
Exercise Problems for Module 7

[P7.1] Obtain the coefficients of a cubic polynomial

θ(t) = a0 + a1t+ a2t
2 + a3t

3

if θ(0), θ̇(0), θ̈(0) and θ(tf ) are specified.

[P7.2] Obtain expressions for the six coefficients of a quintic polynomial

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

when the position, velocity and acceleration are specified at t = 0 and
t = tf .

[P7.3] Using the numerical values of Case 2 Example (Figure 4), assume that
θ̈i are specified at the initial, final and via points as

θ̈1(0) = −2.0834, θ̈1(2) = 11.6662, θ̈1(3) = −110.8336

The velocity at the via point is also specified as

θ̇1(2) = 19.5833,

Plan a trajectory using quintic polynomials between t = 0 and t = 3.
What is the difference between this trajectory and the one obtained
in Case 2 Example (Figure 4)?

[P7.4] Assume that the accelerations at the initial and final times are

θ̈1(0) = −5.0, θ̈1(3) = −100.0

with all other specifications the same as in P7.3 and case 2 Example
(Figure 4). Plan a trajectory using quintic polynomials between t = 0
and t = 3. What is the difference between this trajectory and the one
obtained in P7.3.

[P7.5] The tip of a planar 2R manipulator is to trace a straight line in its
workspace. Write a Matlab program to plan a smooth cubic trajectory
for known link lengths and given initial and final (x, y) and (ẋ, ẏ) such
that the tip of the planar 2R manipulator exactly traces a straight
line. Plot x, y, θ1, θ2 and their derivatives as a function of time. Use
l1 = l2 = 1.0 m.
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[P7.6] For the θ1, θ2 and their derivatives obtained in P7.5, using the dy-
namic equations of motion obtained in Module 6, obtain the torques
τ1 and τ2 as a function of time. Where is the torque largest? Of [M]Θ̈,
the Coriolis/centripetal term and the gravity term, whose contribution
is the largest?

[P7.7] The tip of a planar 2R manipulator is to trace a full circle in its
workspace with centre at (a, b) and radius r in 1.0 second. Assume
the full circle is inside the workspace and at the start and final time,
the Cartesian velocities are zero. Write a Matlab program to plan
a smooth cubic trajectory for known link lengths. Plot x, y, θ1, θ2
and their derivatives as a function of time. Use l1 = l2 = 1.0 m and
(a, b) = (0.5, 0.5) and r = 0.5.

[P7.8] As in P7.7, the tip of the 2R manipulator is to trace a circle in its
workspace. Instead of a cubic trajectory, we can also assume the pa-
rameter θ(t) used to describe the circle in the X−Y plane as A sin(ωt),
where A and ω are chosen to satisfy initial and final conditions. Plot
θ1(t), θ2(t) and their derivatives as a function of time for this case.
Comment on the difference between the joint trajectories obtained
this way and in P7.7.

[P7.9] For the θ1, θ2 obtained from P7.8, using the dynamic equations of
motion obtained in Module 6, obtain the torques τ1 and τ2 as a function
of time. Where is the torque largest for the trajectory obtained using
A sin(ωt)? Of [M]Θ̈, the Coriolis/centripetal term and the gravity
term, whose contribution is the largest?

[P7.10] Write a Matlab program to generate smooth cubic trajectories in the
Cartesian space for the end-effector of the PUMA 560 robot discussed
in Modules 2 and 3. Use the dimensions given in Module 3 and test
your program for simple linear and circular trajectories.

[P7.11] For the single-link manipulator discussed in Lecture 2, choose J =
K = F = 1, Kp = 1, and θd(t) as a step input. Vary Kv between
1 and 3 and numerically obtain the plots of θ(t). What happens at
Kv = 2? Note: This problem can be done by numerically solving the
ordinary differential equation or by using tool boxes in Matlab (see
Control Tool Box or Simulink).

