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Abstract

The author obtained his Ph D in 1986 under Professor Bernard Roth. In a publication
from the research, it was shown that the redundant joints in a serial robot could be used to
make the end-effector linear velocity distribution isotropic. In this work we revisit those results,
present recent results on how redundancy is made use of in a human arm, and finally attempt
to link the earlier work with new results. The human arm can be modeled as a redundant serial
manipulator and the redundancy can be computed from the null-space of the Jacobian matrix.
In a recent work, healthy adults were made to perform point-to-point reaching tasks in eight
directions first without any disturbance, then with an applied force and finally with the force
switched off. Statistical analyses show that trajectory and reaching errors due to the applied
force die out with trials and subjects who explore the redundancy in the arm adapt faster to the
external force. It is also shown that the anisotropy in the error distribution reduces with trials.
These new results suggest that the redundancy in a human arm is used to reduce trajectory
errors and anisotropy arising out of external disturbances.

Keywords: Redundant robots, Optimization, Human arm, Exploration, Motor Learning.

1 Introduction

To position and orient a rigid body in three dimensional space, one needs to specify six parameters

– three for position and three for orientation. A consequence of this fact is that a six degree-of-

freedom robot, with six independently actuated joints, can arbitrarily position and orient an end-

effector or an object carried by the end-effector in three-dimensional space. However from early

days, robots with more than six actuated joints have been built and in biological systems, more

than the required number of actuated joints is ubiquitous. Such systems are known as redundant

systems and a key problem in redundant systems is that for a specified position and orientation

of the end-effector, there exists infinitely many possibilities for the actuated joints. To choose one

particular set, also known as resolution of redundancy, researchers have proposed many strategies

and extensive research continues to be done. One of the earliest proposed use of redundancy

was to overcome the constraints on motion of the robot end-effector due to the presence of joint

limits [1] and to avoid obstacles and singularities present in the workspace of a robot [2]. Some of

the strategies, such as obstacle avoidance and avoiding wrist singularities were implemented on a

seven degree-of-freedom prototype robot [3] and on a prototype wrist with four joints [4]. The key

mathematical tool used by most of the researchers in the 80’s was the Moore-Penrose generalized

inverse[5], also called the pseudo-inverse, of the manipulator Jacobian matrix. The manipulator

Jacobian matrix relates the end-effector linear and angular velocities to the joint rates and for
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a redundant robot, the manipulator Jacobian matrix is rectangular. Hence, for a prescribed end-

effector linear and angular velocity, the Jacobian matrix cannot be inverted to obtain the joint rates.

In its basic form, the use of the pseudo-inverse of the Jacobian matrix can be shown to minimize

the sum of squares of the joint rates for a given linear and angular velocity of the end-effector. The

pseudo-inverse of the manipulator Jacobian matrix were also used to minimize joint acceleration,

used with weighting matrices to minimize joint torques and extended to include a null-space term

which could be used to optimize additional quantities such as a manipulability index (see the

review paper by Klein and Huang[6] and textbook by Nakamura[7] and the reference contained

in them for details of various pseudo-inverse based resolution schemes in redundant robots). The

pseudo-inverse based approaches are numerical in nature and provide results at the level of joint

velocities – they do not provide any insight or give deeper understanding at the level of position

or orientation of the end-effector. The pseudo-inverse involves obtaining the inverse of a matrix

and this has a complexity of O(n4) where n is the number of joint variables. Hence it is not very

efficient for modeling and simulation of hyper-redundant systems which have a much larger number

of links and actuated joints – examples of a hyper-redundant systems are“snake” robots[8], models

of continuum robots [9], and classical models of proteins [10] with chains of amino acids during

folding.

To overcome some of the difficulties in the pseudo-inverse based approach, researchers proposed

an approach where the central ‘backbone’ of a hyper-redundant manipulator is approximated with

a continuous curve. The redundancy is resolved by updating the curve for a desired motion of

the end-effector and at every step fitting a robot with rigid links and joints. In reference [11], the

backbone curves was chosen as linear combination of modes and as splines in reference [12]. In this

approach, since the continuous curve is used for motion planning the axial length of the curve and

as a consequence the length of the hyper-redundant manipulator is not preserved.

