, and 1
units, respectively.

[P3.11] Take a straight line path in the workspace and evaluate θi for a re-
dundant planar 4R manipulator. Assume −120◦ ≤ θi ≤ +120◦, i =
1, 2, 3, 4, and the link lengths are 5, 2.5, 1, and 0.5 units, respectively.
Plot the θi’s and compare with problem P3.10.

[P3.12] The equations of two circles with centre (ai, bi), i = 1, 2 and radii
ri, i = 1, 2 are

(x− ai)
2 + (y − bi)

2 = r2i , i = 1, 2

Transform (x, y) to homogeneous coordinates x = x/w and y = y/w.
Obtain expressions for two regular points of intersection with w = 1.
With w = 0, obtain the expressions for the line at ∞ and the two more
solutions at infinity. Show that they are independent of the centre and
radius of the circles.

[P3.13] Obtain the Bezout matrix for two polynomials, P (x) =
∑4

i=0 aix
i and

Q(x) =
∑2

i=0 bix
i.

[P3.14] Determine the inverse kinematics equations for six degree of freedom
RRPRRR manipulator analogous to the 14 equations for a 6R manip-
ulator discussed in the text.
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