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Abstract
This paper deals with generally routed, pre-bent cable-driven continuum robots (CCR). A CCR consists of a flexible
backbone to which multiple disks are attached. Cables are passed through holes in the disk, and when pulled, the
flexible backbone and the CCR can attain different shapes based on their routing and backbone configuration. An
optimization-based approach, using minimization of strain energy, is shown to give good results for the pose and
motion of the CCR and to determine contact with external objects. The pose, motion, and the contact obtained from
the model are shown to match very well with experimental results obtained from a 3D-printed CCR. An algorithm
is proposed to generate the pre-bent backbone for a CCR which on actuation can attain the desired shape. Using
the algorithm, three 3D printed CCRs with pre-bent backbones are fabricated and these are used to demonstrate
a compliant gripper that can grip a spherical object similar to that done by tentacles, and another three-fingered
gripper with straight backbone CCRs is used to orient a square object gripped at the end.

1. Introduction

Flexible continuum robots due to their inherent compliance, better maneuverability, lightweight con-
struction and ability to work in constricted environments in the presence of obstacles are being
increasingly used in many applications. A flexible continuum robot is characterized by a main elastic
element termed as the ‘backbone’ which can be actuated by various means [1] such as pneumatics [2],
shape-memory alloy [3], pre-curved beams [4] and cables [5], each with their own advantages and dis-
advantages. This paper focuses on flexible continuum robots actuated by cables, known as ‘Cable-driven
Continuum Robot’ (CCR) for their simple construction and ease of operation. CCRs find use in many
fields such as medical devices [6], space applications [7], search and rescue [8], biomimetics [9] to name
a few.

Fig. 1 shows a commonly used configuration of a CCR with multiple circular disks attached to the
flexible backbone. Each disk contains holes spaced equally around the periphery of a circle (see inset
in Fig. 1), and one or more cables are routed through these holes from the base to the disk at the tip –
Fig. 1 shows one such cable routed in a general manner through the holes in the disks. When a cable is
pulled (actuated) from the base, the entire CCR deforms and attains a different pose – the right side of
Fig. 1 shows the shape obtained when the cable is pulled. The shape of the deformed backbone depends
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Figure 1: A CCR with generally (helically) routed cable before and after actuation.

on the routing of the cable and the initial shape of the backbone – a general routing and a pre-bent
backbone configuration will lead to more complex shapes and posses which may not be possible with
a straight routing and straight backbone configuration. It is of interest to obtain models of CCRs for
accurate estimation of the pose after actuation, visualization of their motion and model-based control.

Various models are available in the literature to predict the pose of the CCR after actuation. A
detailed review of the models can be found in [1, 10, 11]. The earliest and simplest known models are
based on geometry and assume constant curvature approximations for single section [12] and multiple
sections [13, 14]. More sophisticated mechanics-based models using the finite element method (FEM)
for a multi-section CCR mimicking a skeletal spine is presented in [15]. FEM, along with Cosserat
rod theory [16] has been used in models, and this shows good accuracy. A statics model based on
Euler-Bernoulli beam theory is presented for a multi-section CCR, including the effect of friction and
gravity [17]. Cosserat rod models [5, 18, 19] have shown to have good accuracy in the prediction of
CCR pose with general cable routings and in the presence of external loading. Energy-based methods
such as virtual-power based [3, 20], virtual-work based [21] and Euler-Lagrange formulation [12, 22]
have also been used in the past. Dexterity analysis of multi-segmented CCR has also been explored by
observing the Jacobian matrices [23]. More recently, fuzzy reinforcement learning [24], control using
computer-vision-based image recognition [25], and forward as well as inverse dynamics including obsta-
cle avoidance [26] have also been proposed. It is also of interest to predict the behaviour of a CCR when
the CCR is in contact with an obstacle and to predict the contact force – see, for example, using rigid
body assumption in [27], using screw theory in [28], using geometry and bounding boxes [29], and using
an optimization-based approach in [30].