A third resolution scheme for hype-redundant manipulators, based on the classical tractrix

curve, was proposed in reference [13]. Unlike the joint space pseudo-inverse based schemes, this is a

Cartesian space scheme. For a prescribed Cartesian motion of the tip of the first link of the hyper-

redundant robot (termed as the ’head’), the Cartesian motion of the end of the first link (termed the

’tail’) is computed according to the closed-form equations of the tractrix curve. The motion of the

’head’ of the second link is then set to the motion of the ’tail’ of the first link and again the motion of

the ’tail’ of the second link is computed according to the equations of the tractrix curve. Proceeding

in a similar way, the Cartesian motion of all the links of the hyper-redundant robot is obtained.

Once the Cartesian motion is obtained, the rotations at the joints can be obtained from simple

trigonometry and vector algebra. It is shown in reference [13] that the tractrix based approach has

a complexity of O(n) and, more interestingly, the motion along the chain dies out as one traverses

the chain from the end-effector to the other end. This property makes the motion of the entire

hyper-redundant manipulator more natural. In a series of papers, the author and his students have

used the tractrix based approach to perform real-time and realistic simulations of one-dimensional

flexible objects such as ropes and hyper-redundant manipulators [14], compared the pseudo-inverse,

modal and tractrix based approaches on a 8 link planar hyper-redundant robot [15], shown that

the tractrix solution results from a general variational problem where a functional defining the
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infinitesimal motion of the points on a continuous curve is minimized subject to preservation of the

arc length of the curve (for a straight line segment, the velocity of the ‘tail’ lies along the straight

line segment [16]), used splines and the tractrix based approach to obtain efficient algorithms for

simulation and rendering of the motion of flexible one-dimensional objects [17] and, finally, shown

that the tractrix based approach can be extend to include obstacle avoidance [18].

The linear and angular velocity distribution of an end-effector in a serial manipulator is governed

by the nonlinear kinematic equations. It has been known that the velocity distribution is not

uniform and some directions are easier to move than others [19]. In reference [20], the authors had

proposed a redundancy resolution scheme where a redundant joint rate was chosen in a particular

way to make the end-effector velocity distribution isotropic. In this work, we revisit this approach

and bring out its key features – this is the content of section 2. In section 3, an experiment on

point-to-point reaching along randomly chosen eight directions in a plane, conducted by healthy

human subjects, is presented. A model of the redundant human arm is considered and an approach

to quantify the redundancy present in the human arm model, using the null-space of the Jacobian

matrix, is proposed. When a lateral disturbing force is applied during the reaching tasks, the error

in the trajectory initially increases and as the trials progress, the error reduces. In section 3, from

statistical analyses, it is shown that subjects who explore redundancy during the un-perturbed

motion, learn how to reduce the error arising out of the disturbance faster. It is also shown that

errors in certain directions are consistently larger and the anisotropy in the error distribution

decreases with the trials. Taken together these new results suggest that redundancy in human

arm is used for learning how to deal with perturbations and one possible mechanism of reducing

trajectory errors is by reducing the anisotropy in error inherently present in the point-to-point

reaching tasks. Section 4 presents the conclusion of this work.

2 Resolution of redundancy and isotropy

In this section, we present the notion of velocity distribution of the end-effector of a serial robot

and the approach to use the redundancy to make the velocity distribution isotropic. More details

are available in references [19, 20].

2.1 Velocity ellipse

Consider a simple planar two-degree-of-freedom manipulator with two rotary joints as shown in

figure 1. The end-effector point (x, y) can be written in terms of link lengths l1, l2 and the joint

angles θ1 and θ2 as

x = l1 cos θ1 + l2 cos(θ1 + θ2)

y = l1 sin θ1 + l2 sin(θ1 + θ2) (1)

The velocity of the end-effector point (x, y), denoted by V, is given by

V
∆
=

(
ẋ
ẏ

)
=

[
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

](
θ̇1
θ̇2

)
(2)
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Figure 1: A planar 2R manipulator and velocity ellipse

where θ̇1, θ̇2 are the joint rates at the two rotary joints, and the 2 × 2 matrix inside the square

brackets is the Jacobian matrix [J(Θ)] for the planar manipulator described in a fixed reference

frame {0} – Θ denotes the vector of joint rotations (θ1, θ2)
T for the planar manipulator with two

rotary (R) joints. The dot product of the linear velocity vector with itself can be written as

