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Abstract 

Solar panels and large reflectors used in spacecraft are made-up of aluminum-honeycomb sandwiched between 
composite fiber reinforced plastic (CFRP) laminates. Owing to the small inherent damping and large area to 
mass ratio, such structures are susceptible to strong acoustic excitations during the initial phase of launch. In this 
paper we present an analytical assessment of the response attenuation of structures equipped with particle 
dampers. Particle damping is a passive damping technique where the vibration energy of host structure is 
dissipated by collision of damping particles kept in specially designed cavities in the host structure or in the 
containers attached to the structure. An existing analytical model, based on the discrete element method (DEM), 
is used to track the motion of each particle and inter-particle and particle-cavity interactions. The Hertz’s 
dissipative contact model and Coulomb’s friction model is incorporated in DEM to model the energy dissipation 
in normal impacts and tangential components, respectively. The vibration attenuation trend has been studied for 
location of particle dampers, size of particles, fill fraction and excitation energy. The attenuation has been 
quantified in terms of power spectral density (PSD) of the vibration responses. The analysis results show 
significant reduction in PSD for strategically placed particle dampers which could be used advantageously in the 
design of damping devices for acoustic vulnerable structures.  
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Nomenclature 

A  area of the panel     p  transient pressure 

cA  area of the coupon    q  modal coordinate 

C  damping matrix     R  cross-correlation matrix 

eC  equivalent viscous damping   r  fill fraction 

D  particle damping matrix    S  cross-power spectral density matrix 

dE  energy dissipated     w  transverse displacement 
p

f  generalized sound pressure force   w, w  velocity and acceleration 
d

f  generalized particle damping force     excitation frequency  
c

ijf  Coulomb’s friction force    i  natural frequency of plate  

H  frequency response function     modal matrix 

ih  unit impulse response function     Hertz’s damping constant 

K  stiffness matrix       indentation 

k  generalized stiffness      wave number 

nK  Hertz’s stiffness constant      damping ratio 

M  mass matrix      cN  number contacts    

m  generalized mass     pm  mass of the damping particle 

1. Introduction 

Sandwiched honeycomb composites are used as a base structural element for solar panels and reflectors. 

They usually have very high area to mass ratio and low inherent damping. Such composites exhibit very large 

response sunder acoustic excitation which in turn poses danger to the integrity of structure and solar cells 

mounted on it. It is desired that these excitation be damped and there exists a large amount of literature where 
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such effort is reported. In this work, we restrict ourselves to particle damping approaches. In particle damping, 

the damping performance is improved by inserting particle in the empty cells [1, 2] and is also called particle 

impact damping (PID) or non-obstructive particle damping (NOPD). The PID and NOPD are the passive 

vibration control techniques wherein the energy of a vibrating system is dissipated by impact and friction. The 

impact damping technologies usually involve either attaching a container filled with damping particles to a 

vibrating structure or filling with damping particle a drilled cavity in the host structure [3, 4] at appropriate 

location. The PID has been successfully used for vibration attenuation in wide range of applications like civil 

structures against wind and earthquake loads [5], turbine blades, machine tools, space shuttle [6] and aerospace 

structures [7]. The NOPD is very simple in construction, insensitive to environment, low cost, and effective over 

wide temperature and frequency range.  

The energy dissipation mechanism in PID is highly nonlinear and depends on host of parameters –  size, 

shape, number and material of the particle; enclosure relative geometry and material; mass ratio; volumetric 

packing fraction; location of PD with respect to structural mode; and level of response. The dissipation of 

energy takes place mainly through inter-particle and particle-wall impact and friction. The dominant mode of 

dissipation depends on the relative proportion of different parameters. It is extremely difficult to evolve a model 

to capture the entire interactions taking place. 

The major modelling techniques reported in literature for particle impact damping problem is discrete 

element method (DEM).The DEM is now an established tool for analysing the dynamic behaviour of assemblies 

of particles. The DEM is based on Newtonian mechanics where equation of motion of each particle is 

established by considering the contact forces and moments from the surrounding particle and boundary contacts 

or from any other source. The motion of each particle and its interaction with surrounding boundaries is tracked. 

For the larger problems where millions of particle motion is required to be solved coupled with the dynamics of 

the structure, the DEM becomes frustratingly inefficient. In this paper large amount of particles are required to 

affect the structural response as the dimensions of the panel runs in meter. Therefore in this work DEM is 

applied on a coupon of smaller size and same composite material and damping particle. The coupon is subjected 

to vibration loads and the energy dissipated is estimated and further its dependence on the other parameter is 

studied. The honeycomb cells are small in dimensions and the number parameters is reduced. An equivalent 

damping constant of viscous damper which dissipates same amount of energy per cycle is estimated and 

incorporated in the equations of motion of plate.    