[P7.12] For the single link manipulator in Lecture 2, choose J = K = F = 1,
Kp = 1 and Kv = 2. Assume a step input for θd and add a constant
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disturbance Td = 0.1. What is the plot of θ(t)? Next consider a PID
controller with everything else remaining the same. Vary the integral
gain Ki and plot θ(t) for different Ki’s. For what value of Ki is the
system unstable? Note: As in problem P7.11, one can use Matlab
and its tool boxes for numerical simulation.

[P7.13] Consider the non-linear dynamical system

ẍ+ 7ẋ2 + xẋ+ x3 = u(t)

where u(t) is the control input. Design a control system using the
concepts given in Lecture 3 such that the error response is critically
damped and the natural frequency ωn is 1 rad/sec. Draw a block
diagram of the system.

[P7.14] A researcher has proposed the following model-based control scheme
for a serial manipulator:

τ = [M(q)]q̈d +C(q, q̇) +G(q)

+[Kp](qd − q) + [Kv](q̇d − q̇)

where [Kp] and [Kv] are positive-definite gain matrices and the other
symbols have the same meaning as in Lecture 3. Draw a block diagram
of the proposed controller along the lines of Figure 13 (Lecture 3).
What is the error equation? What is the possible advantage of this
scheme? What are the possible disadvantages?

[P7.15] Choose a circular trajectory for the planar 2R manipulator as discussed
in exercise problem P7.9. Using the numerical data given in Lecture 3
for the 2R manipulator, simulate its motion for a PD and model-based
(with estimates) controller. Use the symbolic equations of motion
derived for a planar 2R manipulator in Module 6.

[P7.16] A planar 2R manipulator is to trace an arc of a circle whose paramet-
ric equation is given by x = l0 + l3 cosϕ and y = l3 sinϕ, where l0 and
l3 are constants, and π/2 ≤ ϕ ≤ π. Following the developments in
Lecture 4, determine the following:

a) the symbolic expressions of the terms in the equation of motion as
a function of ϕ
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b) for an arbitrarily chosen τ , verify numerically that the tip actu-
ally traces a circle. The numerical data pertaining to the planar 2R
manipulator given in Lecture 3 (simulations) can be used. Choose an
appropriate l0 and l3 such that the arc of the circle can be traced by
the tip of the 2R manipulator (Hint: See Module 4 for conditions on
link lengths of a planar four-bar mechanism).

[P7.17] The tip of a planar 2R manipulator is to move along a slot as shown
in Figure 1. Following the developments in Lecture 4 determine
a) the symbolic expressions for the Jacobian [Jh] and
b) the symbolic expressions for τn and τϕ.
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Figure 1: A planar 2R manipulator

[P7.18] For the four-bar mechanism simulated in Module 6, we wish to rotate
θ1 from 0 to 150 degrees in 15 seconds with θ̇1 being zero at t = 0
seconds and t = 15 seconds. Instead of the spring, assume that the
actuation is by a DC permanent magnet motor and all other mass and
geometrical data remain the same as in four-bar simulation example
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in Module 6. Design a model-based controller such that the motion is
critically damped along the trajectory.
From the simulation, what is the maximum torque during the motion?
If a simple PD controller is used with the same gains as in the model-
based controller, what is the maximum torque during the simulation?

[P7.19] For the planar 2R manipulator, obtain the symbolic expressions for
the Cartesian mass matrix, the Cartesian Coriolis/centripetal term,
and the Cartesian gravity term.

[P7.20] Figure 2 shows a manipulator tightening a screw. What are the natural
and artificial constraints?
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Figure 2: A manipulator tightening a screw

[P7.21] Show that
[Ṁ(q)]− 2[C(q, q̇)]

is skew-symmetric by considering expression of Cij derived in Module
6.
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[P7.22] Show that the control scheme

τ = − ̂[M(q)][ [Kp]q+ [Kv]q̇] +G(q)

for a multi-degree-of-freedom manipulator gives asymptotical stability.
The matrix ̂[M(q)] is positive definite and is an estimate of the mass
matrix for the multi-degree-of-freedom manipulator.
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