V2 ∆
= V ·V = g11θ̇

2
1 + 2g12θ̇1θ̇2 + g22θ̇

2
2 (3)

where gij , i, j = 1, 2, are the elements of a matrix [ g ] = [J(Θ)]T [J(Θ)]. For the planar 2R

manipulator the gij ’s are

g11 = l21 + l22 + 2l1l2c2

g12 = g21 = l22 + l1l2c2

g22 = l22 (4)

It may be noted that the elements g11 and g12, for the planar 2R manipulator, are functions of θ2

alone and g22 is a constant. For arbitrary θ̇1 and θ̇2, any V can be obtained, i.e., the linear velocity

vector spans the complete ℜ2. To obtain a more geometric insight, we obtain the maximum and

minimum ofV2 subject to a constraint, θ̇21+θ̇22 = 1. These can be obtained by solving ∂V∗2/∂θ̇i = 0,

i = 1, 2, where

V∗2 = g11θ̇
2
1 + 2g12θ̇1θ̇2 + g22θ̇

2
2 − λ(θ̇11 + θ̇22 − 1)

Performing the partial differentiation reduces to an eigenvalue problem

[ g ]Θ̇− λΘ̇ = 0 (5)

and the eigenvalues are given by

λ1,2 = (1/2){(g11 + g22)± [(g11 + g22)
2 − 4(g11g22 − g212)]

1/2} (6)
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Since [ g ] is real, symmetric and positive definite, the eigenvalues are always real and positive, and

assuming λ1 > λ2, the maximum and minimum values of |V| are

|V|max =
√

λ1, |V|min =
√

λ2 (7)

It may be noted that if a constraint θ̇21 + θ̇22 = k2 is used, then the maximum and minimum |V| are
scaled by k.

From the relationship V = [J(Θ)]Θ̇, we can also write (dropping the dependence of Θ for

convenience)

[J ]TV = [ g ]Θ̇

and for non-singular [ g ], we can get

VT ([J ][ g ]−1)([J ][ g ]−1)TV = Θ̇
T
Θ̇

For the planar 2R manipulator, the matrix ([J ][ g ]−1)([J ][ g ]−1)T is symmetric and of rank 2.

Hence if Θ̇
T
Θ̇ = 1, the above equation reduces to (ẋ, ẏ)T ([J ][ g ]−1)([J ][ g ]−1)T (ẋ, ẏ) = 1. From

linear algebra, we know that an expression of the form xT [A]x = 1, with [A] symmetric and non-

singular, describes an ellipse. Hence, we conclude that the tip of the linear velocity vector traces

an ellipse and the semi-major and semi-minor axes of the ellipse are
√
λ1 and

√
λ2, respectively. It

may be noted that the size of the ellipse will be scaled by k if a constraint Θ̇
T
Θ̇ = k2 is used, but

the shape of the ellipse does not change with k.

For the planar 2R manipulator, the eigenvalues of [ g ] are only functions of θ2 and hence

the shape and size of the ellipse will be different for different values of θ2. For the planar 2R

manipulator, we show the ellipse traced by the tip of the linear velocity vector in figure 1. The

velocity ellipse is generated for l1 = 1.5, l2 = 1.0, θ1 = 30◦ and θ2 = 60◦, the major and minor axis

are 0.9727, 0.2323, the centre of the ellipse is at (1.299, 1.757) with the minor axis inclined at an

angle 1.0261 rad from the horizontal.

The shape of the velocity ellipse indicates which directions are ‘easier’ for the end-effector to

move for given joint rates – the magnitude of the linear velocity vector is larger along the major

axis of the ellipse and hence it is easier to move along the major axis as compared to the minor axis.

