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Abstract. In this paper, we consider a modified Gough-Stewart platform
(MGSP) where two groups of three legs meet at two concentric circles on both
top and bottom platforms. The geometry of the MGSP is chosen such that all the
first six natural frequencies are equal for a typical payload mounted on the top
platform. Additionally, in the top platform, made up of an aluminum honeycomb
sandwich, the empty cells of the honeycomb core are filled with damping parti-
cles (DPs) to introduce passive damping in the system and to limit the resonance
responses. A finite element model (FEM) of the MGSP is developed to quantify
the performance in terms of frequency response functions (FRF), resonance
peaks and the damping introduced by the damping particles. The FEM model of
the MGSP is combined with the discrete element model (DEM) of the damping
particles to compute the effect of the particles on the overall dynamics and damp-
ing behavior of the platform. The effect of DPs on the transfer function is evalu-
ated by solving the equations of motion of the DPs and the FEM model of the
MGSP simultaneously. Finally, the FRF between the bottom platform and the
mass center of the payload is computed for assessing the effectiveness of DPs,
the transfer functions between the base excitation and mass center of the payload
with respect to four inputs — sine swept inputs X, Z, 8,, and 8, applied separately
at the base of the platform — were computed for 25%, 50%, 75% and 93% fill
fractions. The peaks at resonances progressively decrease as the fill fraction was
increased. For all the modes, it was seen that the damping introduced by damping
particles results in the splitting of the modes and the formation of anti-resonance
at resonance peaks. The damping introduced by the particles is more effective in
longitudinal direction ||Z/Z]|| where there is a reduction from 25 to 8 with in-
creasing fill fractions from 25% to 93%. The cross-axis transfer functions also



seen to come down from 98 and 10 to 75 and 5 along the X-axis and Y-axis,
respectively.

Keywords: Modified Stewart platform, multi-axis vibration control, Particle
impact damping.

1 Introduction

The Gough-Stewart platform (GSP) is commonly used in a wide range of applications
such as flight simulators, pointing mechanisms, machine tools, force-torque sensors,
precision surgery [1, 2], multi-axis vibration isolation [3, 4], etc. The Gough-Stewart
platform consists of a movable top platform connected to a base platform by six legs.
The length of the legs can be changed to provide a desired position and orientation of
the top platform. The design of GSP has been based on various performance criteria
such as load-carrying capacity, workspace requirements, range of motion dexterity and
isotropy. In the context of kinematics, at an isotropic configuration, the velocity (linear
and angular) distribution is a sphere, and the GSP can move with equal ‘ease' in all
directions at these configurations [5], and due to this reason, isotropy is a desired feature
in a design. Kinematic isotropy is related to the condition number of a manipulator
Jacobian matrix, and several researchers have attempted to design a GSP to obtain kin-
ematic isotropy [6]. In the context of static forces, at an isotropic configuration, the
GSP can resist forces and moments equally well in all spatial directions. In the study of
statics of the GSP, the so-called force transformation matrix [7, 8] is used instead of the
manipulator Jacobian matrix, and again, the goal is to find conditions for which the
force transformation matrix has identical singular values. In most of the above work,
the researchers discuss various approaches to avoid a basic problem in manipulator Ja-
cobian and force transformation matrices, namely the dimensions of the linear and an-
gular velocity or that of the forces and moments are not the same. In reference [8], the
authors derive algebraic conditions for separate force and moment isotropy and claim
that it is not possible to obtain identical singular values for both force and moment parts
of the force transformation matrices. The dynamic isotropy (DI), the condition of the
platform where all the eigenvalues are equal [9], is an important criterion in design of
vibration isolator. The dynamic isotropy index is defined as DIl = w45/ Wmin 1 the
ratio, as indicated, of the largest to the smallest natural frequency of the GSP. The ge-
ometry and inertia conditions for complete dynamic isotropy (i.e., DI = 1) of a GSP
is practically not realizable.

In a modified version of the GSP (MGSP), the anchorage points on each platform
lie on two circles in contrast to a single circle in the GSP. A set of three legs, which are
120° apart, are connected to each circle -- this is based on a concept first presented in
[10]. An MGSP with ideal joints and rigid links is known to give the configurations
that have complete dynamic isotropy and such an MGSP can be fabricated for real ap-
plications. An MGSP with flexural hinges, usually used to avoid friction at the joints,
increases the DII or the modal spread. However, the new configurations of the MGSP
with flexural joints with DII = 1 also exists [11].



