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Abstract. In this paper, we consider a modified Gough-Stewart platform 
(MGSP) where two groups of three legs meet at two concentric circles on both 
top and bottom platforms. The geometry of the MGSP is chosen such that all the 
first six natural frequencies are equal for a typical payload mounted on the top 
platform. Additionally, in the top platform, made up of an aluminum honeycomb 
sandwich, the empty cells of the honeycomb core are filled with damping parti-
cles (DPs) to introduce passive damping in the system and to limit the resonance 
responses. A finite element model (FEM) of the MGSP is developed to quantify 
the performance in terms of frequency response functions (FRF), resonance 
peaks and the damping introduced by the damping particles. The FEM model of 
the MGSP is combined with the discrete element model (DEM) of the damping 
particles to compute the effect of the particles on the overall dynamics and damp-
ing behavior of the platform. The effect of DPs on the transfer function is evalu-
ated by solving the equations of motion of the DPs and the FEM model of the 
MGSP simultaneously. Finally, the FRF between the bottom platform and the 
mass center of the payload is computed for assessing the effectiveness of DPs, 
the transfer functions between the base excitation and mass center of the payload 
with respect to four inputs – sine swept inputs 𝑋, 𝑍, 𝜃௫, and 𝜃௓ applied separately 
at the base of the platform – were computed for 25%, 50%, 75% and 93% fill 
fractions. The peaks at resonances progressively decrease as the fill fraction was 
increased. For all the modes, it was seen that the damping introduced by damping 
particles results in the splitting of the modes and the formation of anti-resonance 
at resonance peaks. The damping introduced by the particles is more effective in 
longitudinal direction ||𝑍/𝑍|| where there is a reduction from 25 to 8 with in-
creasing fill fractions from 25% to 93%. The cross-axis transfer functions also 
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seen to come down from 98 and 10 to 75 and 5 along the X-axis and Y-axis, 
respectively.  

Keywords: Modified Stewart platform, multi-axis vibration control, Particle 
impact damping. 

1 Introduction 

The Gough-Stewart platform (GSP) is commonly used in a wide range of applications 
such as flight simulators, pointing mechanisms, machine tools, force-torque sensors, 
precision surgery [1, 2], multi-axis vibration isolation [3, 4], etc. The Gough-Stewart 
platform consists of a movable top platform connected to a base platform by six legs. 
The length of the legs can be changed to provide a desired position and orientation of 
the top platform. The design of GSP has been based on various performance criteria 
such as load-carrying capacity, workspace requirements, range of motion dexterity and 
isotropy. In the context of kinematics, at an isotropic configuration, the velocity (linear 
and angular) distribution is a sphere, and the GSP can move with equal `ease' in all 
directions at these configurations [5], and due to this reason, isotropy is a desired feature 
in a design. Kinematic isotropy is related to the condition number of a manipulator 
Jacobian matrix, and several researchers have attempted to design a GSP to obtain kin-
ematic isotropy [6]. In the context of static forces, at an isotropic configuration, the 
GSP can resist forces and moments equally well in all spatial directions. In the study of 
statics of the GSP, the so-called force transformation matrix [7, 8] is used instead of the 
manipulator Jacobian matrix, and again, the goal is to find conditions for which the 
force transformation matrix has identical singular values. In most of the above work, 
the researchers discuss various approaches to avoid a basic problem in manipulator Ja-
cobian and force transformation matrices, namely the dimensions of the linear and an-
gular velocity or that of the forces and moments are not the same. In reference [8], the 
authors derive algebraic conditions for separate force and moment isotropy and claim 
that it is not possible to obtain identical singular values for both force and moment parts 
of the force transformation matrices. The dynamic isotropy (DI), the condition of the 
platform where all the eigenvalues are equal [9], is an important criterion in design of 
vibration isolator. The dynamic isotropy index is defined as 𝐷𝐼𝐼 = 𝜔௠௔௫/𝜔௠௜௡ is the 
ratio, as indicated, of the largest to the smallest natural frequency of the GSP. The ge-
ometry and inertia conditions for complete dynamic isotropy (i.e., 𝐷𝐼𝐼 = 1) of a GSP 
is practically not realizable. 