If the ellipse reduces to a circle, then it is equally easy to move in all directions. All points in the

workspace, where the ellipse is a circle, are called isotropic and this concept was first developed by

Salisbury[21]. In general, a manipulator is said to be in an isotropic configuration if the eigenvalues

of [J(Θ)] or [ g ] are equal. For the planar 2R manipulator, the eigenvalues of [ g ] are equal only if

g11 = g12 and g12 = 0 (8)

From the expressions of gij ’s given in equation (4), the above conditions imply that

l21 + 2l1l2 cos θ2 = 0 and l22 + l1l2 cos θ2 = 0

and this is only possible if

l1 =
√
2l2 and cos θ2 = − 1√

2
(9)
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Equation (9) implies that a planar 2R manipulator can posses isotropic configurations only if the

link lengths have a ratio of
√
2, and for these link dimensions, the second joint should be at an

angle of 135◦. Since θ1 can take any value between [0, 2π], all the isotropic configurations lie on a

circle.

The above idea of a velocity ellipse can be easily extended to spatial motion. For spatial

manipulators with two degrees of freedom, the locus of the end-effector position traces a surface in

ℜ3. In this case, the tip of the linear velocity vector lies in the tangent plane at any point on the

surface, and the velocity ellipse lies on this tangent plane. If the manipulator has three degrees of

freedom and the motion is in ℜ3, the Jacobian matrix maps a unit sphere in Θ̇ space to a velocity

ellipsoid in ℜ3. The shape and size of the linear velocity ellipsoid can again be obtained from the

eigenvalues of [ g ] which will now be a 3× 3 matrix.

2.2 Redundant 3R planar manipulator

Consider a planar 3R robot as shown in figure 2. The forward kinematic equations relating the

end-effector point (x, y) in terms of the joint variables θ1, θ2 and θ3 are given as

x = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

y = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3) (10)

Unlike the planar 2R example earlier, for a given (x, y) one cannot obtain an unique or finitely

many θi, i = 1, 2, 3 and we have a redundant system. As mentioned in section 1, there are various

approaches to resolve the redundancy and obtain an unique inverse kinematics solution. In the

following we revisit the approach described in reference[20].

l
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Figure 2: A planar 3R manipulator – velocity ellipse and circle

The Jacobian matrix for the planar 3R robot is 2× 3 and can be written as

[J(Θ)] =

[
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

]
(11)
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where c(·), s(·) denote cosine and sine of the angle (·) and c12, s12 etc. denote cos(θ1+θ2), sin(θ1+θ2)

etc., respectively. The linear velocity of the end-effector can be written as

V
∆
=

(
ẋ
ẏ

)
=

3∑
i=1

Ψiθ̇i (12)

where Ψi is the ith column of [J(Θ)] given above.

Following[20], we assume that

Ψ3θ̇3 = α1Ψ1θ̇1 + α2Ψ2θ̇2 (13)

where α1 and α2 are non-zero. Taking dot product of equation (13) withΨ1 andΨ2, and simplifying

we can obtain

α1 =
[(Ψ3 ·Ψ1)g22 − (Ψ3 ·Ψ2)g12]θ̇3

(g11g22 − g212)θ̇1
= a1(θ̇3/θ̇1)

α2 =
[(Ψ3 ·Ψ2)g11 − (Ψ3 ·Ψ1)g12]θ̇3

(g11g22 − g212)θ̇2
= a2(θ̇3/θ̇2) (14)

where gij = Ψi ·Ψj , i = 1, 2. The expression for the linear velocity of the end-effector can now be

written as

V =

2∑
i=1

(1 + αi)Ψiθ̇i (15)

Substituting equation (13) in equation (12), we can obtain an expression for V2 similar to equa-

tion (3) and we can get

g′11 = (1 + α1)
2Ψ1 ·Ψ1 = (1 + α1)

2g11

g′12 = (1 + α1)(1 + α2)Ψ1 ·Ψ2 = (1 + α1)(1 + α2)g12

g′22 = (1 + α2)
2Ψ2 ·Ψ2 = (1 + α2)

2g22 (16)

The eigenvalues of [ g′ ] are functions of α1 and α2 and are equal when

α2 =
±(g11/g22)

1/2 − 1

1∓ (g11/g22)1/2[(a1θ̇2)/(a2θ̇1)]

α1 = (a1θ̇2/a2θ̇1)α2 (17)

and using θ̇21 + θ̇22 = 1, we get

θ̇23 = [(a1/α1)
2 + (a2/α2)

