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Abstract 

The equations describing the motion of a feedback 
controlled robot are known to be non-linear. Several 
non-linear equations are known to exhibit chaos for 
certain ranges of parameters. I n  this paper,  we ex- 
plore the possibility of chaos in  a system of differential 
equations which model a feedback controlled two link 
robot with rotary(R) joints. We examine a simple pro- 
portional and derivative controller and a model based 
controller for a 2R planar robot undergoing repetitive 
motions in  a plane in  the absence of gravity. W e  show 
that the differential equations describing such a system 
exhibits chaotic behavior for  certain ranges of the pro-  
portional and derivative gains and for  certain values of 
a parameter which quantifies the mismatch between the 
model and the actual system. W e  discuss the di'culty 
of obtaining analytical results and describe numerical 
schemes t o  test for chaos and to  obtain ranges of gains 
and the mismatch which results in  chaotic motions. 

1 Introduction 

Chaotic motions are a class of motions in deter- 
ministic physical and mathematical systems whose 
time history has sensitive dependence on initial 
conditions[l]. The sensitive dependence implies a di- 
vergence of slightly perturbed trajectories and hence 
long term unpredictability. These type of motions oc- 
cur in nonlinear differential equations for certain pa- 
rameters, certain initial conditions and for repetitive 
motions. 

The techniques to obtain the dynamic equations 
of motion for a serial robot are very well known[2]. 
The dynamics of a serial robot is described by a set 
of second-order, non-linear differential equations. The 
number of such equations is same as the number of de- 
grees of freedom (usually a robot is assumed to have 
at least two degrees of freedom). There are several 
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non-linear terms in the equations of motion. To name 
a few, a) the inertia of the robot links are depen- 
dent on its configuration giving rise to trigonometric 
terms in joint rotations, b) the coupling between the 
motion of the links gives rise to non-linear terms in- 
volving trigonometric terms in the joint rotations and 
quadratic terms in the joint velocities, c) the gravity 
terms contain trigonometric quantities in joint vari- 
ables. In addition, for more realistic modeling, non- 
linearities due to the flexibility of links and joints, 
friction at the joints, and non-linearities at the ac- 
tuators and controller are often taken into account. 
These nonlinearities form the necessary condition for 
chaotic behavior. In this paper, we look at the sim- 
plest possible rigid body equations of motion contain- 
ing only the inherent trigonometric non-linearities and 
non-linearities due to the coupling of motion of the 
links of a simple planar 2R robot. We also assume 
that robot motion is in a horizontal plane and the 
gravity terms are zero. 

Although there exists a vast body of literature on 
chaotic motions in Duffing's oscillator, inverted pen- 
dulum, maps and several other systems[3], there are 
very few works on chaos in robots reported in liter- 
ature. Striet et a1.[4] have looked a t  the non-linear 
response of a flexible manipulator performing repeti- 
tive tasks. They show that the flexible variables can 
undergo period doubling bifurcations leading to chaos. 
Biihler and Koditschek[5] have discussed robotic jug- 
gling and have shown that incrementing controller 
gains of a planar juggling robot can lead to period dou- 
bling and chaotic motions. Vakakis and Burdick[6]and 
M'Closkey and Burdick[7] have looked at periodic and 
chaotic motions in a hopping robot with a non-linear 
spring in the leg. Mahout et al. [8,9] have numerically 
studied the equations of a planar 2R robot with a pro- 
portional and derivabive(PD) controller. They have 
shown that the 2R robot, under PD control, can ex- 
hibit harmonic, subharmonic, higher harmonic, frac- 
tional harmonic and possible chaotic motions. Except 
[S, 91, to the best of our knowledge, there is no discus- 
sion on possible chaotic motions in feedback controlled 
robot. 
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In this paper we study a rigid, planar, 2R manipu- 
lator under feedback control. We consider a PD con- 
troller and a model based controller. Although the 
system considered is from the simplest possible robot, 
it is still very difficult to do an analytical study. The 
corresponding dynamical system is of dimension R 4  
and is non-autonomous. Only a numerical study ap- 
pears to be feasible. 

The organization of the paper is as follows: we first 
develop the dynamical system to be studied and list 
a few analytical results, then describe the numerical 
study done, then follow up with a discussion of the 
results and finally present our conclusion 

2 Dynamic Equations of a 2R Robot 

The dynamics of a 2R, rigid, planar manipulator 
can be modeled as in[2] : 

where, 0 ( t )  is the 2 x 1 vector of joint angles, M(B) is 
the mass matrix, C(8,  e )  is the 2 x 1 vector of Coriolis 
and centrifugal torques, and r is the vector of joint 
torques. 

Equation (1) can be represented in state space form 
as 

x1 = 
x 2  = 

x3 = 
x4 = 

where, the state variables are the joint variables 01, 02 
and their derivatives, and 

In the above equations, mi, l i ,  Ii and ri are the mass, 
length, inertia and location of the center of gravity of 
link i respectively. Figure 1 shows a sketch of the 2R 
robot under consideration. 