2. Mathematical formulations 

The finite element equations of motion of a plate representing a typical solar panel with particle damping in 

acoustic field can be written as: 

p d
Mw + Cw + Kw = f - f   (1) 

where the force vector , 
p

f , is due to transient pressure acting on the exposed area due to sound field. It can 

expressed as 

( )P tp
f A   (2) 

where the diagonal matrix A is the projected matrix on nodes of the FEM, and
d

f is the equivalent force due to 

particle damping. The honeycomb sandwiched coupon of the size 5cm x 5cm filled with acrylic particle is 

subjected to harmonic motion in the range of 5 to 2 kHz in steps of 10Hz and the energy dissipated is calculated 

using the Eq.(3).  The details of the DEM used for calculating the particle motion and its interaction with the 

walls of the cells can be found in references [8-10]. The energy dissipated is made up of the normal impact and 

Coulomb’s friction and can be written as 

 1/ 4

1 0

cc
tN

c
p n ij ij ij ij

k

d
c

m k F dt dt

E
A

    







 (3) 

The energy dissipated per cycle per unit area can be equated to the energy dissipated by viscous damper with 

equivalent damping eC as  
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2 /

0

d eE C wdt

 

    (4) 

A parametric study of variation of dE  with respect to the parameters of the DEM such as filling fraction, 

excitation frequency, and displacement amplitude suggests that the energy dissipated is mainly a dependent on 

filling fraction and excitation frequency. Similar results are also reported in the experimental work of [1]. 

Integrating Eq. (4) and using similar interpolation equation as is given in reference [1] for dE , equivalent 

damping can be written as 

32 1
1

1

2

aa
eC a e





   (5) 

The constant are given as 

2 4
1

2

4
3

( 20 36.09 25.2 )10

4.10 0.6

(8.8 12.5 )10

a r r r

a r

a r r





   

 

 

  (6) 

The equivalent damping force acting on the FEM element covering the area filled with damping particles can be 

obtained as 

e e eC dA C dA C

dA

  



e e

e

d T
e wi w e

A A

T
e wi w

A

f = - w = - N N w D w

D = N N

 (7) 

where eD  is the damping matrix. The Eq. (1) can be recast in modal space by linear transformation of co-

ordinates,  w q , where the modal matrix 1 n      consists of the column vectors of normal 

modes.Invoking the mass and stiffness orthogonality conditions: diag T 
 

m    and diag T 
 

k   , 

where m  and k  are the generalized mass and stiffness matrices, Eq. (1) can be written as:  

 2ζ i = 1,2,...,n
T

p2 di
i i i i i ii

i

q + ω q +ω q = f + f
m


 (8) 

Inserting Eq. (7) in Eq. (8) we get 

2ζ i = 1,2,...,n
T

p2 ei
i i i i i i ii

i i

C
q + ω q +ω q = f - D q

m m


 (9) 

where 

i

 
 

T
iD = Φ DΦ   (10) 

Rearranging the Eq. (9) we get 

;eC
2ζ i = 1,2,...,n
 
 
 

T
p p2 i

i i i i i i i i
i i

q + ω + D q +ω q = f = F
m m


 (11) 

Now taking Laplace transform of the above equation, we have 
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i i iD q F

m

2 2
i i+ ω + +ω =  (12) 

The time domain response and unit impulse response of the above equation is given as: 

0

( )

t

ih t d i = 1,2,...,n  
p

i iq F   (13) 

where unit impulse response ih  is given as: 
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The modal frequency response function is given as: 

 

2

2 2
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 (15) 

 

and the cross correlation function and PSD of the modal coordinates and can be obtained as: 

     
1

lim ;
2

T

j t

T
T

t t d e d i, j = 1,2,...,n
T
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


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Likewise the correlation function of the generalized force vector of sound field can be written as: 

   
1
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2
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p p
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T
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 (18) 

where iA is the ith column of matrix A. It may be noted that Eq. (18) relates the generalized force cross- 

correlation to the acoustic pressure fields as cross- correlation matrix.  

  ;
i j

p p
i j

T
i i p p j j

f f
i, j = 1,2,...,n 

i j

A R A
R

m m

 
 (19) 

and the cross-power spectral densities are given as 

;
i i j j

p p
i j

T
i p p p p j

f f
i j

i, j = 1,2,...,n
A S A

S
m m

 
 (20) 
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The matrix of cross-power spectral densities of the pressure
i jPPS is expressed as the product of references PSD 

of sound pressure level (SPL) and a coherence function matrix which relates the pressure at different points in 

the sound field given as.  

i j i jp p p p pS (ω) (ω)S =  C   (21) 

A reverberant field can be expressed by a coherence function [11] as. 

sin

i jp p

k

k


i j

i j

i j

( r - r )
C ( , r , r ) =

r - r
  (22) 

where k  is the wave number and ,i jr r  are the position vectors of two points. In this work we are interested in 

computing the auto PSD at the points of interests only and Eq. (22) can be replaced by a unit matrix. 