In a modified version of the GSP (MGSP), the anchorage points on each platform 
lie on two circles in contrast to a single circle in the GSP. A set of three legs, which are 
120° apart, are connected to each circle -- this is based on a concept first presented in 
[10]. An MGSP with ideal joints and rigid links is known to give the configurations 
that have complete dynamic isotropy and such an MGSP can be fabricated for real ap-
plications. An MGSP with flexural hinges, usually used to avoid friction at the joints, 
increases the DII or the modal spread. However, the new configurations of the MGSP 
with flexural joints with 𝐷𝐼𝐼 = 1 also exists [11]. 
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In this paper, we assess the vibration isolation performance of a complete dynamic 
isotropic MGSP with flexural joints, metallic bellows in the leg for stiffness and a top 
platform made up of an aluminum honeycomb sandwich (see Fig. 1). The empty cells 
of the core of the honeycomb sandwich are filled with damping particles to introduce 
damping in the system and thereby limiting the resonance responses. The performance 
of the MGSP has been quantified in terms of frequency response functions (FRF), res-
onance peaks and the damping introduced by the damping particles. 

A finite element model (FEM) of the MGSP, with the bellows and flexures, top and 
bottom platforms and connectors were developed in ABAQUS® software. The shell 
elements S3R were used to mesh the bellows, flexures, and top and bottom platforms. 
The in-between connectors were model using the solid tetrahedral C3D10 ele-
ments[12]. An axis-symmetric payload was modeled using a lumped mass of 𝑚௣௟ௗ =

10 kg, with in plane inertias 𝐼௫௫
௣௟ௗ

= 𝐼௬௬
௣௟ௗ

 
= 0.066 kg-m2, and out of plane inertia of 

𝐼௭௭
௣௟ௗ

= 0.1230 kg-m2. The inertia values are given with respect to a coordinate system 
with the origin at the center of mass of the payload and axis are parallel to the global 
axis in its natural pose. The center of mass (CM) of the payload is assumed to be located 
at 50 mm above the center of the payload platform. The lumped payload mass was 
connected to the top platform with beam-type multi-point constraint (MPC). The damp-
ing particles were modelled using the discrete element method (DEM) wherein the 
equations of motion of the particles are obtained using Newton’s second law. Whenever 
the damping particles come into contact with the top platform, the contact forces evolv-
ing in the process are modelled using dissipative Hertz contact theory. The FEM model 
of the MGSP and DEM model of the damping particle are coupled through contact 
forces and were solved simultaneously using the Runge-Kutta method in the 
MATLAB® (see details of the  FEM-DEM coupled model in [13, 14]). Finally, the FRF 
between the mass center of the payload and the bottom platform was computed for 
assessing the effectiveness of DPs. 

2 Mathematical formulations 

The governing finite element equations of the MGSP can be written as 

 𝐌𝛘̈ + 𝐂𝛘̇ + 𝐊𝛘 = 𝐟௘ + 𝐟ௗ (1) 

where 𝐌, 𝐂 and 𝐊 are mass, damping and stiffness matrices respectively. 𝐟ௗ represents 
the particle damping forces and 𝐟௘ is the external excitation forces. The assembled dis-
placement vector 𝛘 consists of the nodal displacement vectors. The 𝛘  is arranged such 
that all the nodal displacements of the bottom platform are in the vector 𝛘௕   and remain-
ing nodal displacements are in the vector 𝛘௦ so that 𝛘 = [𝛘௦ , 𝛘௕]. Accordingly, the other 
matrices in  Eq. 1 can be partitioned as [15]  

 ൤
𝐌௦௦ 𝐌ୱ௕

𝐌௕௦ 𝐌௕௕
൨ ൜

𝛘̈௦

𝛘̈௕
ൠ + ൤

𝐂௦௦ 𝐂௦௕

𝐂௕௦ 𝐂௕௕
൨ ൜

𝛘̇௦

𝛘̇௕
ൠ + ൤

𝐊௦௦ 𝐊௦௕

𝐊௕௦ 𝐊௕௕
൨ ቄ

𝛘௦

𝛘௕
ቅ = ൜

𝐟௦
௘
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ௗ

𝐟௕
ௗቋ (2) 
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the base acceleration is enforced on the 𝛘௕  degree-of-freedoms (DOFs). The first part 
of Eq. 2 is given as  