Most available literature and models focus on CCRs with straight routing due to ease of modeling
and faster simulations. However, straight routings and an initial straight backbone configuration cannot
achieve all the complex shapes a generally routed CCR or a pre-bent backbone shape can achieve. This
paper focuses on a geometry-based optimization technique applicable to a generally routed cable in a
CCR and a CCR with a pre-bent backbone. The approach is based on minimizing strain energy due to
bending and torsion and only uses Poisson’s ratio of the backbone material. Experimental validation
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with 3D printed CCRs with various routings demonstrates good agreement between numerical simula-
tions and experimental results for the CCR shape and pose when the CCR is in contact with an obstacle.
An algorithm is developed using the forward kinematics model that can generate pre-bent backbone
shapes which can attain a desired shape on actuation. Using the algorithm, a three-fingered gripper,
made of three CCRs, is shown to be able to grip a spherical ball and a separate gripper is shown to
orient a cube. The rest of the paper is organized as follows: section 2 contains the formulation of the pro-
posed optimization-based method. The proposed method is then validated experimentally in section 3.
In section 4, the algorithm to obtain CCR backbone shapes is presented along with an application to a
three-fingered gripper. Finally, in section 5, concluding remarks and scopes of future work are presented.

2. Methodology

In this section, we present the mathematical formulation of the optimization-based method used for a
CCR with a single generally routed cable along the backbone from the base to the tip. This work extends
the work on straight routed cable (Ashwin et al. [30]) to include both bending and torsion of the flexible
backbone and a pre-bent initial shape of the flexible backbone. A description of the symbols used in this
paper is given in Nomenclature at the end.

2.1. Optimization-based kinematics of CCR: Theory

The backbone is the main element that determines the pose of the CCR after actuation and can be mod-
eled as a slender beam. For straight cable routing and an undeformed straight beam, the deformed shape
of the beam subjected to pure bending can be obtained by using minimization of strain energy. In the
case of a general cable routing or a pre-bent shape of the backbone, the strain energy will be contributed
by bending along 𝑋 and 𝑌 directions (assuming 𝑍 to be tangent to the backbone) and torsion applied on
the backbone at the disk attachment points. The strain energy can then be represented mathematically as:

min
𝜃𝑥 , 𝜃𝑦 , 𝜙

∫ 𝐿0

0

(
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where, 𝐿0 is the total length of the backbone, 𝑠 is the arc length parameter, 𝜃𝑥 (= 𝑑𝑥/𝑑𝑠) and 𝜃𝑦 (= 𝑑𝑦/𝑑𝑠)
are the slope angles of the beam with 𝑥 and 𝑦 the displacement in the transverse directions and 𝜙 is the
change in angle due to torsion. For the two strain energies due to bending, we assume that the bending is
along the plane formed by the local tangents and thus replace it with only one term. With this assumption,
the strain energy minimization equation reduces to:
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where 𝜃 is the change in the angle made by the tangent vector locally and 𝐼 = 𝐼𝑥𝑥 = 𝐼𝑦𝑦 .
For an isotropic backbone material with constant cross-section, the material and geometrical prop-

erties, 𝐸 , 𝐼, 𝐺, and 𝐽, can be taken out of the integration. A further simplification can be done by
discretizing the backbone into 𝑛 equal segments, with the disk numbered from 0 (base) to 𝑛 (tip), to
arrive at a finite difference form:
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Figure 2: Nomenclature used for the 𝑖th section of a CCR with a generally routed cable before and after an
iteration. The backbone curve, and the tangents and normals vectors at the disks are shown in magenta,
blue, and red respectively.

where 𝐶 and 𝐷 are constants related to 𝐼, 𝐽 𝐸 and 𝐺. From the relation 𝐸 = 2𝐺 (1+ 𝜈), 𝐷 can be shown
to be only dependent on the Poisson’s ratio, 𝜈 and the minimizing the strain energy of the backbone is
equivalent to minimizing the weighted sum of squared changes in slope angles and torsion angles.

Fig. 2 shows the 𝑖th section of CCR in between the disk labelled {𝑖 − 1} and, {𝑖} before and after an
iteration with the backbone curve shown in dashed magenta line. The disks are always perpendicular to
the backbone. The tangents to the backbone curve at the centre of the disks {𝑖} is denoted by t𝑖 and the
normal vector from the centre of the disk to the location of the hole (through which the cable passes)
is denoted by n𝑖 – in Fig. 2, n𝑖 and n𝑖−1 are not parallel due to the general cable routing. Hence, the
minimization in equation (3) is equivalent to minimizing the weighted sum of squares of change in the
angle made by the tangent and normal vectors.