3 Feedback Control of a 2R Robot 

We consider the following two well known control 
laws[2], namely, (i) Proportional Derivative (PD) Con- 
trol and (ii) Model Based Control. 

For the PD controller, the torque at  the joint i is 
calculated as 

where, o d , ( t )  is the desired periodic trajectory to  be 
tracked in joint space, ICp, and K,, are the positive 
proportional and derivative gains. 

It can be shown that, in the absence of gravity, the 
PD control law achieves asymptotic tracking of the 
desired joint positions [lo, 111. Our aim in this paper 
is to study the global behavior of the 2R robot when 
the controller gains, namely K, and K,, are varied. 

The desired repetitive trajectories, in the joint 
space, are described by 

6dl = A~sin(wt)  

ed2  = A2 sin(wt) (5) 

Substitution of equations (4) and (5) into equation 
( 2 )  results in a system of four, first order, ordinary 
differential equations which are coupled, nonlinear and 
non- autonomous. 

For the model based control, we follow Craig[2] and 
calculate the joint torques as 

= + C(e, i) (6) 
h 

where, T~ = 8d + &(e, - e) + K,(Bd - e), M(0) is 
the estimated mass matrix, e(0,e) is the estimated 
Coriolis and centrifugal torques vector, and K,, K, 
are 2 x 2 constant, diagonal gain matrices. The esti- 
mates, G(0) and e(8, e ) ,  are computed by perturbing 
the robot parameters as follows: 

* m; = ( I+e)m;  
(1 + c)r; ri = 

li = li 

.. 
I ? . =  (1 + E ) &  (7) 
h 

where E > 0 implies an overestimated model and 
-1 < E < 0 implies an underestimated model. For 
E = 0.0, the closed-loop error equation become linear 
second order ordinary differential equations, and they 
can never exhibit chaos. 

Craig[l2] has given a robustness conjecture for the 
model based, computed torque, scheme which states 
that if G(B) > 0 and symmetric and K, > a * I,, 
then the system is L ,  stable. As far as we are aware 
there exists no proof of this conjecture in literature. 
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In this paper, we examine the the global behavior rel- 
ative to the control parameters of the 2R robot with 
model based control scheme. The desired trajectories 
are again given by equation (5). 

Substitution of equations (5) and (6) in equations 
(2) results in a system of four first order ordinary dif- 
ferential equations which are coupled, nonlinear and 
non-autonomous. 

The two dynamical systems, obtained for the PD 
and the model based controller, have trigonometric 
nonlinearities and are dissipative. The amount of dis- 
sipation is determined by the velocity gain K,. The 
R 4  state space (R5 in the case of the corresponding 
autonomous system) makes it very difficult for ana- 
lytical work. One can show that the only fixed point 
of this set of differential equations is ( O , O ,  0,O) and it 
is difficult to make any more general statements. 

The above systems are much more complicated 
compared to the systems studied in chaos literature 
which are usually of dimensions less than four, and 
usually with nonlinearities which facilitate some ana- 
lytical study. One way to study these systems is by 
a digital computer. In the next section, we present 
the details of the numerical study done for the above 
systems. 

4 Numerical Study 

To perform a numerical study on the two non- 
linear, non-autonomous, ordinary differential equa- 
tions, representing feedback control of a planar 2R 
robot, we have chosen the Denavit-Hartenberg and in- 
ertial parameters of the first two links of the CMU DD 
Arm II[13]. Figure 1 shows a sketch of the 2R robot 
with all its parameters. 

As mentioned before, we are interested in global be- 
havior when the controller gains are varied. In general 
there would be 4 controller gains - IC, and K,  for each 
of the two joints. To make the search space smaller we 
have assumed that the gains are same for both joints. 

The state equations were integrated numerically 
by a variable step, variable order, predictor correc- 
tor Adams algorithm[l4]. In order to ensure that the 
numerical plots were not an artifact of the numeri- 
cal integration scheme, the results were verified with 
Runge-Kutta 5-6[15] integration routine. The results 
were also checked for relative and absolute error tol- 
erances of low6 and lo-'. 

To study the global behavior of the feedback con- 
trolled 2R robot under periodic desired trajectories, 
we first ignore the transients and then look at the fol- 
lowing: 

a) Phase plots - phase plots are plots of joint veloc- 
ity versus joint positions. The actual flow is in R4, but 
we plot projections in R 2 .  These plots quickly give an 
idea if the orbits are periodic or not. 

b) Poincark section - The integration results are 
sampled at the forcing frequency(in our case 2.0 
rad/s). The Poincark Map is 4 dimensional, but we 
show R 2  projections. It is difficult to obtain or visu- 
alize the fractal structure of the map from the projec- 
tions. 

(c) The largest Lyapunov exponent was calculated 
using the algorithmgiven by Wolf e2 a1.[16]. The Lya- 
punov exponent is a measure of the sensitivity of the 
system to changes in initial conditions. Conceptually, 
one can imagine a small sphere of initial conditions 
in phase space and look at its deformation into an 
ellipsoid under the dynamics of the system. If d is 
the maximum length of the ellipsoid and do the ini- 
tial size of the initial condition sphere, the Lyapunov 
exponent, A, is given by the equation 

d ( t )  = doe'('-'") 

The average of A over the phase space can be rep- 
resented as 

An N-dimensional system will have N Lyapunov ex- 
ponents. A positive exponent implies chaotic dynam- 
ics. 