 𝐌௦௦𝛘̈௦ + 𝐂௦௦𝛘̇௦ + 𝐊௦௦𝛘௦ = 𝐟௦
ௗ + 𝐟௦

௘ − (𝐌ୱ௕𝛘̈௕ + 𝐂௦௕𝛘̇௕ + 𝐊௦௕𝛘௕) (3) 

 

 

Fig. 1. A modified Gough-Stewart platform (MGSP) with the main components 

Using the transformation 𝛘௦ = 𝚽௦𝐪௦, where the modal matrix 𝚽௦ is obtained from the 
eigenvalue problem: (𝐊௦௦ + 𝛀௦

ଶ𝐌௦௦)𝚽௦ = 0 and invoking the orthogonality relation 
with respect to mass and stiffness matrix and assuming viscous damping i.e. 𝐂௜௕𝛘̇௕ =
𝟎, Eq. 3 can be written as. 

 𝐪̈ + 2ζ𝛀𝐪̇ + 𝛀𝟐𝐪 = 𝚽்(𝐟௦
ௗ + 𝐟௦

௘) − 𝚽்(𝐌௦௕𝛘̈௕ + 𝐊௦௕𝛘௕) (4) 

In Eq. 3 the damping particle force 𝐟௦
ௗ  is related to the motions of damping particles 

impacting against the walls of the honeycomb cell. Let the damping particle 𝑖 in cells 
of honeycomb be in contact with 𝑛ଵ number of neighboring particles and 𝑛ଶ points with 
cell walls, then the equations of motion can be written as 

 𝑚௜𝐏̈௜ = −𝑚௜𝐠 + ∑ 𝐟௜௝ + ∑ 𝐟௜௪
௡మ
௪ୀଵ

௡భ
௝ୀଵ   (5) 

(c) Metallic Bellow (b) Cross blade flexure 

Top platform 

Bottom platform 

(d) Honeycomb top platform 

(a) MGSP  
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 𝐈𝚯̈௜ = ∑ ቀ𝑟௜ −
ఋ೔ೕ

ଶ
ቁ 𝐧௜௝ × 𝐟௜௝ + ∑ (𝑟௜ − 𝛿௜௪))𝐧௜௪ × 𝐟௜௪

௡మ
௪ୀଵ

௡భ
௝ୀଵ  (6) 

where 𝑚௜  and 𝐈 are the mass and inertia matrix, respectively, of the particle 𝑖 while 𝐏௜  
is the position vector and 𝚯௜  is the angular displacement. 𝐠, 𝑟௜, 𝛿௜௝  and 𝐟௜௝ represent 
acceleration due to gravity, radius of the damping particle 𝑖, local indention and contact 
force between particles 𝑖 and 𝑗, respectively. The Eqs. 4-6 are coupled and must be 
solved together. For a base excitation problem, it is assumed that the base is excited 
with a known signal, and thus  𝛘̈௕ and  𝛘௕ is a known priori. The modal vector and 
natural frequencies along with the sub-matrices appearing in Eq. 4 were obtained from 
the FEM model. The integration of Eqs. 4-6 was carried out in MATLAB® using a 
Runge-Kutta method (ODE-45). 

3 Numerical simulations 

The MGSP is excited at the base platform by a sine sweep input signal of constant 
magnitude and frequency ranging from 5 Hz to 300 Hz. The input can be written math-
ematically as 

 𝑢 =  sin ቀ2𝜋 ቀ𝑓௦ +
(௙೐೙೏ି௙ೞ)௧

ଶ௧೐೙೏
ቁ 𝑡ቁ  (7) 

where 𝑓௦ , 𝑓௘௡ௗ  and 𝑡௘௡ௗ  are respectively, the start frequency, the end frequency and the 
sweep duration. The input signal 𝑢 can be a linear or angular displacement. A slice of 
the normalized input signal is given in Fig. 2. 

 

Fig. 2. Input swept sine signal 

The input displacement swept sine signal in X, Z, 𝜃௑ and 𝜃௓ directions were applied at 
the center of the base platform separately, and the output response at the mass center of 
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the payload was computed using the coupled equations of motion. Transfer functions 
described in the following sections were obtained from the time domain signals using 
the tfestimate function from the signal processing toolbox of MATLAB® for the vari-
ous amounts of damping particles filled in the cells of the top platform.  