The position vectors X𝑖
0 and X𝑖

𝑎 denote the location (from the base) of the center of the disk and the
cable on the 𝑖th disk and X𝑖

( ·) change to x𝑖( ·) after an iteration. The tangent vector, t𝑖 is approximated

as the unit vector along
(
(·)𝑖0 − (·)𝑖−10

)
where (·) can be x or X. The position vector for the cable at the

𝑖th disk, X𝑖
𝑎 and x𝑖𝑎 are along the normal to the backbone curve at X𝑖

0 and x𝑖0, respectively. The change
in bending and torsional angles, Δ𝜃 and Δ𝜙, are found by comparing x𝑎 (or x0) and its values in the
previous iteration, making the change in angles more accurate and local in nature. The change in the
bending angle, Δ𝜃, is given by the angle between unit vectors along

(
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)
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(
X𝑖

0 −X𝑖−1
0

)
, and

likewise the the change in the torsion angle Δ𝜙 can be obtained from the angle between the unit vectors
along

(
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)
and

(
X𝑖

𝑎 −X𝑖
0

)
(see Fig. 2).

The discretized minimization problem in equation (3) to find the pose of a CCR (x0, x𝑎) with general
cable routing can thus be written as:
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Subject to:

∥x𝑖0 − x𝑖−10 ∥ = 𝑙0, ∥x𝑖𝑎 − x𝑖−1𝑎 ∥ = 𝑙𝑖𝑎, ∥x𝑖0 − x𝑖𝑎∥ = 𝑎 (𝑖 = 1, 2, . . . , 𝑛) (5)

Given data: 𝑙0, 𝑙𝑖𝑎, 𝑎, X0, X𝑎 and 𝐷.

The output of the optimization are the position vectors of the centre of all 𝑛 disks x𝑖0 and cables x𝑖𝑎 after
deformation.

It may be noted that to preserve the length of the CCR and to maintain its geometry, the length between
the center of two disks, 𝑙0(= 𝐿0/𝑛 with 𝐿0 being the total length of the CCR) and radial distance of the
cable, 𝑎, remains constant. The minimization is performed iteratively by decreasing 𝑙𝑖𝑎 (length of cable
inside the 𝑖th section), each iteration using results of previous iteration as X0 and X𝑎 values and iterating
until the final value of 𝑙𝑖𝑎 is reached.

It may also be noted that the effect of gravity and friction is ignored in this formulation. These are
reasonable assumptions since the CCR is lightweight, and we are only interested in kinematics and the
friction force at the cable-disk interface is expected to be very small as the motion of the cable itself is
small.

2.2. Kinematics of CCR with initially straight backbone

In this section, the kinematics for a CCR is presented, assuming the backbone is initially straight prior
to actuation.

2.2.1. Straight cable routing
When the cable is routed straight from the bottom to the tip (parallel to the backbone), the CCR bends
in a plane formed by the backbone and the cable. In this case, the length of the cable inside each of the
sections is equal. Therefore, if 𝐿 is the total length of the cable inside the CCR, the length of cable inside
each section 𝑙𝑖𝑎 = 𝐿/𝑛 = 𝑙𝑎. The second constraint in equation (5) can be modified to

∥x𝑖+1𝑎 − x𝑖𝑎∥ = 𝑙𝑎

2.2.2. General cable routing
In the case of general routing, a cable can be routed in an arbitrary path through the holes from the
base to the tip. After deformation, the vector from the centers of the disk to the position of the hole
through which the cable passes in the same disk remains normal to the backbone curve, and we can
write, (t𝑖 · (x𝑖0 − x𝑖𝑎)) = 0. It maybe noted that the length of the cable between two disks need not be
equal but can be found out in the undeformed state from geometry. When the cable is pulled, the lengths
in each segment is reduced proportionately.