The cross-PSD of the modal coordinates can be written using Eq. (13) as: 

1
lim ( ) ( ) ( ) ( ( ))

2i j

t

j
q q i i j j

T
T

h f t d h f t e d dt
T
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  




   

   
      
   

   
   
-

S =  (24) 

After some algebraic manipulation, Eq. (24) can be written as: 

*

2 2

( ) ( )
i j i

i j

T
i i p p i

q q

i j i jm m

   

 


H AS A H
S   (25) 

and finally the cross-power spectral density of acceleration is related to the cross power spectral density of the 

modal coordinate as: 

4

i j i j

T
w w q q  S S   (25) 

3. Results and discussions 

Numerical simulations were carried on a rectangular aluminum honeycomb sandwiched composite of 

dimensions 1.5m x 1m x 0.025m. The panel is divided into 600 hundred finite elements. areas of 20 cm x 20 cm 

of the honeycomb is considered for filling with damping particles and named PID-1, PID-2 and PID-3 as shown 

in Fig. (2). the area of a single patch is 0.0267 times that of the panel.  Low density damping particles like 

acrylic is considered as filling particle so as not to change the mass and dynamics of the panel significantly. 

The PSD responses at points 326, 189 and 318 of the FEM grid are considered for assessing the effect of 

PID. These locations are chosen so that the most of the plate modes responds at these locations.  

 

Fig. 1: Locations of PID, response points on FEM grid  
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The frequencies and modal orders which decides the mode shape of the plate considered in the simulation is 

given in Table-1  

Table 1. Modal frequency and mode order 

m n Frequency 

1 1 64.90 

2 1 124.81 

1 2 199.70 

3 1 224.67 

2 2 259.62 

3 2 359.46 

1 3 424.37 

2 3 484.28 

3 3 584.13 

1 4 738.90 

4 2 499.26 

4 3 723.92 

2 4 798.81 

4 4 1038.46 

6 3 1123.33 

6 4 1437.87 

7 2 1158.28 

7 4 1697.48 

8 1 1323.04 

5 1 544.19 

7 1 1023.48 

9 1 1662.53 

3.1. Effect of fill fraction 

The effect of fill fraction on PSD response at selected grid points is studied for PID-1 which is at the centre of 

the simply supported panel. The panel is excited by an acoustic field described by its SPLin Fig. 2. The SPL 

represented on 1/3 octave centre frequency is typical level of acoustic field that exits at during the launch of 

spacecraft. 

 
Fig. 2: The input SPL 

 

The acceleration PSD response monitored at grid points: 326,189 and 318 is plotted in Figs.3-5. The PSD 

responses are decreasing at resonances at all three locations. At all location a fill fraction of 10% is seen to be 

most effective. The effect of particle impact damping is more prominent in higher frequency range as compared 

to low frequency. The response at node (326) that is on the damper and centre of the panel is decreasing for all 

fill fractions as shown in Fig. (3). However the responses at all the locations increases as fill fraction is change 

from 10%. The responses are almost same for fill fractions from 70 to 90. 
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Fig.3 Acceleration PSD response of grid point 326 

 
Fig.4 Acceleration PSD response of grid point 189   Fig.5 Acceleration PSD response of grid point 318 
 

3.2. Effect of location 

To study the effect of location of the damper, the panel is excited by the same SPL as given in Fig. 2 and 

constant fill fraction of 50% with one of the PID active at a time. The response at the node near to the damper is 

less as compared to the farther one.Similar behavior is seen for all three dampers. Figs 6-7 present the PSD 

responses at nodes 189 and 326, respectively, when damper position is change from location 1 to 3 

 

 
Fig.6 Acceleration PSD response of grid point 189   Fig.7 Acceleration PSD response of grid point 326 
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3.3. Effect of excitation level 

The response behaviour of the panel is studied for 3 excitation levels: 162 dB, 152dB and 142dB overall SPL. 

The spectrum corresponding to 162 dB shown in Fig.2 is scaled down in steps of 10dB uniformly in all 

frequency bands to get other input levels. The acceleration response is seen to be shifting linearly on logarithmic 

scale as shown in Figs.8. Such response is expected from the Eq.(21) and Eq.(25). 

 

 
 

Fig.8 Acceleration PSD response of grid point 326 

Conclusions 

Study of acceleration response of large honeycomb composite structures used in spacecraft treated with impact-

damping-particle under acoustic excitations is carried out. An equivalent damping model for particle damping 

device was arrived from coupon level test was used to study the response of the panel with respect to parameters 

of the damping device. The performance of the device was found to depending on the fill fraction, location of 

device and excitation level. The panel response was seen to be lowest at smaller fill fraction. However the trend 

was not monotones. The response was seen less near the device compared to faraway locations and with respect 

to excitation level it was linearly increasing in all frequency bands.       
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