A search was done by varying the gains IC, and 
K, and calculating the largest Lyapunov exponent. In 
case of model based control, the measure of mismatch, 
E ,  was also varied. 

(d) Bifurcation diagrams - the phenomena of sud- 
den change in the motion as a parameter is varied is 
called a bifurcation. A bifurcation diagram is a tech- 
nique for examining the prechaotic (route to chaos) 
or post chaotic changes in a dynamical system under 
parameter variations. Bifurcation diagrams were com- 
puted using the brute force algorithm as described in 
~ 7 1 .  

5 Results and Discussion 

A numerical study of the feedback control equa- 
tions for the two control algorithms was done taking 
the desired repetitive trajectory to have AI = a /2  
rad, A2 = 1r/4 rad, and w = 2.0 rad/s. The simula- 
tions were performed with different initial conditions 
and the same qualitative behavior was observed af- 
ter neglecting the initial transients. Figure 2 shows 
the phase plots for non-chaotic and chaotic parame- 
ters. It can be observed that in the non-chaotic case 
the trajectory settles to a limit cycle whereas in the 
chaotic case the trajectory moves about in a bounded 
region in the phase space known as the attractor. lit 



is to be noted that what we see in the phase plots is 
only a projection of the actual flow which is in R4. 

Figure 3 shows Poincark section for chaotic param- 
eters of figure 2. The fractal nature is visible even 
though it is only a projection. Figures 4 and 5 show 
plots of the parameters for which the system was found 
to be chaotic. The values of K p  and K ,  giving rise 
to chaos are marked by the symbol *. A plot of the 
Lyapunov exponent for a particular set of chaotic pa- 
rameters is also shown. These plots were obtained by 
a numerical search in the ( K P ,  K,) space with K p  and 
K ,  varied in steps of 1.0. It can be seen that chaos oc- 
curs only for small gains and, in particular, for highly 
underdamped systems with small values of I(, . More 
detailed regions of the chaotic parameter space can be 
obtained by taking smaller steps in the scan. 

In the case of model based control E was varied in 
steps of 0.05, and K p ,  K ,  by 1.0. It was found that 
chaotic behavior was seen only when the mismatch 
parameter, e ,  was large(more than 0.6) and chaos was 
more easily seen for underestimations. For overesti- 
mations, chaotic behavior was observed only for very 
small values of K p  and K,,. This can be explained by 
realising that the ‘effectivz closed-loop gains are given 
by M-lM^K, and M-IMK,. When E > 0,  the ‘ef- 
fective’ gains become large and when 6 < 0 ‘effective’ 
gains become small. 

Figure 6 shows bifurcation diagrams of state vari- 
ables z1 and 23 for two sets of parameters. A bifur- 
cation from period one to period two can be clearly 
seen. Again, it must be noted that the figures are a 
projection of the trajectory bifurcating in R 4 .  

6 Conclusions 

In this paper, we have demonstrated that the 
non-linear, ordinary differential equations describing 
the motion of a feedback controlled, rigid, planar, 
2R robot undergoing repetitive motions can exhibit 
chaotic motions. Unlike most chaotic systems with 
non-linear springs, the non-linearity in this paper are 
trigonometric in nature arising from the fact that the 
inertia matrix of a 2R robot is dependent on its con- 
figuration. Unlike most systems studied by chaos re- 
searchers, the state equations for feedback controlled 
robot are 4 dimensional and non-autonomous and 
hence only a numerical study is feasible. From the 
numerical study presented in this paper we present 
the following major conclusions: 

1) Chaotic motions can be seen both for a sim- 
ple PD controller and for a model based controller 
with mismatch in model parameters. The existence 
of chaotic motions were verified by careful numerical 
simulations and by use of the largest Lyapunov expo- 
nent. 

2) Chaotic motions occur for small values of the 
derivative gains and for large mismatch between the 
dynamic model and the actual robot parameters. 
Chaotic motions are only seen if the system is grossly 
underdamped. The chaotic motions are seen more 
easily for underestimated models. For overestimated 
models, chaotic motions are seen for extremely low 
values of controller gains. This can be explained by 
the observation that the effective closed loop gains for 
an overestimated model is larger than the proportional 
and derivative gains. 

3) The route to chaos appears to be through period 
doubling. However this requires further study. 

Although the range of controller gains, in particu- 
lar the derivative gains, is far removed from critically 
damped(or overdamped) regime in any actual robot, 
this study, apart from being of mathematical inter- 
est, can give lower bounds on controller gains. The 
study can also help in obtaining conditions for better 
trajectory tracking in feedback controlled robots. 
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Figure 1: A schematic of a 2R planar rigid robot. 
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Figure 2: Non-chaotic and chaotic phase plots. 
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Figure 3: Poincar6 maps. 
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Figure 4: Regions of chaos for the model-based con- 
troller. 
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troller, 
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