2]−1 (18)

From the analysis it is clear that θ̇3 computed as in equation (18) will result in an isotropic

velocity distribution and all directions are equally ‘easy’ to move. Figure 2 shows the velocity

ellipse when θ̇3 is not computed according to equation (18) while the velocity distribution is a circle

when θ̇3 is computed as in equation (18). The velocity distributions shown in figure 2 was obtained

for l1 = 1.5, l2 = 1.0, l3 = 0.8, and at the location given by θ1 = 30◦, θ2 = 90◦ and θ3 = 45◦. The

major and the minor axes of the ellipse are 1.0594 and 0.4078, respectively.

It may be mentioned that we need not have started from equation (13) and expressed Ψ3θ̇3 in

terms of Ψ1θ̇1 and Ψ2θ̇2. We can also express Ψ1θ̇1 or Ψ2θ̇2 in terms of the other two and arrive

at similar expressions for θ̇1 or θ̇2 to make the velocity distribution isotropic.

7



3 Resolution of redundancy in human arm

Figure 3 shows a schematic of a human arm. As shown the human arm, including the wrist and

ignoring the fingers, can be modeled with 7 degrees of freedom – a three degree-of-freedom (DOF)

joint at the shoulder and two DOF joints at the elbow and wrist. Unlike a robot, one joint in a

human arm could be actuated by several muscles – for example, the elbow joint is known to be

actuated by 7 muscles and there is redundancy in actuation. In this work, however, we do not

consider the redundancy in the actuation and focus on joint redundancy alone. In this section,

we present an experimental approach to get an insight into how the redundancy is resolved in the

human arm when it is used for point-to-point reaching tasks. Details of this work is available in

references [22, 23].

Increase of Redundancy

3 DOF

2 DOF

2 DOF

7 Muscles

Figure 3: Schematic of a human arm and muscles

3.1 Experimental set-up and reaching task

Figure 4 (a) shows the main components in the experimental set-up. An healthy adult sits on a

chair in a dark room with the head immobilized and the chin resting on a Chin Rest. He/she

holds a planar Robotic Arm which can be moved along 8 directions (45◦ apart). The robot can be

programmed to be free or apply a desired force along the trajectory. The motion of the robot end-

effector (and the hand) is projected on an inverted a flat screen Monitor and the subject can see the

motion of the robot end-effector (and the hand) as a movement of a cursor (through appropriate

programming) on the Semi-silvered Mirror. The subject can only see this cursor motion and not

his/her hand during motion and this is to avoid direct visual feedback of any part of the hand

trajectory during the experiment. At the start of the experiment, a fixation box is shown at the

centre of the screen and then randomly one target box in one of the eight directions, at a distance

of 15 cm, is shown (see figure 4(b)). The subject has to move his/her hand, grasping the robot

end-effector, to reach the shown target box and if the target box is reached, the trial is recorded as a

success. The subject is instructed to move as fast as possible although a time interval of more than
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approximately 1 second for one trial is not counted as a success – this is to avoid roaming along

the trajectory. Although industrial robots can move much faster, from a neuro-science perspective

the motion of about 15 cm in one second is fast enough to be classified as dynamic.

The arm of the human subject is fitted with 7 electromagnetic sensors [24] which measure

position and orientation of the locations where they are fixed and these measurements are then

used to compute the human arm joint angles. The (x, y) motion of the robot end-effector (and the

hand) is also recorded in the robot controller.

Monitor 

Semi-Silvered Mirror 

Robotic Arm 

Chin Rest 

(a) Main components (b) Reaching task along 8 directions

Figure 4: Experimental set-up (from [23])

The point-to-point reaching task is divided into three phases as shown in figure 5. In the initial

about 100 trials, termed as “Baseline” when the target box is shown on the screen, the hand and

the robot are moved to reach that target box and then come back to the central fixation box. In

the second phase, a lateral force is applied by the robot to the hand during its motion. The force

is proportional to the velocity of the hand and is given as[
Fx

Fy

]
=

[
0 −K
K 0

] [
ẋ
ẏ

]
(19)

where Fx, Fy correspond to the forces exerted by the robotic arm, ẋ, ẏ correspond to the velocity

components of hand and K is a constant and equal to 20 Ns/m. This lateral force disturbs the hand

trajectory and the trajectory become curved. In about 200 trials, the error in trajectory is reduced

and the trajectory becomes straighter. In the third phase of about 100 trials, termed “Washout”,

the lateral force is switched off.