In this paper, we assess the vibration isolation performance of a complete dynamic
isotropic MGSP with flexural joints, metallic bellows in the leg for stiffness and a top
platform made up of an aluminum honeycomb sandwich (see Fig. 1). The empty cells
of the core of the honeycomb sandwich are filled with damping particles to introduce
damping in the system and thereby limiting the resonance responses. The performance
of the MGSP has been quantified in terms of frequency response functions (FRF), res-
onance peaks and the damping introduced by the damping particles.

A finite element model (FEM) of the MGSP, with the bellows and flexures, top and
bottom platforms and connectors were developed in ABAQUS® software. The shell
elements S3R were used to mesh the bellows, flexures, and top and bottom platforms.
The in-between connectors were model using the solid tetrahedral C3D10 ele-
ments[12]. An axis-symmetric payload was modeled using a lumped mass of my,;; =

10 kg, with in plane inertias If,lcd = I;,’}l,d = 0.066 kg-m?, and out of plane inertia of
Izpzld = 0.1230 kg-m?. The inertia values are given with respect to a coordinate system
with the origin at the center of mass of the payload and axis are parallel to the global
axis in its natural pose. The center of mass (CM) of the payload is assumed to be located
at 50 mm above the center of the payload platform. The lumped payload mass was
connected to the top platform with beam-type multi-point constraint (MPC). The damp-
ing particles were modelled using the discrete element method (DEM) wherein the
equations of motion of the particles are obtained using Newton’s second law. Whenever
the damping particles come into contact with the top platform, the contact forces evolv-
ing in the process are modelled using dissipative Hertz contact theory. The FEM model
of the MGSP and DEM model of the damping particle are coupled through contact
forces and were solved simultaneously using the Runge-Kutta method in the
MATLAB® (see details of the FEM-DEM coupled model in [13, 14]). Finally, the FRF
between the mass center of the payload and the bottom platform was computed for
assessing the effectiveness of DPs.

2 Mathematical formulations

The governing finite element equations of the MGSP can be written as
My + Cx + Ky = ¢ + f¢ (1)

where M, C and K are mass, damping and stiffness matrices respectively. f¢ represents
the particle damping forces and f€ is the external excitation forces. The assembled dis-
placement vector ¥ consists of the nodal displacement vectors. The ¥ is arranged such
that all the nodal displacements of the bottom platform are in the vector ;, and remain-
ing nodal displacements are in the vector X so that ¥ = [Xs, X»]. Accordingly, the other
matrices in Eq. 1 can be partitioned as [15]

Mss Msb ] {Xs} Css Csb ] {Xs } Kss Ksb] Xs {f_f} fg
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the base acceleration is enforced on the X, degree-of-freedoms (DOFs). The first part
of Eq. 2 is given as

M X5 + CosXs + KgsXs = fg + £ — MgpXp + CopXp + KopXp) (€))

Top platform

Bottom platform

L’! (a) MGSP

(b) Cross blade flexure (c) Metallic Bellow (d) Honeycomb top platform

Fig. 1. A modified Gough-Stewart platform (MGSP) with the main components

Using the transformation ¥, = ®4q,, where the modal matrix ®; is obtained from the
eigenvalue problem: (K, + Q2M,,)®, = 0 and invoking the orthogonality relation
with respect to mass and stiffness matrix and assuming viscous damping i.e. C;, X, =
0, Eq. 3 can be written as.

4+200q + 0%q = @7 (f + ££) — T (Mg, X + Koy Xi) 4)

In Eq. 3 the damping particle force f¢ is related to the motions of damping particles
impacting against the walls of the honeycomb cell. Let the damping particle i in cells
of honeycomb be in contact with n; number of neighboring particles and n, points with
cell walls, then the equations of motion can be written as

m;P; = —m;g + Z;}il fi;+ X0, fow ©)]
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16, = Y72, (Ti - 7j) ng; X £ + N0 (1 — S0y X fiyy (6)

where m; and I are the mass and inertia matrix, respectively, of the particle i while P;
is the position vector and @; is the angular displacement. g, 7;, §;; and f;; represent
acceleration due to gravity, radius of the damping particle i, local indention and contact
force between particles i and j, respectively. The Egs. 4-6 are coupled and must be
solved together. For a base excitation problem, it is assumed that the base is excited
with a known signal, and thus ¥, and ¥, is a known priori. The modal vector and
natural frequencies along with the sub-matrices appearing in Eq. 4 were obtained from
the FEM model. The integration of Eqs. 4-6 was carried out in MATLAB® using a
Runge-Kutta method (ODE-45).