2.3. Kinematics of CCR with pre-bent backbone

For a backbone that is initially pre-bent (without any pre-tension), with a straight routing of the cable and
the backbone curve assumed to be continuous and smooth, the optimization problem remains similar.
The key difference is in the choice of X𝑖

0 and X𝑖
𝑎. In this case, initially, both X𝑖

0 and X𝑖
𝑎 are chosen the

same as the pre-bent shape, unlike straight for the previous cases.
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2.4. Kinematics of CCR with obstacles

The kinematics of CCR in contact with obstacles can be easily incorporated by adding in-equality con-
straints [30]. The optimization problem is thus modified by adding the following to the constraints
in (5)

f (x0) ⪰ 0, f (x𝑎) ⪰ 0, f (x𝑏) ⪰ 0 (6)

where f (x) is a given data representing the boundary of the obstacle, and x𝑏 = 2x0−x𝑎. The inequality
constraints in equation (6) ensures that the CCR is never inside the obstacles. The Lagrange multipli-
ers corresponding to the inequality constraints in equation (6) during the optimization procedure will
indicate location of contact when the constraints are satisfied.

3. Results and discussion

In this section, we present numerical simulation results for a CCR with straight and general cable routing
and a pre-bent CCR. The section also presents a comparison with experimental results obtained from
3D-printed CCRs.

3.1. Numerical simulation

The optimization problems given by equations (4) – (5) (along with (6) – if in presence of obstacles) were
numerically solved using fmincon function with interior-point algorithm available in MATLAB®. The
backbone is assumed to be a smooth C2 cubic spline and the normals and tangents are obtained from the
equation of the spline. Each step involved solving 18 coordinate points simultaneously. The variable 𝑙𝑖𝑎
was gradually decreased, and the solution from the previous iteration served as the initial guess for the
next iteration till the final 𝑙𝑖𝑎 is reached. The simulations were conducted on a PC with an Intel processor
(2.60 GHz) and 24 gigabytes of RAM. Details of the dimensions of different CCRs and their cases are
presented in the following section. The average simulation time for each simulation is listed in Table 1.
A sample simulation result corresponding to case - General 1 is shown in Fig 3. For the case of pre-
bent CCR, the experiments and the optimization problem were solved in 2D for ease of construction and
computation.

The accompanying simulation Video 1 (Link at the end) shows the movement of the CCR for vari-
ous cases when the cable is pulled gradually. In each case, the optimization-based forward kinematics
equation (4) – (6) is solved starting with undeformed value of 𝑙𝑖𝑎, gradually decreasing the value linearly
and obtaining the backbone positions, x𝑖0 and the cable positions, x𝑖𝑎. In each case, the previous position
is kept as the initial guess to the optimization problem.

3.2. Prototype

For the purpose of validation of the optimization-based method, prototypes were 3D printed using ABS
and PLA materials (see Fig. 4a for one such prototype). Poisson’s ratio (𝜈) of 0.39 for ABS and 0.35
for PLA, close to literature-reported values [31, 32], were used. The prototype is 182 mm long, with
9 sections (10 disks) and with a 2.5 mm diameter backbone. Each disk is 2 mm thick and contains 12
holes of 1.25 mm diameter arranged around the periphery of a circle of radius 8 mm centered at the
disk center. For the pre-bent CCR, feasible backbone shapes, ensuring C2 continuity of the backbone
and perpendicularity of disks to the backbone at attachment points, were chosen.

Thin high-strength nylon wires are used as cables, which are routed via the holes, and standard
weights (see inset of Fig. 4a) were used for pulling (actuating) the cable. The numerical results of the
model are compared with 9 experiments with different cable routings and pre-bent shapes. The details
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Figure 4: (a) Experimental set-up for straight routing with the load shown in the inset. (b) Top view of
the holes on a disk showing the numbering scheme.

of the routings are listed in Table 1 where the ‘Cable position’ denotes the hole number through which
the cable passes according to Fig. 4b starting from the base till the tip and 𝑙𝑖𝑎 is measured by using an
image processing system.

3.3. Experimental validation

Experiments on each case listed in Table 1 are carried out on the prototypes. An image is captured using
a camera before and after deformation – one from the front and one from the side for 3D views. The
undeformed CCR image is then used to calculate the appropriate scaling and calibration. The results
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Table 1: Experimental details (PB = Pre-bent, eR = RMS error, ts = Average simulation time)

Case Cable position Load
(gram)

Cable
pull

(as %)

eR
( mm)

ts
(sec)