The trajectories of the hand (as computed from the sensors and recorded in the robot controller)

are shown in figure 6. The panel labeled ’A’ shows the trajectories of the hand during the ”Baseline”

where no external disturbance is applied by the robot. Panel B shows the first 5 curved hand

trajectories when the lateral force is applied and panel C shows the hand trajectories when the

lateral force is switched off. The fact that the curvature of the hand trajectory becomes opposite

when the force is switched off implies that the subject has learned to adapt to the lateral force
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Hand

Aimed
Target

Hand
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Hand
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Target

Baseline Force-field Washout

Force

Figure 5: Three phases of reaching trials (from [23])

disturbance. Panel D plots the error at the peak velocity of the hand for a subject. The error in

different directions of motion has the same colour code as in panel A. We can make the following

observation from errors shown in panel D:

• The error in the ”Baseline” is small when compared to the initial trials with the force. The

errors are also large initially when the force is switched off.

• As the trials progresses, the errors with the force applied reduces. Likewise in the ”Washout”

phase the errors become small quickly.

• One can fit exponential curves to obtain a learning rate. The error e(n) at trial number n

can be written as

e(n) = a exp(−β n) (20)

where a is a constant and β is the learning rate. The use of an exponent fit is motivated by

the standard learning rule which is a first-order process that depends on the current error.

The goodness of fit, r2 value, for a population of 10 subjects was found to be 0.93 and hence

β was used as a metric to quantify the learning rate for each subject. The solid black curves

in panel D shows the exponential fit.

To quantify the redundancy in the human arm during the point-to-point planar movements, we

assume a model of the human arm as shown in figure 7. The model is different from the human

arm shown in figure 3 in two main ways – a) due to the experimental set-up the portion of the

body above the shoulder also moves and we need to take into account this motion, and b) the

motion of the robot and the hand is purely planar. These two aspects can be taken into account

if we assume four joint angles, θclavicle, θshoulder, θelbow and θwrist, in the forward kinematic model.

Denoting these angles by θ1, θ2, θ3 and θ4, respectively, we can write the location of the hand as

x = l1 cos θ1 + l2 cos θ2 + l3 cos θ3 + l4 cos θ4

y = l1 sin θ1 + l2 sin θ2 + l3 sin θ3 + l4 sin θ4 (21)

The above equations represent a planar 4R redundant manipulator and is similar to equations (1)

and (10) – the key difference being that the angles are absolute since the sensors measure absolute
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Figure 6: Results from point-to-point reaching task [22]

orientation. The link lengths li, i = 1, 2, 3, 4 are computed from the data from the sensors placed

in the arm and vary a little with different subjects – for the results shown in panel A through D,

the link lengths of the individual are 5.65 cm, 13.39 cm, 26.85 cm, 5.19 cm, respectively. It maybe

noted that the link lengths are not the distances between the joints as shown in figure 3. To ensure

that the li values are valid, the (x, y) obtained from equation (21) is compared with the (x, y) values

of the robot end-effector and it was found that for this individual, the difference was less than 1.0

%.

The above forward kinematic model represents a redundant system and we cannot have a

unique nominal (θ1, θ2, θ3, θ4)
T vector (denoted by Θ) for any point-to-point (x, y) reaching tasks.