3 Numerical simulations

The MGSP is excited at the base platform by a sine sweep input signal of constant
magnitude and frequency ranging from 5 Hz to 300 Hz. The input can be written math-
ematically as

u = sin (27r (fs + —(fe"d_fS)t) t) (7)

2tend

where f;, fona and t.,4 are respectively, the start frequency, the end frequency and the
sweep duration. The input signal u can be a linear or angular displacement. A slice of
the normalized input signal is given in Fig. 2.
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Fig. 2. Input swept sine signal

The input displacement swept sine signal in X, Z, 8y and 6, directions were applied at
the center of the base platform separately, and the output response at the mass center of



the payload was computed using the coupled equations of motion. Transfer functions
described in the following sections were obtained from the time domain signals using
the tfestimate function from the signal processing toolbox of MATLAB® for the vari-
ous amounts of damping particles filled in the cells of the top platform.

3.1  Effect of fill fraction on FRFs with longitudinal axis (Z-axis) input

Fig. 3-5 show the transfer functions between the displacement sine swept input ap-
plied in the longitudinal direction (Z-axis) and the displacement responses in X-axis,
Y-axis and Z-axis, respectively. The four cases considered are 25%, 50%, 75% and
93% fill fractions -- the fill fraction is defined as the ratio of the filled volume of the
honeycomb cell to the total volume of the cell. The damping particles are uniformly
filled in the empty cells of the honeycomb core of the top platform. A 25% fill fraction
implies that all the cells of the top platform are filled to 25% of the thickness. The
amplification at resonance in the longitudinal direction is progressively decreasing --
as seen in Fig.3 that the amplification reduces from 25 to 8 as the fill fraction is in-
creased from 25% to 93%. The maximum reduction in the response at resonance hap-
pens when the fill fraction is between 85% to 93% (when the fill fraction is near 100%,
the damping particles do not have space for motion and hence a lesser number of colli-
sions and subsequently less dissipation of energy take place). It can be seen that the
longitudinal mode at 30.43 Hz has split into two modes, and there is an anti-resonance
at that frequency after the introduction of damping particles. The cross-axis amplifica-
tions at resonance have reduced, but the reduction is not as much as along the Z-axis.
The ||X/Z|| amplifications have come down from 98 to 75; and ||Y/Z|| amplifications
have come down from 10 to 5 when the fill fractions were varied from the 25% to 93%.
It can be seen there is also splitting of modes and introduction of two anti-resonances
in the isolation region, which is advantageous.
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Fig. 3. Transfer function between Z-axis input and Z-axis output
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Fig. 4. Transfer function between Z-axis input and Y-axis output
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Fig. 5. Transfer function between Z-axis input and X-axis output

3.2  Effect of fill fraction on FRFs with lateral axis (X-axis) input

The transfer functions between the displacement sine swept input applied along the X-
axis at the base platform and the output displacement responses in the X-axis, Y-axis
and Z-axis at the mass center of the payload, respectively, are shown in Fig. 6-8. The



four cases considered for the damping particles are 25%, 50%, 75% and 93% fill frac-
tions. The resonance responses for in X-axis and Y-axis are mildly reduced, split and
shifted for X-axis excitation. The ||X/X|| FRFs reduced from an amplification of 164
at 25% fill fraction to 130 at 93%. The cross-axis FRFs ||Y/X]| and ||Z/X]| shows a mar-
ginal improvement in the damping at 93% fill fraction. The undamped to the damped
reduction in amplitudes is from 14 to 8.8 and from 9.9 to 7.5 for the ||Y/X]|| and ||Z/X]|
transfer function, respectively. The resonance peak amplifications are seen to increase
as the fill fraction is increased from 25% to 50%. The likely reason for this could be
the in-phase momentum transfer between the top platform and DPs.
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Fig. 6. Transfer function between X-axis input and X-axis output
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Fig. 7. Transfer function between X-axis input and Y-axis output