Straight 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 400 5.0 0.50 4.07
Helical 7 – 8 – 9 – 10 – 11 – 12 – 1 – 2 – 3 – 4 350 4.0 3.02 7.54
General 1 1 – 12 – 11 – 10 – 10 – 10 – 11 – 12 – 1 350 3.7 2.56 4.96
General 2 1 – 12 – 11 – 10 – 9 – 8 – 7 – 7 – 7 – 7 350 3.3 1.79 7.85

Right – 500 2.4 0.85 1.25PB 1 Left – 500 2.4 0.62 1.18
Right – 500 2.4 1.21 1.14PB 2 Left – 500 2.4 0.92 1.14

PB (with obstacle) – 600 2 0.79 1.78

obtained from the simulations (solution of the optimization problem) were then superimposed on the
captured images (after deformation) using proper calibration and scaling (obtained using image pro-
cessing), taking the base as the origin. The process is repeated for both views, facilitating comparison
in 3D. The simulated points on the backbone are marked using red squares, and that of the cables using
blue squares. The RMS errors for the backbone (centers of the disks) are presented in Table 1.

3.3.1. Straight and general cable routing
For the case of straight and general cable routings (Figures 5a – 5e), the simulated results match very
closely with the experiments. The maximum RMS error in these cases is 3.02 mm, which is less than
1.68% of the total length of the CCR. It is to be noted that the result for helical cable routing is shown
with two views. For the rest, only the front view is presented.

(a) (b) (c) (d) (e)

Figure 5: Experimental comparison for CCR with a straight backbone for (a) Straight, (b) Helical (front
view), (c) Helical (side view), (d) General 1 and (e) General 2.
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3.3.2. Pre-bent backbone
For the case with a pre-bent backbone, two pre-bent shapes of the backbone were chosen as mentioned
in Table 1 (see Figures 6b and 7b). It was ensured that the disks are perpendicular to the backbone at the
interface. The experiments were repeated for both sides of the backbone, which are shown in Figures 6
and 7. In both the figures, the image in the middle is the unactuated state of the CCR (cables are seen
to be slack), the figure to the right and left is the CCR actuated using the cable to the right and left,
respectively – the actuated cable is not slack. As seen from the figures, the simulated results are in good
agreement with the experiments with a maximum RMS error in the position of the backbone of 1.21
mm, which is less than 0.68 % of the total length of the CCR.

(a) (b) (c)

Figure 6: Experimental comparison for CCR with pre-bent backbone for the case - Pre-bent 1 – (a) Left
cable actuated, (b) Unactuted, and (c) Right cable actuated.

To validate the pose of the CCR with a pre-bent backbone in contact with an obstacle, a cylindrical
obstacle of 30 mm diameter is placed in the plane of motion of the CCR with the backbone for the case
- Pre-bent 2. The center of the cylinder is at a distance of 16 mm to the left and 136 mm above the
base disk center. Upon actuation, the 3rd disk from the top comes in contact with an obstacle, as seen in
Fig. 8b. The Lagrange multipliers, corresponding to the inequality constraint of the third disk from the
top, show a significantly large non-zero value (see Fig. 8c) and is thus consistent with the experimental
observation. It can also be seen that the simulation results (blue and red squares) match the experimental
profile very closely with an RMS error of 0.79 mm in the position of the backbone, which is less than
0.44 % of the total length of the CCR.

Potential sources of error in the experiments include cable extensions due to loads, surface defects,
material anisotropy in 3D printing, friction between cables and disks, and setup errors in the image
capture system.

4. Algorithm to generate desired pre-bent shapes of CCR

Starting with the formulation from section 2, the desired final shape of the CCR is defined by backbone
node points x0𝑑 (disk centers). The cable’s desired location, x𝑎𝑑 , is determined based on normals. The
error between x0𝑑 and x0 (output from the forward kinematics model) is minimized by an optimization
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(a) (b) (c)

Figure 7: Experimental comparison for CCR with pre-bent backbone for the case - Pre-bent 2 – (a) Left
cable actuated, (b) Unactuted, and (c) Right cable actuated.

(a) (b)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2
×10−3

Disk number (starting from the base)

λ

(c)

Figure 8: Result for CCR with pre-bent backbone for the case - Pre-bent 2 (a) before contact, and (b)
after contact with a circular obstacle. (c) Lagrange multipliers (𝜆) values corresponding to f (x𝑎) ⪰ 0.

routine, for the specified cable pull Δ𝑙 . The main steps to generate pre-bent shapes of a CCR that can
attain a desired shape upon cable actuation are presented as an the algorithm below.