3.1 Effect of fill fraction on FRFs with longitudinal axis (Z-axis) input 

Fig. 3-5 show the transfer functions between the displacement sine swept input ap-
plied in the longitudinal direction (Z-axis) and the displacement responses in X-axis, 
Y-axis and Z-axis, respectively. The four cases considered are 25%, 50%, 75% and 
93% fill fractions -- the fill fraction is defined as the ratio of the filled volume of the 
honeycomb cell to the total volume of the cell. The damping particles are uniformly 
filled in the empty cells of the honeycomb core of the top platform. A 25% fill fraction 
implies that all the cells of the top platform are filled to 25% of the thickness. The 
amplification at resonance in the longitudinal direction is progressively decreasing -- 
as seen in Fig.3 that the amplification reduces from 25 to 8 as the fill fraction is in-
creased from 25% to 93%. The maximum reduction in the response at resonance hap-
pens when the fill fraction is between 85% to 93% (when the fill fraction is near 100%, 
the damping particles do not have space for motion and hence a lesser number of colli-
sions and subsequently less dissipation of energy take place). It can be seen that the 
longitudinal mode at 30.43 Hz has split into two modes, and there is an anti-resonance 
at that frequency after the introduction of damping particles.  The cross-axis amplifica-
tions at resonance have reduced, but the reduction is not as much as along the Z-axis. 
The ||𝑋/𝑍|| amplifications have come down from 98 to 75; and ||𝑌/𝑍|| amplifications 
have come down from 10 to 5 when the fill fractions were varied from the 25% to 93%. 
It can be seen there is also splitting of modes and introduction of two anti-resonances 
in the isolation region, which is advantageous. 

  

Fig. 3. Transfer function between Z-axis input and Z-axis output 
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Fig. 4. Transfer function between Z-axis input and Y-axis output 

 

 

Fig. 5. Transfer function between Z-axis input and X-axis output 

3.2 Effect of fill fraction on FRFs with lateral axis (X-axis) input 

The transfer functions between the displacement sine swept input applied along the X-
axis at the base platform and the output displacement responses in the X-axis, Y-axis 
and Z-axis at the mass center of the payload, respectively, are shown in Fig. 6-8. The 

F
R

F
 ||

X
/Z

||
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four cases considered for the damping particles are 25%, 50%, 75% and 93% fill frac-
tions. The resonance responses for in X-axis and Y-axis are mildly reduced, split and 
shifted for X-axis excitation. The ||𝑋/𝑋|| FRFs reduced from an amplification of 164 
at 25% fill fraction to 130 at 93%. The cross-axis FRFs ||Y/X|| and ||Z/X|| shows a mar-
ginal improvement in the damping at 93% fill fraction. The undamped to the damped 
reduction in amplitudes is from 14 to 8.8 and from 9.9 to 7.5 for the ||Y/X|| and ||Z/X|| 
transfer function, respectively. The resonance peak amplifications are seen to increase 
as the fill fraction is increased from 25% to 50%.  The likely reason for this could be 
the in-phase momentum transfer between the top platform and DPs.  

   

Fig. 6. Transfer function between X-axis input and X-axis output 

Fig. 7. Transfer function between X-axis input and Y-axis output  
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Fig. 8. Transfer function between X-axis input and Z-axis output 

3.3 Effect of fill fraction on FRFs with 𝜽𝑿 input excitation 

Figs. 9-11 show the transfer functions between the input angular displacement 𝜃௑ 
applied to the base platform and the angular displacement responses  𝜃௑, 𝜃௒  and 𝜃௓, 
respectively, at the top platform. Unlike the translational cases where the input to the 
cross translational and rotational directions was set zero, in this case, the Z-axis trans-
lation of the base plate was kept free to allow the rotation about the X-axis. Again, the 
transfer functions for the four fill fractions of 25%, 50%, 75% and 93% were consid-
ered. As in the previous results, splitting of mode with a mild reduction in magnitude 
was observed. The reduction in responses  𝜃௑, and 𝜃௒  are more in comparison to the 
𝜃௓ . The FRFs ||𝜃௑/𝜃௑|| and ||𝜃௒/𝜃௑||  comes down from 287 and 73 to 150 and 42, 
respectively, while the reduction in  ||𝜃௓/𝜃௑|| is from 40.6 to 32. The reason for the 1.9 
times and 1.7 times reduction in ||𝜃௑/𝜃௑|| and ||𝜃௒/𝜃௑|| respectively is due to the 
movement of particles at the edge of the top platform due to rotation of the platform 
about 𝜃௑ and 𝜃௒ axis which gives motion in Z-axis. The  𝜃௒  input behavior is expected 
to be similar to 𝜃௑. 