102 ' w

— Fill fraction 0%
— Fill fraction 25%
o Fill fraction 50%
107 ¢ —— Fill fraction 75% |

— Fill fraction 93%

FRF ||Z/X]|
S

-
<
EN

N
S
[}

5 10 100 300
Frequency (Hz)

Fig. 8. Transfer function between X-axis input and Z-axis output

3.3  Effect of fill fraction on FRFs with Oy input excitation

Figs. 9-11 show the transfer functions between the input angular displacement
applied to the base platform and the angular displacement responses Oy, 6y and 6,
respectively, at the top platform. Unlike the translational cases where the input to the
cross translational and rotational directions was set zero, in this case, the Z-axis trans-
lation of the base plate was kept free to allow the rotation about the X-axis. Again, the
transfer functions for the four fill fractions of 25%, 50%, 75% and 93% were consid-
ered. As in the previous results, splitting of mode with a mild reduction in magnitude
was observed. The reduction in responses 8y, and 6y are more in comparison to the
6. The FRFs ||0x/6x]|| and ||6y/6x]|| comes down from 287 and 73 to 150 and 42,
respectively, while the reduction in ||6;/60x]|| is from 40.6 to 32. The reason for the 1.9
times and 1.7 times reduction in ||6y/0x]|| and ||6y/Ox]| respectively is due to the
movement of particles at the edge of the top platform due to rotation of the platform
about Oy and 6y axis which gives motion in Z-axis. The 6y input behavior is expected
to be similar to .
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Fig. 11. Transfer function between 8, input and 6, output

3.4  Effect of fill fraction on FRFs with 8, input excitation

The transfer functions between the torsional input 8, and responses 6y, 6y and 8,
are shown in Figs. 12-14, respectively. As expected, there is a significant reduction in
resonance amplitude in cross-axis FRFs while it is negligible in the 8, direction. The
FRF ||60x/0,]| reduces from 201 to 109 while ||6y/6,|| has come down to 140 from
251. The reason for the reduction is that the rotation of the top plate about Oy and 8y
axis involves significant motion of the cell at the outer boundary in Z-direction. Since
the particle can move in Z-directions, collisions would lead to increased dissipation. In
the torsional rotation of the top deck, there is not much scope for the movement of
damping particles, and hence the impact is negligible. The 8y and 6y rotations result in
motion in Z-direction at the location away from the axis of rotations, and because of
that the DPs move in the cells colliding and rubbing resulting in the improvement of
the damping behavior and thus the reduction in the cross-axis resonance amplitudes.
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Fig. 12. Transfer function between 6, input and 8y output
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Fig. 14. Transfer function between 6, input and 6, output

4 Conclusions

The transfer functions between the base excitation and mass center of the payload
mounted on the top platform of the MGSP, using the couple DEM-FEM equations of
motion of the MGSP, were computed. The cells of the honeycomb core of the top plat-
form were filled with damping particles. The transfer functions FRFs with respect to
four inputs, swept sine inputs X, Z, 6,, and 6, applied separately at the base of the
platform, were computed for 25%, 50%, 75% and 93% fill fractions. The behavior with
respect to inputs Y and 6y are nearly similar to X and 6,. The peaks at resonances
progressively decreased as the fill fraction was increased. For all the modes, it was seen
that the damping introduced by damping particles results in the splitting of the modes
and the formation of anti-resonance at the frequency of un-damped resonance. As the
MGSP without damping particles have all the modes at the same frequency, the splitting
at resonance happens due to the presence of close by modes resulting from the addition
of mass of the damping particle in the system. The splitting of modes and formation of
anti-resonance is advantageous as it reduces the amplification. The damping introduced
by the particles is more effective in longitudinal direction ||Z/Z|| where there is a re-
duction from 25 to 8 with increasing fill fractions from 25% to 93%. The cross-axis
transfer functions also come down from 98 and 10 to 75 and 5 along the X-axis and Y-
axis, respectively. The reduction in most of the cross-axis transfer functions was seen.
The ratio of the damped and undamped magnitude of the FRFs for 8y input is
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[1.9,1.7,1.2] and 6 input is [1.8,1.7,1.03] for 6y, Oy and 6, axis. However, it is
not effective in limiting the resonance at torsional mode ||8;/68,||. The magnitude of
the FRF ||8,/6,]|| at resonance with damping particle and without damping particle is
268.5 and 298.5, respectively.
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