We assume that the average Θ̄, obtained from the measurements of the joints in the ”Baseline”

period, is the nominal Θ. We compute the difference between Θ̄ and the measured Θ for a trial k,

at the peak velocity, and we can write

∆Θk = Θ̄−Θk (22)

Based on the forward kinematic model, the Jacobian matrix of the planar 4R robot, at the peak

velocity, can be obtained as

[J(Θ̄)] =

[
−l1s1 −l2s2 −l3s3 −l4s4
l1c1 l2c2 l3c3 l4c4

]
(23)

The null-space of [J(Θ̄)] is two-dimensional and a point in the null-space represents changes in

joint configurations which do not change the mean hand position (x, y). The null-space of [J(Θ̄)]
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can be obtained as a solution of

[J(Θ̄)]ξi = 0, i = 1, 2 (24)

For each trial, the sum of the component of ∆Θk along the null-space directions, ξi, i = 1, 2, is

given by

ΘR =

2∑
i=1

⟨∆Θk, ξi⟩ ξi (25)

and we quantify the redundancy in the human arm model as the square of the magnitude of ΘR

across all the trials divided by the number of trials n. Mathematically, this is written as

N(J) =
n∑

i=1

(ΘR)
2

n
(26)

and the scalar N(J) is a measure of the redundancy of the human arm performing point-to-point

reaching tasks in the ”Baseline” phase.
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Figure 7: Kinematic model of the human arm for planar motion

Panel E in figure 6 shows a plot of the “Baseline” null-space variability or redundancy N(J)

and the learning rate for the 10 subjects obtained during the presence of the external lateral force.

It can be seen that there is a positive co-relation between N(J) and β with a reasonable r value

of 0.69 and p value of 0.027. We also performed the same point-to-point reaching tasks with the

non-dominant hand for the same subjects. Panel E also shows the co-relation between N(J) and β

for the non-dominant hand. In the non-dominant hand, we see positive co-relation between N(J)

and β (r = 0.6), however the p value of 0.067 indicates no statistical significance between the

redundancy and learning rate. This implies that those subjects who use the available redundancy

in their dominant hand, learn to adapt to externally applied force faster (see details of the study,

statistical analysis and experiments in references [22, 23]). It can also be argued that since the

dominant and non-dominant hand are bio-mechanically similar in the context of joint redundancy,

the faster learning in the dominant hand is due to active control by the central nervous system.
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In section 2 it was shown that for a robotic device with rotary joints, certain directions are

“easier” to move than others. In all the point-to-point reaching experiments with the subjects, it

was observed that the errors are larger in some directions for a subject – for example, in panel D, it

is clear that the errors along 225◦ clockwise (orange in colour) appear to be larger than along 135◦

clockwise (green in colour). For a subject, we plot the mean error in the eight directions (shown as

circles) and the error bar in each of the 8 directions, and finally fit an ellipse with the mean errors

as shown in panel A in figure 8. We can make the following observation:
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Figure 8: Variation of error along 8 directions for point-to-point reaching task

• The error in the ”Baseline” are smaller and the eccentricity of the ellipse is not very large.

• Consistent with panel D in figure 6, the errors are large when the lateral force is applied and

as the trials progress, the error decreases – this shows that the subject learns to adapt to the

external lateral force.

• Panel B in figure 6 shows the variation of the eccentricity of the ellipse as the trial progresses –

the dark solid line is the mean and the shaded region around it shows the standard error mean.

It can be clearly seen that the eccentricity of the ellipse decreases as the trials progresses.

It was shown earlier that the increased used of redundancy led to higher learning rate and faster

reduction in error. From the above observations one can also argue that the redundancy is used to

reduce the increased eccentricity and bring it down to the inherent mechanical anisotropy present

in the human arm for point-to-point reaching tasks. Although it is possible to remove anisotropy

in mechanical redundant robots, it does not seem to be possible in the redundant human arm. It

maybe mentioned that this last result is preliminary and more work needs to be done to arrive at

better understanding of the directional nature of learning and use of redundancy in human arm.

4 Conclusion

This work is an attempt to connect redundancy resolution in robotic arms with redundancy res-

olution in human arm when it is used for point-to-point reaching tasks. In a 30 year old work,
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co-authored by Prof. Bernard Roth, it was shown that redundancy can be used to make the end-

effector velocity distribution of non-linear serial robot isotropic. From new experimental results

obtained in a recent work, it can be argued that the exploitation of redundancy in the human arm

results in faster motor learning. Preliminary analysis seem to suggest that the redundancy in the

arm is used to make the error in different directions more uniform. More work is required to obtain

a better understanding where the redundancy in human arm is processed and how the redundancy

in the actuation system, namely muscles, are resolved.
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