F
R

F
 ||

Z
/X

||
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Fig. 9. Transfer function between 𝜃௑ input and 𝜃௑ output 

Fig. 10. Transfer function between 𝜃௫ input and 𝜃௒ output 
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Fig. 11. Transfer function between 𝜃௫ input and 𝜃௭ output 

3.4 Effect of fill fraction on FRFs with 𝜽𝒁 input excitation 

The transfer functions between the torsional input 𝜃௓   and responses  𝜃௑, 𝜃௒  and 𝜃௓  
are shown in Figs. 12-14, respectively. As expected, there is a significant reduction in 
resonance amplitude in cross-axis FRFs while it is negligible in the 𝜃௓ direction. The 
FRF ||𝜃௑/𝜃௓|| reduces from 201 to 109 while ||𝜃௒/𝜃௓||  has come down to 140 from 
251. The reason for the reduction is that the rotation of the top plate about  𝜃௑ and 𝜃௒  
axis involves significant motion of the cell at the outer boundary in Z-direction. Since 
the particle can move in Z-directions, collisions would lead to increased dissipation. In 
the torsional rotation of the top deck, there is not much scope for the movement of 
damping particles, and hence the impact is negligible. The 𝜃௑ and 𝜃௒  rotations result in 
motion in Z-direction at the location away from the axis of rotations, and because of 
that the DPs move in the cells colliding and rubbing resulting in the improvement of 
the damping behavior and thus the reduction in the cross-axis resonance amplitudes.  
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Fig. 12. Transfer function between 𝜃௓ input and 𝜃௑ output 

 

Fig. 13. Transfer function between 𝜃௓ input and 𝜃௒ output 
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Fig. 14. Transfer function between 𝜃௓ input and 𝜃௓ output 

4 Conclusions 

The transfer functions between the base excitation and mass center of the payload 
mounted on the top platform of the MGSP, using the couple DEM-FEM equations of 
motion of the MGSP, were computed. The cells of the honeycomb core of the top plat-
form were filled with damping particles. The transfer functions FRFs with respect to 
four inputs, swept sine inputs 𝑋, 𝑍, 𝜃௫ , and 𝜃௓  applied separately at the base of the 
platform, were computed for 25%, 50%, 75% and 93% fill fractions. The behavior with 
respect to inputs 𝑌 and  𝜃௒  are nearly similar to 𝑋 and 𝜃௫ . The peaks at resonances 
progressively decreased as the fill fraction was increased. For all the modes, it was seen 
that the damping introduced by damping particles results in the splitting of the modes 
and the formation of anti-resonance at the frequency of un-damped resonance. As the 
MGSP without damping particles have all the modes at the same frequency, the splitting 
at resonance happens due to the presence of close by modes resulting from the addition 
of mass of the damping particle in the system. The splitting of modes and formation of 
anti-resonance is advantageous as it reduces the amplification. The damping introduced 
by the particles is more effective in longitudinal direction ||𝑍/𝑍|| where there is a re-
duction from 25 to 8 with increasing fill fractions from 25% to 93%. The cross-axis 
transfer functions also come down from 98 and 10 to 75 and 5 along the X-axis and Y-
axis, respectively. The reduction in most of the cross-axis transfer functions was seen. 
The ratio of the damped and undamped magnitude of the FRFs for 𝜃௑ input  is 
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[1.9, 1.7, 1.2 ]  and  𝜃௓ input is [1.8, 1.7, 1.03] for 𝜃௑, 𝜃௒ and 𝜃௓  axis. However, it is 
not effective in limiting the resonance at torsional mode ||𝜃௓/𝜃௓||. The magnitude of 
the FRF ||𝜃௓/𝜃௓|| at resonance with damping particle and without damping particle is 
268.5 and 298.5, respectively. 
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