Algorithm Pre-bent

1. Input the desired shape of the backbone as a space curve originating from the origin (0, 0, 0)𝑇 with
arc length 𝐿0.
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Figure 9: Schematic representation of algorithm Pre-bent

2. Select appropriate values for disk radius 𝑎, number of segments 𝑛, desired error 𝑒𝑑 and the cable
pull Δ𝑙 .

3. Starting from the origin, find points on the curve separated by a distance 𝑙0(=𝐿0/𝑛) from each other
which are the desired positions (x0𝑑) of the disk on backbone.

4. Obtain the normal vector to the given space curve at the disk centers, find the positions for the cable
on the disk (x𝑎𝑑) at a distance 𝑎 from the disk centre lying along the normal.

5. Minimize

argmin
X0

𝑒 =

𝑛∑︁
𝑖=0

∥x𝑖0𝑑 − x𝑖0∥2 (7)

where x0 is found from the forward kinematics equations (4) – (6) which also require the initial
shape of the backbone denoted by X0.
Subject to:

𝑛∑︁
𝑖=0

∥x𝑖0𝑑 − x𝑖0∥2 ≤ 𝑒𝑑 (8)

Given data: 𝑎, 𝑛, 𝑙0, x0𝑑 , x𝑎𝑑 , Δ𝑙 and 𝑒𝑑 .
6. Output – Desired pre-bent shape X0

The algorithm Pre-bent enables accurate modeling of CCRs for gripping or following obstacle con-
tours as shown for the case of a three-fingered gripper, with each finger pre-bent, for gripping a sphere
(see Section 4.1). The algorithm Pre-bent is shown schematically in figure 9.

Figure 10 shows the results obtained for one implementation of the algorithm Pre-bent. The desired
shape is shown in black, and two different solutions of the algorithm are shown for the same initial guess
and desired shapes, but with a change in Δ𝑙 .
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Figure 10: Plots showing the desired shape, the initial guess, and the solutions provided by the algorithm
for different amounts of cable pull.

4.1. Application of pre-bent, and generally routed CCRs to three-fingered grippers

For demonstration, the algorithm is used to design a CCR that can grip a sphere of diameter 112 mm
(chosen arbitrarily). Three identical CCRs are designed such that the final shape matches with the con-
tour of the sphere, and are placed 120◦ apart, 42 mm from the center. The sphere’s center is located
110 mm from the base. The Δ𝑙 was chosen to be 3 % and 𝑒𝑑 was set to 1×10−10 mm2. Snapshots
in Figures 11a – 11b show the simulation at the start and at the end. Simulations used fmincon from
MATLAB, taking approximately 214 seconds. The initial guess was a straight backbone with a circular
obstacle representing the ball’s position.

For experimental validation, 3D-printed CCRs and a sphere were positioned according to the calcu-
lated locations. Servo motors were used to actuate the cables in the CCRs. The accompanying Video
2 showcases the experimental set-up, gripper motion range, successful gripping, holding, and timed
release of the ball. Snapshots from the video are displayed in Figures 11c – 11d. It was observed that the
CCR closely followed the ball’s contour, as intended by the algorithm, with contact location determined
by monitoring Lagrange multipliers associated with obstacles. Additionally, the algorithm is versatile in
designing an appropriate number of CCRs for gripping asymmetrical objects, ensuring multiple points
of contact for improved grasping.

Figure 12 shows a three-fingered CCR based gripper used to grip a cube and manipulate the gripped
cube (see accompanying Video 3). In this case, the cables are routed in a general manner, and more
than one cable is pulled in one of the CCRs. For this demonstration, the cube is assumed to be in a
pre-determined position and possible points of contact are identified. Using this point of contact, an
optimal configuration for the CCR is derived to ensure effective gripping. Using this desired shape and
the algorithm provided in [33], a valid general cable routing is obtained. Using the cable routing, the
motion of the CCR is determined similar to Video 1 and checked if the motion will result in a twist of
the cube once the cables are actuated beyond contact. A general algorithm to obtain the actuation of the
cable to obtain the desired position and orientation of a gripped object is a work in progress.

5. Conclusion and future work

In this paper, a geometry-based optimization method for obtaining the kinematics of a CCR with gen-
eral cable routing, pre-bent backbone shape, and in the presence of obstacles is presented. Only the
geometrical parameters and the Poisson’s ratio of the material are used – avoiding the need to obtain or
estimate other material parameters. The input to the formulation is the amount of cable actuation, which
is much easier to measure than the applied load, used in most formulations. The optimization approach



Robotica 13

-150

100

-100

-50

Z
 (

m
m

)

0

Y (mm)
0

X (mm)

500-100 -50-100

(a)

-150

100

-100

-50

Z
 (

m
m

)

0

Y (mm)
0

X (mm)

500-100 -50-100

(b)

(c) (d)

Figure 11: Snapshots of simulation of gripping of a sphere (in green) by three pre-bent CCR obtained
from the algorithm (a) at the beginning and (b) at the end. Snapshots of the fabricated gripper (c) at the
beginning and (d) at the end, holding the ball (see accompanying Video 2).

allows one to locate the contact with an obstacle by observing the Lagrange multipliers corresponding
to the obstacle. The formulation is validated by experiments performed on 3D-printed CCR prototypes.
The simulated results are in good agreement with the experiments with a maximum RMS error (for the
backbone) of less than 1.68 % of the total length of the CCR. The formulation can accurately predict
the kinematics of CCR post-contact with an obstacle, as shown in the experiments.

An algorithm utilizing forward kinematics for pre-bent CCR is presented to generate backbone shapes
that achieve prescribed shapes upon actuation. This algorithm accurately models CCRs that closely fol-
low object contours and enable effective grasping with multiple contact points. Experimental validation
demonstrates a three-fingered gripper successfully grasping and holding a spherical ball and different
shaped objects. Work is ongoing to develop an algorithm for determining actuation for desired object
position and orientation. Obtaining the configuration of the robot (routing) when a desired shape needs
to be achieved is also a work in progress.

Link to videos

Video 1 – Simulation and motion of a CCR – https://youtu.be/OuSEjdZLbAc
Video 2 – Three-fingered gripper with pre-bent CCRs – https://youtu.be/7RSmnAxf1D8
Video 3 – Three-fingered gripper grasping and orienting a cube – https://youtu.be/TKxvjrdBKdg

Nomenclature

https://youtu.be/OuSEjdZLbAc
https://youtu.be/7RSmnAxf1D8
https://youtu.be/TKxvjrdBKdg
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(a) (b) (c)

Figure 12: Snapshots of the fabricated gripper (a) at the beginning, (b) holding the cube, and (c) rotating
the cube (see accompanying Video 3).

Symbol Description
𝐸 Modulus of elasticity.
𝐺 Shear modulus.

𝐼𝑥𝑥 , 𝐼𝑦𝑦 Area moment of inertia about the bending planes.
𝐽 Area moment of inertia about the torsional plane.
𝜃 Slope angle.
𝜙 Change in torsional angle.
t𝑖 Tangent to the backbone curve at 𝑖th disk.
n𝑖 Normal to the backbone curve at 𝑖th disk (pointing towards the cable).
𝑠 Arc-length parameter.
𝑛 Number of backbone segments.
𝑎 Radial distance between from the centre of the backbone to the cable on the disk.

𝐿0 Total length of backbone.
𝑙0 Length of a backbone segment.
𝐿 Length of cable inside the CCR after actuation.
Δ𝑙 Length of cable pulled.
𝑙𝑖𝑎 Length of the cable inside 𝑖th segment.
X𝑖

0 Position vector of backbone at the 𝑖th disk in undeformed state (or previous iteration).
X𝑖

𝑎 Position vector of the cable at the 𝑖th disk in unactuated state (or previous iteration).
x𝑖0 Position vector of the deformed backbone at the 𝑖th disk.
x𝑖𝑎 Position vector of the actuated cable at the 𝑖th disk.
x𝑖
𝑏

Position vector of the antagonistic cable at the 𝑖th disk.
x0𝑑 Desired positions of the backbone of the actuated pre-bent CCR (disk center).
x𝑎𝑑 Desired positions of the cable on the disks of the actuated pre-bent CCR.
X0𝑑 Desired positions of the backbone of the unactuated pre-bent CCR.
f (x) Function for boundaries of obstacles.
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